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Image restoration is an interesting ill-posed problem. It plays a critical role in the concept of image processing. We are looking for
an image that is as near to the original as possible among images that have been skewed by Gaussian and additive noise. Image
deconstruction is a technique for restoring a noisy image after it has been captured. The numerical results achieved by the
prox-penalty method and the split Bregman algorithm for anisotropic and isotropic TV denoising problems in terms of image
quality, convergence, and signal noise rate (SNR) are compared in this paper. It should be mentioned that isotropic TV
denoising is faster than anisotropic. Experimental results indicate that the prox algorithm produces the best high-quality
output (clean, not smooth, and textures are preserved). In particular, we obtained (21.4, 21) the SNR of the denoising image by
the prox for sigma 0.08 and 0.501, such as we obtained (10.0884, 10.1155) the SNR of the denoising image by the anisotropic
TV and the isotropic TV for sigma 0.08 and (-1.4635, -1.4733) for sigma 0.501.

1. Introduction

Image processing is a subset of signal processing that
focuses on images and videos. All procedures done on an
image in order to increase readability and facilitate interpre-
tation are referred to as image processing. In the industry,
image restoration is an important topic. This is a fundamen-
tal problem in a variety of applied sciences, including med-
ical imaging [1] [2], microscopy and astronomy [3], film
restoration, and image and video coding [4] [5]. Image res-
toration is an interesting subject in image processing since it
occurs at the very beginning of the acquisition chain and
involves recovering a clean original image from a degraded
image [3] [2].

By applying a proximal algorithm to solve a minimiza-
tion problem, we propose a unique technique for image res-
toration. It is believed that an original image has been
deteriorated by additive noise.

We are attempting to rebuild u from the image we have
seen Im (which is therefore a degraded version of the origi-

nal image u). The maximum likelihood technique leads us to
seek u as a solution to the following optimization problems,
assuming that the additive noise is Gaussian:

P  α≔ arg min
u∈Uad

1
2

Im − u 2
2 , 1

where Uad the admissible set is determined by

Uad ≔ u ∈ BV Ω , J u ≤ 0 , 2

and J u represents the total variation in u as specified by

J u ≔ sup
Ω

u x div φ x dx φ ∈ C1
c Ω,ℝ2 , φ ∞ ≤ 1

3

Total variation regularization (TV) is a regularization
term J u = D u that allows for discontinuous solutions.

Hindawi
Journal of Applied Mathematics
Volume 2023, Article ID 6689311, 15 pages
https://doi.org/10.1155/2023/6689311

https://orcid.org/0000-0001-5724-2009
https://orcid.org/0000-0002-5043-1971
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6689311


Because of its capacity to include “jumps” in the solution, it
has become particularly popular for image rendering. The
space of bounded variation function is known as BV. It is
characterized by

BV Ω ≔ u ∈ L1 Ω , J u < +∞ 4

To tackle this problem, we will apply the proximal pen-
alty approach (Aujol [6]; Micchelliy, Shenz, and Xux [7]). To
accomplish this, we state the method’s idea. The fact that the
problem P is equivalent to the problem P αe

is the prin-
ciple behind it.

P  α≔ arg min
u∈Uad

1
2

Im − u 2
2

⇔ P αe
 αe ≔ arg min

u∈BV

1
2

Im − u 2
2 +ΨUad u ,

5

where ΨUad indicates the Uad indicator function defined by

ΨUad u ≔
0 if u ∈Uad ,

+∞ otherwise
6

Definition 1. [7] We denote by ℝd the usual d-dimensional
Euclidean space.

Let ψ be a real-valued convex function on ℝd . For all
x ∈ℝd , the proximal operator of ψ is defined by

prox x ≔ argmin
1
2

u − x 2
2 + ψ u : u ∈ℝd 7

We give the following three examples.

Example 1. If λ > 0 and x ∈ℝ, then

prox1/λ x =max x −
1
λ
, 0 sing x 8

Example 2. If λ > 0 and x ∈ℝm, then

prox1/λ 1
x = prox1/λ x1 , prox1/λ x2 ,⋯, prox1/λ xm

t
,

9

with t is the transpose of a line vector.

Example 3. If λ > 0 and x ∈ℝm, then

prox1/λ 2
x =max x 2 −

1
λ
, 0

x
x 2

= prox1/λ x 2
x
x 2

10

2. General Principle of the Proximal-
Penalty Methods

According to [8–12], the following is the general principle of
the proximal-penalty methods:

(1) Replace the problem P with the problem P r
that has no constraints

P r  αr ≔ arg min
u∈BV

φ u, r =
1
2

Im − u 2
2 + r max 0,ΠK u

11

The penalty coefficient is r whith r > 0. The external pen-
alty function is known as h where h u =max 0,ΠK u ,
and ΠK u is the projection of u in K where

K ≔ div φ x : φ ∈ C1
c Ω,ℝ2 , φ ∞ ≤ 1 12

When r⟶ +∞ , the obtained solution u r is a solu-
tion of P .

