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We present a method of deriving analytical solutions for a two-dimensional Black-Scholes-Merton equation. The method consists
of three changes of variables in order to reduce the original partial differential equation (PDE) to a normal form and then solve it.
Analytical solutions for two cases of option pricing on the minimum and maximum of two assets are derived using our method
and are shown to agree with previously published results. The advantage of our solution procedure is the ability of splitting the
original problem into several components in order to demonstrate some solution properties. The solutions of the two cases
have a total of five components; each is a particular solution of the PDE itself. Due to the linearity of the two-dimensional
Black-Scholes-Merton equation, any linear combination of these components constitutes another solution. Some other possible
solutions as well as the solution properties are discussed.

1. Introduction

Black and Scholes [1] derived the solution to the value of a
European-styled option on a stock under the assumptions
that the stock follows a geometric Brownian motion. Starting
with the geometric Brownian motion assumption, they
derived a stochastic partial differential equation (PDE). With
the key insight that the option could be combined with the
underlying stock to create a hedged portfolio, they elimi-
nated the stochastic portion of the PDE and derived the
now well-known solution. To simplify the problem, they
assumed the volatility of the stock and the discount rate were
constant. Merton [2], besides discussing restrictions neces-
sary for option pricing, also presents an alternate derivation
of the Black-Scholes formula, allowing the interest rate to
have a dynamic process rather than remaining constant. In
addition, he describes the problem of pricing American-
style options and derives explicit pricing formulas for both
calls and puts, warrants, and “down-and-out” options.

Since the first result of the Black and Scholes [1] and
Merton [2] solutions for European-style options, there have
been many extensions, including early examples of Schwartz
[3]; Cox, Ross, and Rubinstein (CRR) [4]; Rendleman and
Bartter [5]; and Geske and Shastri [6]. Black and Scholes’
solution is also part of a recent study on bond options by
Tomas and Yu [7]. Merton [2] provided an alternative deri-
vation of the Black-Scholes formula that is valid under
weaker assumptions and therefore more usable. Schwartz
[3] applied finite difference methods to the option-pricing
problem. CRR [4] and Rendleman and Bartter [5] study
the binomial pricing of options as an alternative stochastic
process to the Black-Scholes’ model. Geske and Shastri [6]
examined some alternative numerical methods for valuing
options, including Monte Carlo, binomial, and finite differ-
ence techniques. Recently, Tomas and Yu [7] studied call
options on zero-coupon bonds, assuming a stochastic pro-
cess for the price of the bond, rather than for interest rates
in general. An asymptotic solution for the call option, with
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the leading order term being the Black and Scholes’ solution,
was derived and studied.

There have also been extensions of option-pricing
models to multiple dimensions. Early examples include Stulz
[8], Johnson [9], Hull and White [10], Johnson and Shanno
[11], and Gazizov and Ibragimov [12]. More recent exam-
ples include Villeneuve and Zanette [13], Grzelak et al.
[14], Kim et al. [15], Sawangtong et al. [16], Naqeeb and
Hussain [17], Wang et al. [18], and He and Lin [19, 20].
Stulz [8] examines the pricing of options on the minimum
and maximum of two assets, where each asset follows the
geometric Brownian motion process described in Black
and Scholes. Johnson [9] extends the framework in Stulz to
several assets. The original constant volatility assumption
in the Black-Scholes/Merton models has been shown to fail
to match market data. In order to address this, Hull and
White [10] and Johnson and Shanno [11] consider the pric-
ing of options on assets with stochastic volatility. They
assume the stock price and its instantaneous variance are
both stochastic. With this assumption, they each derive rep-
resentative PDEs. Hull and White discuss the analytic solu-
tion to their PDE while Johnson and Shanno discuss the
use of Monte Carlo simulation for the pricing. Since these
original papers, there have been many other works examin-
ing nonconstant volatility. Grzelak et al. [14], for instance,
provide an extension of stochastic volatility equity models
with a stochastic Hull–White interest rate component. Very
recently, He and Lin [19] modify the Heston-Hull-White
model presented in Grzelak et al. [14] to capture the correla-
tion between the stock price process and the interest rate
while preserving analytical tractability.