(2) We begin by selecting a penalty coefficient r1 and
then solve the problem without constraints

P r1
 αr1 ≔ arg min

u∈BV
φ u, r1 =

1
2

Im − u 2
2 + r1 max 0,ΠK u ,

13

let u r1 be the obtained point.

(3) The stop test: u r1 is a good approximation of the
optimum if the amount r1h u r1 is sufficiently
small; otherwise, a penalty coefficient r2 > r1 will be
determined and the following new problem will be
solved without constraint P r2

The problem is linked to

P r w αr w ≔ arg min
u,w ∈BV2

1
2

Im − u 2
2

+ r max 0,ΠK u +
1
2

u −w 2
2

14

The relaxation algorithm transforms and generates a
sequence uk,wk

k such that uk+1 is a solution to the prob-
lem when we applied to this problem.

P r wk αr wk ≔ arg min
u∈BV

1
2

Im − u 2
2

+ r max 0,ΠK u +
1
2

u −wk
2

2
,

15
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and the solution of the problem is wk+1

P r uk+1 αr w ≔ arg min
u∈BV

1
2

Im − u 2
2

+ r max 0,ΠK uk+1 + 1
2

uk+1 −w
2

2

16

As a result, a simple iteration uk+1 solves the following
problem:

P r uk αr ≔ arg min
u∈BV

1
2

Im − u 2
2 + r max 0,ΠK u +

1
2

u − uk
2

2

17

3. Bregman Algorithms and Imaging

3.1. Bregman Projection

Definition 2 (Bregman distance). Let X be a Banach space,
g X⟶ −∞,+∞ be a lower semicontinuous proper con-
vex function, and let C ⊂ int dom g be a nonempty
closed convex set. Suppose g is Gâteaux differentiable in
int dom g with its Gâteaux derivative denoted by ∇g.
The Bregman distance Dg associated with g is a function
defined as follows:

Dg X × int dom g ⟶ 0,+∞ ,

y, x ⟶Dg y, x = g y − g x − ∇g x , y − x ,
18

with int dom g is the interior of the domain g

Let

C1 ≔ℝn
+ = x ∈ℝn, xi ≥ 0, i = 1⋯ n , g1 x ≔ 〠

i=1

n

xi log xi − xi

19

Then, there is a K-L divergence (Kullback-Leibler diver-
gence).

Dg1
y, x ≔ 〠

i=1

n

yi log
yi
xi

+ xi − yi 20

is a Bregman distance.

Remark 1. The following are some historical notes:

(i) Bregman was the first to adopt this distance mea-
surement in 1967 [13]

(ii) Censor and Lent created and developed the con-
cept [14]

(iii) In 1976, Bregman devised a simple and effective
method for using the Dg function in the design
and analysis of feasibility and optimization algo-
rithms. This has spawned a burgeoning field of
research in which Bregman’s technique is used to
create and analyze iterative algorithms for nonlinear
applications, not only to address feasibility and opti-
mization problems but also to solve variational
inequalities and calculate fixed points. More infor-
mation can be found in the sources [15] [16] [17].

Definition 3 (Bregman projection). Let g X⟶ −∞,+∞
be a lower semicontinuous smooth convex function. Let C
be a closed convex set in X with C ∩ int dom g ≠∅.
The approximation problem argmin

y∈C
Dg y, x thus permits a

single solution projgC x ∈ int dom g , known as the Breg-
man projection of x over C defined by

projgC x ≔ argmin
y∈C

Dg y, x 21

3.2. Bregman Algorithm. The iterative technique of Bregman
was first introduced and studied in the field of image pro-
cessing by Osher et al. Osher et al. proposed the iterative
Bregman algorithm as an effective algorithm for solving
optimization problems in [18]. Their main idea was to first
transform a constraint optimization problem into a
constraint-free problem by using the Bregman distance. This
problem-solving algorithm is as follows:

minu z u +H u, f , 22

Step 0: k = 0 Let u0 ∈ℝn, ε > 0 be a precision.
Step 1: we use the minimization approach to find a solution u1 to the following problem using a penalty coefficient r0 and a precision
δ > 0.

arg min
u∈ℝn

1/2 Im − u 2
2 + r0 max 0,ΠK u + 1/2 u − u0 2

2 ,

Step 2: the solution obtained is u1 r0 = u1.
If u1 − u0 2

2 < ε and if r0h u1 r0 < δ, then u1 is an excellent approximation of the optimal solution, and the calculations stop at
iteration k + 1
Otherwise, we use r1 > r0 as a penalty coefficient. We put r0 = r1, u0 = u1, and k = k + 1 and return to step 1.

Algorithm 1: [11, 12] Algorithm of proximal penalty.
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such that z X⟶ℝ and H X⟶ℝ are nonnegative
convex functions of u ∈ X, and H u, f is a smooth nonneg-
ative convex function in relation to u for a given f , and X is a
closed convex set.

The Bregman iterative algorithm is defined as follows by
Osher et al. in [18].

3.3. The Convergence Theorem. In [18], the variant of Breg-
man was presented for TV-based image rendering. Other
features of this iterative Bregman scheme, as well as the con-
vergence analysis, have been proven in detail in [18–20].
u1 = minu z u +H u is the first iteration of this method.
The residual term must be minimal to solve the initial prob-
lem; once the residual term converges, the Bregman iterative
algorithm continues. Because of its excellent convergence
features, the Bregman iterative algorithm has been applied
to a variety of problems, including badly posed problems
and image dissection. The following are some of these qual-
ities: with noisy data, we can achieve convergence to the
original image we are seeking to recover, as well as conver-
gence in terms of Bregman distance to the original image
and a monotonous decline in the residual term. We have z
u = u BV where ∇u 1 and H u = 1/2 u − f 2

2 learned
a lot about image redaction during our research.

The technique generates a series that reduces H in a
monotonous manner.

Proposition 1. [19] There exists a monotonous decrease H

H uk+1 ≤H uk+1 +Dpk
z uk+1, uk ≤H uk 23

Proposition 2. [19] The remaining residual terms H uk

converge to the smallest value of H.
If H X ⟶ℝ and z u <∞ are minimized by u, then

H uk ≤H u +
z u
k

24

3.4. The Split Bregman Algorithm. Goldstein and Osher first
proposed the split Bregman algorithm in [21] to handle
more general form optimization problems:

min
u∈X

H u + Φ u 1 , 25

where X is a closed convex set and Φ X ⟶ℝ and H X
⟶ℝ are the convex functions. This problem is the same

as the stress minimization problem as follows:

min
u∈X,d∈ℝ

H u + d 1 , such that d =Φ u 26

Goldstein and Osher introduced the split Bregman algo-
rithm, which was written as follows:

The split Bregman algorithm is used to solve some of the
most common form optimization problems:

min
u∈X

z u +
1
2

u − f 2
2 27

Anisotropic and isotropic TV denoising problems are
solved using the split Bregman method.

3.4.1. Anisotropic TV Denoising Problem. The problem of
anisotropic TV denoising is considered in [19].

P 1   min
u

∂u
∂x 1

+
∂u
∂y 1

+
μ

2
u − f 2

2 , 28

where f is the noisy image, ∂u/∂x and ∂u/∂y will be noted by
ux and uy , respectively. The problem is solved using a con-
straint equivalent to a problem P 1 .

We answer the problem P 2 as follows:

P 2  
min
u

dx 1 + dy 1 +
μ

2
u − f 2

2

subject to dx = ux, dy = uy

29

The split Bregman algorithm can be used to tackle this
last problem:

P 3   min
u,dx ,dy

dx 1 + dy 1 +
μ

2
u − f 2

2 +
λ

2
dx − ux

2
2 +

λ

2
dy − uy

2
2

30

We use

shrink x, a =

x − a if x > a,

x + a if x < −a,

0 else

31

Initialization: k = 0, u0 = 0 and p0 = 0 .
While “uk not converge,” do,
uk+1 ⟵ argminDPk

z u, uk +H u .
pk+1 ⟵ pk − ∇H uk+1 ∈ ∂z uk+1 .
k⟵ k + 1 .
End while.

Algorithm 2: [18] Algorithm iteratives of Bregman.

Initialization: k = 0, u0 = 0, b0 = 0 .
While uk − uk−1 > tol do,
uk+1 = minuH u + λ/2 dk −Φ u − bk

2
2 .

dk+1 = mind d + λ/2 d −Φ uk+1 − bk
2
2 .

bk+1 = bk + Φ uk+1 − dk+1 .
k = k + 1 .
End while.

Algorithm 3: [19] The split Bregman algorithm.
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The Gauss-Seidel function is also useful.

Gk
i,j =

λ

μ + 4λ
uki+1,j + uki−1,j + uki,j+1 + uki,j−1 + dkx,i−1,j + dkx,i,j

+ dky,i,j−1 + dky,i,j + bkx,i−1,j + bkx,i,j + bky,i,j−1 + bky,i,j +
μ

μ + 4λ
f i,j

32

3.4.2. Isotropic TV Denoising Problem. The problem of iso-
tropic TV denoising is considered in [19].

P 1′   min
u

∇u 2 +
μ

2
u − f 2

2 33

The problem P 1′ is solved using a constraint equivalent
problem P 2′ :

P 2′  
min
u

dx , dy 2 +
μ

2
u − f 2

2

subject to dx = ux, dy = uy

34

To solve the problem P 2′ , we solve the following prob-
lem without constraint:

P 3′   min
u,dx ,dy

dx, dy 2 +
μ

2
u − f 2

2

+
λ

2
dx − ux

2
2 +

λ

2
dy − uy

2
2

35

The split Bregman algorithm can be used to tackle this
last difficulty.