Gazizov and Ibragimov [12] apply the Lie group theory
to study these PDEs and provide examples for constructing
exact (invariant) solutions. In a more recent example, Ville-
neuve and Zanette [13] examine the pricing of American-
style options on two stocks that each follow the Black-
Scholes framework, by adapting the alternating direction
implicit algorithm developed by Peaceman and Rachford
[21]. Kim et al. [15] apply a nonuniform grid finite differ-
ence approach where they add additional grid points near
the nonsmooth portion of the payoff function to enhance
accuracy and efficiency relative to a comparison Monte
Carlo simulation. Sawangtong et al. [16] provide an analytic
solution for the Black-Scholes equation with two assets
based on the Liouville-Caputo fractional derivative. Naqeeb
and Hussain [17] derive the multiasset Black-Scholes-
Merton formulation and make links to the Hamilton-
Jacobi equation of mechanics. Wang et al. [18] apply a finite
difference method to the multidimensional fractional Black-
Scholes model for the cases of one asset and three assets. He
and Lin [20] examine exchange options, where the two
assets each follow geometric Brownian motion. They intro-
duce liquidity risk and changing economic conditions into
the development of the model and modify the process by
which the stocks are governed.

In this study, we revisit the two-dimensional problem in
Stulz [8], in which there are two assets (stocks) both follow-
ing the geometric Brownian motion process found in Black
and Scholes [1]. Analytical solutions for two cases of option

pricing on the minimum and maximum of two assets are
derived using a three-step substitution method. The results
are shown to agree with previously published results.

We derive the analytical solutions given in (11) and (11’)
of Stulz [8], which are for a general case and a simpler case
of exercise price F = 0, respectively. These solutions are
derived in Stulz [8] by a statistical approach (see also Cox
and Ross [22] and Harrison and Kreps [23]). Our method
here utilizes applied mathematics techniques for solving
the initial-boundary value problem (IBVP) of the PDE. In
particular, we use the change of variables, including simi-
larity variables, to convert the PDE to a simpler normal
form and then solve it. The advantage of our solution pro-
cedure is the ability of splitting the problem into several
components so that solution properties can be revealed.
First, the original IBVP is converted into two or three
sub-IBVPs, for the simpler or general cases, respectively.
This demonstrates the linear superposition property of
the problem. Secondly, in solving each sub-IBVP, we use
three changes of variables, and each of these shows the
solution properties such as geometric symmetry and scaling
between variables. See the discussions below after Equation
(23) and in Section 4.

Here is the IBVP from Stulz [8]: we look for a function,
PðV ,H, τÞ, which satisfies the two-dimensional governing
PDE:

−Pτ = RP − RPVV − RPHH −
1
2 PVVσV

2V2 + PHHσH
2H2À

+ 2PHVVHρVHσVσHÞ,
ð1Þ

subject to the initial and boundary conditions:

P V ,H, 0ð Þ =max min V ,Hð Þ − F, 0f g, ð2Þ

P 0,H, τð Þ = 0, P V , 0, τð Þ = 0: ð3Þ
The rest of the paper is organized as follows. Section 2 is

devoted to the simpler case of F = 0 where we derived the
analytical solution (11’) of Stulz [8]. In Section 3, we study
the general case and derived the analytical solution (11)
of Stulz [8]. We then make some concluding remarks in
Section 4.

2. Solution for a Simpler Case with the Exercise
Price F = 0

We first study a simpler case of PDE (1) subject to the initial
and boundary conditions (2) and (3) where F = 0: This
means that (1) and (3) are the same, but (2) becomes

P V ,H, 0ð Þ =max min V ,Hð Þ, 0f g: ð4Þ

Or

P V ,H, 0ð Þ =
H, if V >H,
V , if V <H:

(
ð5Þ
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To solve IBVPs (1), (5), and (3), we notice that the prob-
lem is linear so that it can be split into two problems with
P =U + Y , where U satisfies (1), (3), and

U V ,H, 0ð Þ =
0, if V >H,
V , if V <H,

(
ð6Þ

and Y satisfies (1), (3), and

Y V ,H, 0ð Þ =
H, if V >H,
0, if V <H:

(
ð7Þ

Let us solve for U first with the following three steps:

Step 1. We make a change of variables to eliminate the first
three terms on the right-hand side of PDE (1), i.e.,

RU − RUVV − RUHH = 0, orVUV +HUH =U : ð8Þ

This is a first-order PDE, and the characteristic
equations are

dV
V

= dH
H

, dV
V

= dU
U

: ð9Þ

Integrating the first equation, we have ln ðV/HÞ = C1 or
V =HC2 and the second equation, ln ðU/VÞ = C3 or U =
VC4, where C1, C2, C3, and C4 are constants. Therefore, a
set of characteristics can be U = VC4 and ln ðV/HÞ = C1:
Notice that with V =HC2, a set of alternative characteristics
can be U =HC5 (with C5 = C2C4) and ln ðV/HÞ = C1, and
this will be used in (24) below. The set of characteristics
(U =VC4 and ln ðV/HÞ = C1 ) suggests the following
change of variables:

U V ,H, τð Þ = V f1 ξ, τð Þ, ξ = ln V
H

� �
: ð10Þ

Taking partial derivatives, we have

Uτ =V f1τ, UV = f1 + Vf1ξ
1
V

= f1 + f1ξ, UH

=Vf1ξ −
1
H

� �
= −

V
H

f1ξ,

UVV = f1ξ
1
V

+ f1ξξ
1
V

= 1
V

f1ξ + f1ξξ
À Á

,

UVH = f1ξ −
1
H

� �
+ f1ξξ −

1
H

� �
= −

1
H

f1ξ + f1ξξ
À Á

,

UHH = V

H2 f1ξ + −
V
H

� �
f1ξξ −

1
H

� �
= V

H2 f1ξ + f1ξξ
À Á

: ð11Þ

Now, we substitute these partial derivatives into PDE (1)
to obtain

f1τ =
1
2σ

2 f1ξ + f1ξξ
À Á

, ð12Þ

where σ2 = σV
2 + σH

2 − 2ρVHσVσH :

Step 2. To convert PDE (12) to a normal form, we make a
change of variables:

f1 ξ, τð Þ = g1 η, τð Þ, with η = ξ + 1/2ð Þσ2 τ

σ
: ð13Þ

Taking partial derivatives, we have

f1τ = g1τ +
1
2σg1η, f1ξ =

1
σ
g1η, f1ξξ =

1
σ2

g1ηη: ð14Þ

Substituting these into (12), we find that

g1τ =
1
2g1ηη: ð15Þ

Step 3. Equation (15) can be solved by using similarity vari-
ables:

g1 η, τð Þ = Z1 ζð Þ, with ζ = ηffiffiffi
τ

p : ð16Þ

Taking partial derivatives, we have

g1τ = −
η

2τ3/2 Z1 ′, g1η =
1ffiffiffi
τ

p Z1 ′, g1ηη =
1
τ
Z1 ′′: ð17Þ

Substituting these into (15), we find that

Z1′′ = −ζZ1′ , ð18Þ

and this is a first-order ordinary differential equation in Z1 ′.
Integrating once, we get

Z1′ = K1e
− ζ2/2ð Þ, ð19Þ

where K1 is an arbitrary constant. Integrating one more
time, we have

Z1 = K1

ðζ
−∞

e− w2/2ð Þdw + K2, ð20Þ

where K2 is also an arbitrary constant.
With use of Equations (10), (13), and (16), initial condi-

tion (6) for U becomes the following condition for Z1:

as τ⟶ 0, Z1 =
0, if ζ⟶∞ whenV >Hð Þ,
1, if ζ⟶ −∞ whenV <Hð Þ:

(
ð21Þ

The condition Z1 = 1 if ζ⟶ −∞ implies K2 = 1 in
(20), and from Z1 = 0 if ζ⟶∞, we have K1 = −ð1/ ffiffiffiffiffiffi

2π
p Þ

so that
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Z1 ζð Þ = 1 −N ζð Þ, ð22Þ

where NðζÞ = ð1/ ffiffiffiffiffiffi
2π

p Þ Ð ζ−∞e−ðw
2/2Þdw.

Combining (22), (16), (13), and (10), we obtain the
solution for U :

U =V −VN
ln V/Hð Þ + 1/2ð Þσ2τ

σ
ffiffiffi
τ

p
� �

: ð23Þ

The above solution procedure for (23) has the following
three advantages:

(1) The change of variables in (10) utilizes the character-
istics derived right before (10) to simplify the PDE,
and it also allows us to show, in Section 4 below,
the geometric symmetry between variables V and
H in (23) and (34).

(2) The change of variables in (13) uses a combination
of translation and scaling of variables, i.e., η1 = ξ +
ðσ2/2Þτ and η = η1/σ, respectively. The translation
eliminates the ð1/2Þσ2 f1ξ term in (12), and the scaling
simplifies the diffusivity constant from ð1/2Þσ2 in
(12) to 1/2 in (15)

(3) The change of variables in (16) demonstrates the
similarity variable property of the diffusion Equation
(15); i.e., the η and τ dependence of g1 is such that g1
is actually a function of ζ = η/ ffiffiffi

τ
p

only. See, for exam-
ple, Kevorkian [24].