We give the following definitions:

sk = ukx − bkx
2
+ uky − bky

2
36

3.4.3. Combining Anisotropic and Isotropic TV Denoising
Problems. We propose an image-denoising method by com-

bining the anisotropic and isotropic TV denoising problem.

P A+I   min
u

∂u
∂x 1

+
∂u
∂y 1

+ ∇u 2 +
μ

2
u − f 2

2

37

The problem P A+I is solved using a constraint equiva-
lent to a problem P A+I′ :

P A+I′  
min
u

dx 1 + dy 1 + dx, dy 2 +
μ

2
u − f 2

2

subject to dx = ux, dy = uy

38

To solve the problem P A+I′ , we solve the following
problem without constraint:

P A+I′ ′   min
u,dx ,dy

dx 1 + dy 1 + dx, dy 2

+
μ

2
u − f 2

2 +
λ

2
dx − ux

2
2 +

λ

2
dy − uy

2
2

39

In our next studies, we would like to program the
method combining anisotropic and isotropic TV denoising
in MATLAB and we compare denoising methods.

Initialization: k = 0, u0 = 0, b0 = 0 .
While uk − uk−1 > tol do,
uk+1 =Gk, where G is the Gauss-Seidel function.
dk+1x = shrink ∇xu

k+1 + bkx , 1/λ .

dk+1y = shrink ∇yu
k+1 + bky , 1/λ .

bk+1x = bkx ∇xu
k+1 − dk+1x .

bk+1y = bky ∇yu
k+1 − dk+1y .

k = k + 1 .
End while.

Algorithm 4: [19] The split Bregman algorithm of anisotropic TV denoising.

Initialization: k = 0, u0 = 0, b0 = 0 .
While uk − uk+1 > tol do,
uk+1 =Gk, where G is the Gauss-Seidel function.
dk+1x = skλ ukx + bkx /skλ + 1 .

dk+1y = skλ uky + bky /skλ + 1 .

bk+1x = bkx + uk+1x − dk+1x .

bk+1y = bky + uk+1y − bk+1y .
k = k + 1 .
End while.

Algorithm 5: [19] The split Bregman algorithm of isotropic TV
denoising.
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3.5. The Convergence Theorem

3.5.1. Anisotropic TV Denoising Algorithm. The following
relationship is defined based on the various algorithms of
split Bregman anisotropic [7, 19].

dk+1 = proxμ/λ 1
Bxk+1 + bk =

dk+1x = shrink uk+1x + bkx,
1
λ

,

dk+1y = shrink uk+1y + bky ,
1
λ

,

bk+1 = bk + Bxk+1 − dk+1 =
bk+1x = bkx + uk+1x − dk+1x

bk+1y = bky + uk+1y − dk+1y

,

40

with

Bxk+1 = ∇uk+1 41

2N2 ×N is the size of the matrix B which is defined by

B≔
IN ⊗D

D ⊗ IN ,
42

with IN matrix identity N ×N , P ⊗Q the Kronecker product
of matrices P and Q, and D is a matrix N ×N defined by

D≔

0

−1 1

⋱ ⋱

−1 1

43

Proposition 3. If λ, μ > 0 and c, x0 ∈ℝm as a result, the iter-
ation scheme

xk+1 = I − proxμ/λ 1
xk + c , k = 0, 1,⋯ 44

converges towards its limit in a finite number of steps, for
i = 1, 2,⋯,m,

lim
k⟶∞

xk
i
=

μ sign ci
λ

, ci ≠ 0,

I − proxμ/λ x0
i
, ci = 0,

45

Proof. In the case m = 1, this is the result. The evidence is
divided into three categories: c > 0, c < 0, and c = 0.

In the case where c > 0, we have

μ

λ
= I − proxμ/λ

μ

λ
+ c 46

To put it another way, the number μ/λ represents a
fixed point in the iterative system. If x0 + c > μ/λ is true,
then x1 = μ/λ for all k ≥ 1. In other words, one iteration

is sufficient to approach the iterative scheme’s limit. If
x0 + c ≤ μ/λ, we have:

xk =
x0 + kc if 0 ≤ k <

μ

λc
−
x0

c
,

xk =
μ

λ
if k ≥

μ

λc
−
x0

c
,

47

The lowest integer that surpasses v is represented by v .
In step μ/μ − x0/c , the iterative system finds its limit. If

x0 + c < −μ/λ is true, then x1 = −μ/λ.
In step 2μ/λc + 1, the scheme reaches its limit.

Case c < 0 is comparable to that of case c > 0. The itera-
tive pattern, in particular, converges in a finite number of
steps to the limit −μ/λ.

Finally, we will look at example c = 0. The iterative pat-
tern becomes xk+1 = I − proxμ/λ xk in this example.

Original image Noisy image, sigma = 0.08

Anisotropic TV denoising Isotropic TV denoising
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Figure 1: Split Bregman results using cameraman image.

Table 1: Results for the anisotropic TV denoising algorithm,
sigma = 0 08.

Images Size n ×m
Number of
iterations

Relative
error

Time (s)

Cameraman 256 × 256 49 0.16604 34.527229

Barbara 510 × 510 41 0.173054 85.609672

Flower 256 × 256 51 0.211968 24.340052

Girl 216 × 233 47 0.149544 17.045064

Iline 1961 × 3553 164 0.143347 10438.736396

University 480 × 640 141 0.143296 300.869216

6 Journal of Applied Mathematics



For every k ≥ 1, we can see that xk = μ/λ if x0 ≥ μ/λ;
x0 ≤ −μ/λ if x0 = μ/λ; xk = x0 if x0 ≤ μ/λ. As a result, the
iteration to an end in a single step.

The convergence of the split Bregman anisotropic TV
denoising algorithm was proved in [22]. As can be seen,
we must solve a linear system according to the Goldstein-
Osher split Bregman denoising.

The split Bregman denoising method is reduced to the
Jia-Zhao denoising algorithm [23] as a result of this
adjustment, which can be called the FP2O-ATV algorithm
for k = 0.

In addition, both the Goldstein-Osher split Bregman
algorithm and the Jia-Zhao denoising method make sub-
stantial use of the Bregman distance features and show signs
of convergence.

In particular, the parameter λ that guarantees conver-
gence of the Jia-Zhao denoising algorithm must be less than
1/8, whereas for the algorithm FP2O-ATV to converge, it is
relaxed to a number less than 1/4 sin−2 N−1 π/2N , which is
somewhat higher than 1/4.

3.5.2. Isotropic TV Denoising Algorithm. The following rela-
tionship is defined based on the various algorithms of the

split Bregman isotropic [7, 19].

dk+1 = prox1/λφ Bxk+1 + bk =
dk+1x =

skλ ukx + bkx

skλ + 1
,

dk+1y =
skλ uky + bky

skλ + 1
,

bk+1 = bk + Bxk+1 − dk+1 =
bk+1x = bkx + uk+1x − dk+1x

bk+1y = bky + uk+1y − dk+1y

48

Proposition 4. If λ, μ > 0 and c, x0 ∈ℝm as a result, the iter-
ative scheme

xk+1 = I − proxμ/λ 2
xk + c , k = 0, 1,⋯ 49

converges towards its limit in a finite number of steps, for
i = 1, 2

lim
k⟶∞

xk =
x0 −max x0

2
−
μ

λ
, 0

x0

x0 2

, c = 0,

μc
λ c 2

, c ≠ 0

50

Proof. We will look at the scenario where c = 0. In this situa-
tion, the equation is reduced to xk+1 = I − proxμ/λ 2

xk .

If x0 2 ≥ μ/λ, we have xk = μx0/λ x0 2 for all k ≥ 1 and
xk = x0 for all k ≥ 0 if x0 2 < μ/λ, as a result

lim
k⟶∞

xk = x0 −max x0 2 −
μ

λ
, 0

x0

x0 2
51

Table 2: Results for the isotropic TV denoising algorithm, sigma =
0 08.

Images Size n ×m
Number of
iterations

Relative
error

Time (s)

Cameraman 256 × 256 143 0.167415 63.170180

Barbara 510 × 510 137 0.17464 182.507988

Flower 256 × 256 22 0.210941 41.570893

Girl 216 × 233 24 0.151122 18.938243

Iline 1961 × 3553 15 0.143349 771.958677

University 480 × 640 24 0.143312 120.298105

Table 3: Performance metrics for the anisotropic TV denoising
algorithm, sigma = 0 08.

Images MSE SNR PSNR IQI

NK AD SC MD NAE

Cameraman 1 1758e + 04 12.4348 7.4276 −7 3644e − 05
1.3689 -73.9475 0.4184 228 0.7373

Barbara 1 4142e + 04 11.8896 6.6257 −3 5635e − 06
1.3828 -77.6333 0.3766 234 0.8772

Flower 1 6863e + 04 10.0637 5.8614 5 5853e − 06
1.5642 -88.7960 0.2694 255 1.1090

Girl 1 3374e + 04 12.9140 6.8682 8 4450e − 08
1.3312 -75.0687 0.4254 221 0.7501

Iline 232.5184 12.9318 24.4662 0.0052

1.0129 -5.3346 0.9706 255 0.0268

University 1 4088e + 04 13.1774 6.6423 2 3093e − 04
1.1405 -61.5217 0.4907 255 0.7909

Table 4: Performance metrics for the isotropic TV denoising
algorithm, sigma = 0 08.