Now, let us solve for Y using the similar three steps
listed above:

Step 1. We use the alternative characteristics (U =HC5 and
ln ðV/HÞ = C1) derived right before (10) to make a change
of variables similar to (10):

Y V ,H, τð Þ =H f2 ξ, τð Þ, ξ = ln V
H

� �
: ð24Þ

Taking partial derivatives, we have

Yτ =H f2τ, YH = f2 +Hf2ξ −
1
H

� �
= f2 − f2ξ, YV

=Hf2ξ
1
V

= H
V

f2ξ,

YHH = f2ξ −
1
H

� �
− f2ξξ −

1
H

� �
= 1
H

f2ξξ − f2ξ
À Á

,

YVH = 1
V
f2ξ +

H
V
f2ξξ −

1
H

� �
= 1
V

f2ξ − f2ξξ
À Á

,

YVV = −
H

V2 f2ξ +
H
V
f2ξξ

1
V

= H

V2 f2ξξ − f2ξ
À Á

: ð25Þ

Substituting these partial derivatives into PDE (1), we
obtain

f2τ =
1
2σ

2 f2ξξ − f2ξ
À Á

, ð26Þ

where σ2 = σV
2 + σH

2 − 2ρVHσVσH :

Step 2. To convert PDE (26) to a normal form, we make a
change of variables similar to (13):

f2 ξ, τð Þ = g2 η, τð Þ, with η = ξ − 1/2ð Þσ2 τ

σ
: ð27Þ

Taking partial derivatives, we have

f2τ = g2τ −
1
2σg2η, f2ξ =

1
σ
g2η, f2ξξ =

1
σ2

g2ηη: ð28Þ

Substituting these into (26), we find that

g2τ =
1
2g2ηη: ð29Þ

Step 3. Equation (29) is the same as (15). Therefore, we use
the same similarity variables as in (16), i.e.,

g2 η, τð Þ = Z2 ζð Þ, with ζ = ηffiffiffi
τ

p , ð30Þ

to obtain the same similarity solution as in (20) for Z2:

Z2 = K3

ðζ
−∞

e− w2/2ð Þdw + K4, ð31Þ

where K3 and K4 are arbitrary constants.

With the use of Equations (24), (27), and (30), initial
condition (7) for Y becomes the following condition for Z2:

as τ⟶ 0, Z2 =
1, if ζ⟶∞ whenV >Hð Þ,
0, if ζ⟶ −∞ whenV <Hð Þ:

(
ð32Þ

The condition Z2 = 0 if ζ⟶ −∞ implies K4 = 0 in (31),
and from Z2 = 1 if ζ⟶∞, we have K3 = 1/

ffiffiffiffiffiffi
2π

p
so that

Z2 ζð Þ =N ζð Þ, ð33Þ

where NðζÞ is defined in (22).
Combining (33), (30), (27), and (24), we obtain the solu-

tion for Y :

Y =HN
ln V/Hð Þ − 1/2ð Þσ2τ

σ
ffiffiffi
τ

p
� �

: ð34Þ

The solution procedure for (34) has similar advantages
as that for (23). See the discussions immediately after
Equation (23).
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Finally, we combine U in (23) with Y in (34) to get

P =U + Y =V −VN d1ð Þ +HN d2ð Þ, ð35Þ

where d1 = ðln ðV/HÞ + ð1/2Þσ2τÞ/σ ffiffiffi
τ

p
and d2 = ðln ðV/HÞ

− ð1/2Þσ2τÞ/σ ffiffiffi
τ

p
: This is the solution for the simpler case

where F = 0, as given in (11’) of Stulz [8]. (Notice that the
initial condition (5) is also satisfied when V =H:)

3. Solution for the General Case where F ≠ 0
We now focus on the general case (F not zero) of the Stulz
problem, i.e., PDE (1), with initial and boundary conditions
(2) and (3). Notice that the initial condition (2) can be
rewritten as

P V ,H, 0ð Þ =
H − F, if V >H andH > F,
V − F, if V <H andV > F,
0, if V >H andH < Fð Þ or V <H andV < Fð Þ:

8>><>>:
ð36Þ

Similar to the simpler case in Section 2, IBVPs (1), (3),
and (36) are linear, and they can be split into three problems
with P = P1 + P2 + P3, where P1 satisfies (1), (3), and

P1 V ,H, 0ð Þ =
H, if V >H andH > F,
0, if V <H orH < F,

(
ð37Þ

P2 satisfies (1), (3), and

P2 V ,H, 0ð Þ =
V , if V <H andV > F,
0, if V >H orV < F,

(
ð38Þ

and P3 satisfies (1), (3), and

P3 V ,H, 0ð Þ =
−F, if V >H andH > Fð Þ or V <H andV > Fð Þ,
0, if H < F orV < F:

(
ð39Þ

Let us solve for P1 first using the three-step method
described in Section 2.