Images MSE SNR PSNR IQI

NK AD SC MD NAE

Cameraman 1 1626e + 04 12.4178 7.4764 −7 4216e − 05
1.3804 -76.0561 0.4157 228 0.7384

Barbara 1 3937e + 04 11.8882 6.6890 −3 3960e − 06
1.3831 -77.6695 0.3784 242 0.8666

Flower 1 6711e + 04 10.1155 5.9007 5 1306e − 06
1.5626 -88.6839 0.2706 255 1.0941

Girl 1 3120e + 04 12.9056 6.9516 4 4023e − 07
1.3339 -75.3454 0.4267 221 0.7382

Iline 210.5850 12.9318 24.8965 0.0052

1.0122 -5.0294 0.9724 255 0.0250

University 1 3858e + 04 13.1735 6.7138 2 3140e − 04
1.1553 -63.5094 0.4866 255 0.7864
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In the case of c ≠ 0, we have x∞ = I − proxμ/λ 2

x∞ + c , i.e., c = proxμ/λ 2
x∞ + c , where x∞ is the limit

of the Picard iterations. If Ψ = μ/λ 2 is a convex function
on ℝd with x ∈ℝd then,

c ∈ ∂μ/λ 2
x ⇔ x = proxμ/λ 2

x + c ; 52

and by Example 3 in the proximal operator, resulting in
x∞ = μc/λ c 2

The convergence of the split Bregman isotropic TV denois-
ing algorithm has been proved in [22, 24]. The linear system

I + λBtB xk+1 = x − λBt bk − dk 53

must be resolved at each iteration of the split Bregman iso-
tropic TV denoising algorithm, just as it must be resolved
at each iteration of the split Bregman anisotropic TV denois-
ing method. To reach an acceptable approximation of xk+1

[21], another Gauss-Seidel iteration step was used. The
examination of the convergence of the resulting iterative
scheme does not apply if the linear problem is solved using
Gauss-Seidel iteration steps.

4. An Overview of Relevant Recent Works and
Methods in Image Processing

This work is an introduction to image restoration, which has
an interesting ill-posed problem. It is important to improve
the quality of the images. As noise damages images and
reduces the accuracy and performance of processing tasks,
there are many modern ways to remove noise. In this sec-
tion, we will mention the relevant modern methods based
on the ROF model to remove Gaussian noise. Below are
some recommended works.

4.1. Rudin-Osher-Fatemi Model. A denoising model based on
the first-order total variation was proposed by Rudin et al. The
ROFmodel is the popular name of the model. The ROFmodel
does a great work of removing Gaussian noise, but it does not
preserve image structures well. Otherwise, it creates artifacts.

Let u0 x , u x , and v x ∈ℝ be an original image, a
restored image, and a noisy image, respectively, where x
i, j ∈Ω ⊂ℝ2 is a pixel location, Ω = 1,⋯,m × 1,⋯, n
is an image domain, and m and n are the number of
pixels by the image height and the image width. Rudin

et al. proposed the ROF model to remove Gaussian noise
as follows:

u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + ∇u 2
2 54

A parameter for regularization is λ. Data fidelity is
the first term, while smoothness measured by total vari-
ance is the second term. The ROF model is used for
solving the denoising problem based on total variation
regularization (TV).

4.2. Method of Overlapping Group Sparsity and Second-
Order Total Variation Regularization. In [25], we propose
an image denoising method named OGS-SOTV by combining

(a) Overlapping group sparsity total variation regulari-
zation OGS-TV

u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + φ ∇u , 55

where φ is an overlapping group sparsity functional with a
group size of K and it is defined in [25] as

φ u = 〠
K2

i,j=1
uij,K 2 56

(b) The second-order total variation regularization SO-
TV or TV2

Table 6: Results for image flower the isotropic TV denoising
algorithm.

Sigma SNR_TV_IS
Number of
iterations

Relative
error

Time (s)

0.08 10.1155 22 0.210019 41.570893

0.15 7.0932 21 0.394318 22.865811

0.25 3.6670 20 0.652357 37.383759

0.35 1.1227 19 0.905396 15.270150

0.501 -1.4507 18 1.24031 14.801319

Table 7: The different values of SNR of a denoising image by prox,
the anisotropic TV, and the isotropic TV.

Sigma SNR_Prox SNR_TV_AS SNR_TV_IS

0.08 21.4 10.0884 10.1155

0.15 25.1 7.1100 7.0932

0.25 20.4 3.6790 3.6670

0.35 21.9 1.1272 1.1227

0.501 21 -1.4635 -1.4733

Table 5: Results for image flower the anisotropic TV denoising
algorithm.

Sigma SNR_TV_AS
Number of
iterations

Relative
error

Time (s)

0.08 10.0884 51 0.210941 73.156270

0.15 7.1100 47 0.393911 57.259335

0.25 3.6790 46 0.651452 78.888763

0.35 1.1272 68 0.905142 73.037620

0.501 -1.4576 182 1.24135 166.640882
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u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + ∇2u
2
2 57

A combined model with δ1 > 0 and δ2 > 0 can be consid-
ered as follows:

u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + δ1φ ∇u + δ2 ∇2u
2
2 58

Assume δ2 = γ δ1 and λ = 2/δ1. So, we obtain the adap-
tive denoising model based on OGS-TV and SO-TV which
are defined as follows:

u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + φ ∇u + γ ∇2u
2
2 , 59

where γ is a balancing parameter of the noise removal term
and artifact elimination term and λ is a regularization
parameter. The numerical solution is obtained with ADMM
(alternative direction method of multipliers) or the split
Bregman method.

4.2.1. Purpose and Results of the Method. The purpose and
results of the method are as follows:

(i) performance of noise removal of OGS-TV

(ii) performance of artifacts removed from TV-OS

(iii) regularization estimation parameter is also pro-
posed to implement the method automatically

(iv) OGS-SOTV can remove noise effectively as well as
eliminate artifacts

(v) the OGS-TV, TV-OS, and OGS-SOTV removed
noise and artifacts better than the ROF model.

4.3. Medical Image Denoising Methods. In [26], we consider
the denoising problem with medical images produced by X-
ray/CT imaging techniques. The images are corrupted by
Poisson noise. Since the Poisson noise is dependent on the
signal, we cannot control the intensity of the noise, so we
use Gaussian noise.

We proposed a medical image denoising method, by
combining

(i) the total variation in the regularization of TV

(ii) the Anscombe transformation

4.3.1. Implementation Method

(1) Based on the ROF model, Le et al. proposed the Pois-
son denoising problem; the model is well known as
the modified ROF model (mROF)

u∗ = arg min
u∈Ω

λ

2
u − v ln u 2

2 + β ∇u 2
2 , 60

where β = 1/λu is a regularization parameter; it depends on
the restored image of every iteration step. This matter
reduces the accuracy and performance of the evaluation
process.

(2) Anscombe transform is a mathematics tool for con-
verting a Poisson data ϕ to standard Gaussian data
v, it has the following form: v = 2 ϕ + 3/8

(3) Instead of solving the mROF problem, we can solve
the ROF problem by obtaining a solution u∗

(4) Apply the inverse Anscombe transform u∗ to acquire
the final denoised image up = u∗/2 2 − 3/8
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Figure 2: Split Bregman results using the university image.
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4.3.2. Purpose and Results. The purpose and results of the
method are as follows:

(i) the Anscombe transform is used to convert Gauss-
ian noise in medical images into Poisson noise

(ii) apply the ROF model that is based on TV to remove
Gaussian noise

(iii) the proposed method also gives a better denoising
result than ROF or mROF by both visual result
and restoration quality assessment metrics such as
PSNR and SSIM

4.4. Adaptive Method for Image Restoration Based on TV1
and TV2. In [27], we propose an adaptive method for image
restoration based on a combination of

(i) the first-order total variation regularization (TV1)
also known as the ROF model

(ii) the second-order total variation regularization SO-
TV or TV2 with

u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + ∇2u
2
2 61

A combined model with α > 0 and β > 0 can be consid-
ered as follows:

u∗ = arg min
u∈Ω

λ

2
u − v 2

2 + α ∇u 2
2 + β ∇2u

2
2 62

The model is well known as the TV-bounded Hessian
model (TV-BH).

Suppose α = β/k and λ = k/β,k > 0. So, we obtain the
adaptive image restoration model based on TV1 and TV2
as follows:

u∗ = arg min
u∈Ω

λ v
2

u − v 2
2 + ∇u 2

2 + k ∇2u
2
2 , 63

where k is a balancing parameter between the (TV1) and
(TV2) and λ is a regularization parameter. We choose the
regularization parameter λ as based on the inverse gradient:

λ v =
μ

1 + τ max
ρ

Gρ∗∇v
2
2

, 64

where Gρ is a 2D Gaussian kernel.
The numerical solution is obtained with ADMM (alter-

native direction method of multipliers) or the split Bregman.

4.4.1. Purpose and Results. The purpose and results of the
method are as follows:

(i) uses the advantages of noise removal and edge pres-
ervation of the ROF model that is based on TV1

(ii) artifacts elimination of the second-order total varia-
tion TV2

(iii) adaptive multiscale parameter estimation. If k > 1,
artifacts are eliminated; if 0 < k < 1 remove noise;

1000

Original image
Noisy image,
sigma = 0.08

Anisotropic TV
denoising

Isotropic TV
denoising
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500 1000 1500 500 1000 1500
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Figure 3: Split Bregman results using the Iline image.
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and if k = 1 to balance the performance of noise
removal and artifact elimination

(iv) experimental results indicate that the proposed
method obtains better restorations in terms of
visual quality as well as quantitatively by PSNR
and SSIM

5. Numerical Results

We use several images; the introduced additive noise is
Gaussian, and we attempt to recover the original image
to test the split Bregman methods in the problem of aniso-
tropic and isotropic TV denoising. Let X be the matrices
that depict an image of size m × n. We then used
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MATLAB f = imnoise X,′gaussian′, sigma command to
define our noise image f , where sigma is a version of
the Gaussian noise level.

Clarification with the sources of the image used in
Figure 1, I photographed my daughter Iline, with my
mobile phone, and then I used MATLAB for converted
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Figure 6: Split Bregman error results using the Iline image.
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50

Original image

100

150

200

250
50 100 150 200 250

50

Noisy image, sigma = 0.501

100

150

200

250
50 100 150 200 250

Figure 8: The original image and noisy image for sigma = 0 501.
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the color image to grayscale Y = imread ′Iline png′ ; X =
rgb2gray Y ; then conduct studies on the image Iline.

We used the values μ = 0 1 and λ = 0 2 and the tolerance
Tol = 10−5 in our studies.

The results of the anisotropic and isotropic TV denois-
ing algorithms for various images are shown in Tables 1
and 2. The u − X 2

2 is used to calculate relative errors.
Tables 3 and 4 show the performance metrics for the

anisotropic and isotropic TV denoising algorithms, with
sigma = 0 08.

Tables 5 and 6 prove the SNR for the anisotropic and
isotropic TV denoising algorithms for a single “flower”
image, as well as different sigma values.

Table 7 shows the SNR values for the “flower” image that
has been detached using the prox-penality, anisotropic TV
denoising, and isotropic TV denoising algorithms.

5.1. Comments on Experimental Results

(i) As seen in Tables 1 and 2, isotropic TV denoising
is faster and more accurate than the anisotropic
version of the denoising method. In our experi-
ments, we discovered that the sequence of residues
for the image “Iline” converged monotonously to a

lower value than the original noisy image. How-
ever, due to the large size of this image, this takes a
long time. The errors in the cameraman and univer-
sity images increased monotonously and converged
to a relative error point higher than the initial noisy
image’s relative error. This can be seen in the images
and visuals that have been presented

(ii) In Tables 3 and 4, we evaluate the quality of images
restored by the image restoration models using
square error (MSE), signal noise rate (SNR), peak
signal-to-noise ratio (PSNR), image quality index
(IQI), normalized cross-correlation (NK), average
difference (AD), structural content (SC), maxi-
mum difference (MD), and normalized absolute
error (NAE)

(iii) For the “flower” image of the isotropic and aniso-
tropic TV denoising algorithms and the same seg-
regation value of 0.08, Tables 5 and 6 illustrate the
varied SNR results, number of iterations, relative
error, and time

(iv) The relative error of split Bregman, an iterative
technique with anisotropic and isotropic filters,
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Figure 9: The SNR of denoising image by the anisotropic TV, the isotropic TV, and prox for sigma = 0 08.
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Figure 10: The SNR of denoising image by the anisotropic TV, the isotropic TV, and prox for sigma = 0 501.

13Journal of Applied Mathematics



does not necessarily converge monotonously, as we
have shown

(v) The quality of images produced with the prox
method, on the other hand, remains constant, like
the prox Lagrange value increases, maintaining the
texture’s performance after release

(vi) Figures 1–3 illustrate the outcomes of restoration
methods such as the TV anisotropic and TV iso-
tropic images: cameraman, university, Iline, and
for sigma equal to 0.08

(vii) The results of errors applied to the TV anisotropic
and TV isotropic renderings of the images are:
cameraman, university, Iline, for a value of sigma
equal to 0 08 are shown in Figures 4–6

(viii) Figures 7 and 8 illustrate the original image and
noisy image of the flower for sigma equal to 0.08
and 0.501

(ix) Figures 9 and 10 also show that the restoration
algorithms, such as the TV anisotropic and TV iso-
tropic denoising, are not reliable and have prob-
lems during the restoration processing. In other
words, they diverge as white noise invariance
(sigma) increases. However, this is not the case
when using the proximal algorithms. The latter
appears to be very old and reliable. It provides a
high sigma variance for the deforested image in
Table 7

(x) The SNR of the prox algorithm-restored images is
nearly constant

6. Conclusions

In this paper, we have compared the proximal penalty algo-
rithms to solve a class of nondifferentiable optimization
problems with the anisotropic TV and isotropic TV denois-
ing algorithms for solving optimization problems. Based on
the comparison of the restoration results from different
related models, we can confirm that the prox algorithm suit-
able for image restoration produces the best high-quality
results (clear, not smooth, and textures are kept), and the
convergence method is guaranteed regardless of the SNR
values if we compare it with other methods. Based on previ-
ous findings, we can conclude that the anisotropic TV and
isotropic TV denoising algorithms work in a direct correla-
tion relationship. In other words, regardless of how little
the sigma value is, we get better and more old image quality
results. The approach converges monotonously towards
equal tolerance 10-5 despite the vast size of the image; it takes
a long time to compute them, and the isotropic TV denois-
ing algorithms are faster than the anisotropic TV denoising
algorithms. In our tests, we discovered that the restored
image is sharper and more accurate. The prox algorithm also
gives better denoising results than TV that is anisotropic or
isotropic, both in terms of the visual results and the restora-
tion quality assessment metrics such as PSNR and SNR.

In our next studies, we would like to combine aniso-
tropic and isotropic TV for image denoising to program
the method in MATLAB, and we compared denoising
methods.
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