Step 1. We make a change of variables similar to (24):

P1 V ,H, τð Þ =H f1 ξ, η, τð Þ, with ξ = ln H
F

� �
, η = ln V

H

� �
:

ð40Þ

Taking partial derivatives, we have

P1τ =H f1τ, P1H = f1 +Hf1ξ
1
H

+Hf1η −
1
H

� �
= f1 + f1ξ − f1η, P1V =Hf 1η

1
V

= H
V

f1η,

P1HH = 1
H

f1ξ − f1η + f1ξξ − 2 f1ξη + f1ηη
� �

,

P1VH = 1
V

f1η + f1ξη − f1ηη
� �

, P1VV = H

V2 f1ηη − f1η
� �

: ð41Þ

Substituting these partial derivatives into PDE (1), we
obtain

f1τ = R f1ξ +
1
2σ

2 f1ηη − f1η
� �

+ 1
2σ

2
H f1ξ + f1ξξ − 2f1ξη
� �

+ ρVHσVσH f1ξη,
ð42Þ

where σ2 = σV
2 + σH

2 − 2ρVHσVσH :

Step 2. To convert PDE (42) to a normal form, we make a
change of variables similar to (27):

f1 ξ, η, τð Þ = g1 ζ, λ, τð Þ, with ζ = ξ + R + 1/2ð Þσ2H
À Á

τ

σH
, λ

= η − 1/2ð Þσ2τ
σ

:

ð43Þ

Taking partial derivatives, we have

f1τ = g1τ +
R + 1/2ð Þσ2H

σH
g1ζ −

1
2σ g1λ,

f1ξ =
1
σH

g1ζ, f1η =
1
σ
g1λ,

f1ξξ =
1
σ2H

g1ζζ, f1ξη =
1

σσH
g1ζλ,

f1ηη =
1
σ2 g1λλ:

ð44Þ

Substituting these into (42), we find that

g1τ =
1
2 g1ζζ + g1λλ
À Á

+ ρVHσV − σH
σ

g1ζλ: ð45Þ

Step 3. Equation (45) can be solved by using similarity vari-
ables similar to that in (16):

g1 ζ, λ, τð Þ = Z1
fζ, ~λ� �

, with~ζ = ζffiffiffi
τ

p , ~λ = λffiffiffi
τ

p : ð46Þ

Taking partial derivatives, we have

g1τ = −
ζ

2τ3/2 Z1~ζ −
λ

2τ3/2 Z1~λ, g1ζ =
1ffiffiffi
τ

p Z1~ζ, g1λ =
1ffiffiffi
τ

p Z1~λ,

g1ζζ =
1
τ
Z
1e~ζe~ζ, g1ζλ = 1

τ
Z
1e~ζ~λ, g1λλ = 1

τ
Z1~λ~λ:

ð47Þ
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Substituting these into (45) and denoting constant

γ = ρVHσV − σH
σ

, ð48Þ

we obtain

Z
1e~ζe~ζ + 2γZ

1e~ζ~λ + Z1~λ~λ + ~ζZ1~ζ + ~λZ1~λ = 0: ð49Þ

With use of Equations (40), (43), and (46), initial condi-
tion (37) for P1 becomes the following condition for Z1 :

as τ⟶ 0, Z1 =
1, if ~ζ⟶∞ whenH > Fð Þ and ~λ⟶∞ whenV >Hð Þ,
0, if ~ζ⟶ −∞ whenH < Fð Þ or ~λ⟶ −∞ whenV <Hð Þ:

(

ð50Þ

We now show that the solution to Equation (49) subject
to condition (50) is the bivariate cumulative standard nor-
mal distribution function, i.e.,

Z1 =N2
~ζ, ~λ, γ
� �

=∬
~ζ,~λ
−∞,−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
Á e− x2−2γxy+y2ð Þ/2 1−γ2ð Þð Þdx dy:

ð51Þ

Taking partial derivatives in (51), we have

Z1~ζ =
ð~λ
−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζy+y2

À Á
/2 1−γ2ð Þ

À Á
dy, ð52Þ

Z1~ζ~λ =
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζ ~λ+~λ2

À Á
/2 1−γ2ð Þ

À Á
, ð53Þ

Z1~ζ~ζ =
ð~λ
−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζy+y2

À Á
/2 1−γ2ð Þ

À Á
Á −

2~ζ − 2γy
2 1 − γ2ð Þ

 !
dy:

ð54Þ

We rewrite the integral in (54) as

Z1~ζ~ζ =
ð~λ
−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζy+y2

À Á
/2 1−γ2ð Þ

À Á
Á 2γy − 2γ2~ζ + 2γ2~ζ − 2~ζ

2 1 − γ2ð Þ

 !
dy,

ð55Þ

so that it can be split into two parts with

I1 =
ð~λ
−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζy+y2

À Á
/2 1−γ2ð Þ

À Á
γ
2y − 2γ~ζ
2 1 − γ2ð Þ dy,

I2 = −~ζ
ð~λ
−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζy+y2

À Á
/2 1−γ2ð Þ

À Á
dy:

ð56Þ

We make a substitution, β = ð~ζ2 − 2γ~ζy + y2Þ/2ð1 − γ2Þ,
in I1: This implies dβ = ðð2y − 2γ~ζÞ/2ð1 − γ2ÞÞdy, and the
integral can be carried out as

−γ
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−β
�����
~ζ
2
−2γ~ζ ~λ+~λ2

∞

= −γ
1

2π
ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e−
~ζ
2
−2γ~ζ ~λ+~λ2

À Á
/2 1−γ2ð Þ

À Á
:

ð57Þ

Comparing this with (53) and I2 with (52), we obtain

Z
1e~ζe~ζ = −γZ

1e~ζ~λ − ~ζZ1~ζ: ð58Þ

By the simple symmetry between variables ~ζ and ~λ in
(51), we have

Z1~λ ~λ = −γZ
1e~ζ~λ − ~λZ1~λ: ð59Þ

Adding (58) to (59), we find that Equation (49) is satis-
fied. Condition (50) can also be verified due to the fact that
the Z1 in (51) is the bivariate cumulative standard normal
distribution function.

Combining (51), (46), (43), and (40), we obtain the
solution for P1 as

P1 = HN2 γ1 + σH
ffiffiffi
τ

pÀ Á
, ln V/Hð Þ − 1/2ð Þσ2τ

σ
ffiffiffi
τ

p , ρVHσV − σH

σ

� �
,

with γ1 =
ln H/Fð Þ + R − 1/2ð Þσ2

H

À Á
τ

σH
ffiffiffi
τ

p ,

ð60Þ

and this is the first term of solution (11) in Stulz [8]. Notice
that there was a typo in the first term of solution (11) of
Stulz [8]. The expression of the second input variable inside
the N2 function should be ðln ðV/HÞ − ð1/2Þσ2τÞ/σ ffiffiffi

τ
p

as
given in (60), not ðln ðV/HÞ − ð1/2Þσ2 ffiffiffi

τ
p Þ/σ ffiffiffi

τ
p

as in the
first term of solution (11) of Stulz [8]. There was another
similar typo in the second term of solution (11) of Stulz
[8]: the expression of the second input variable inside the
N2 function should be ðln ðH/VÞ − ð1/2Þσ2τÞ/σ ffiffiffi

τ
p

as given
in (A.12) below for P2, not ðln ðH/VÞ − ð1/2Þσ2 ffiffiffi

τ
p Þ/σ ffiffiffi

τ
p

:
The solution procedure for (60) has similar advantages

as that for (23). See the discussions immediately after Equa-
tion (23).

The solution procedures for P2 and P3 are similar to that
for P1, using the three-step procedure of change of the vari-
ables given above. These are presented in Appendixes A and
B, respectively, and omitted here for brevity.

Finally, by adding P1, P2, and P3 together, from (60),
(A.12), and (B.12), respectively, we arrive at solution (11)
of Stulz [8].

Many of Stulz’ solutions have been programmed in
MATLAB; see Stulz Model [25] in the References. We refer
readers to the link there for example graphs of the solutions.
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4. Concluding Remarks

We use a three-step substitution method to derive solution
(11’) of Stulz [8] in Section 2 and solution (11) of Stulz [8]
in Section 3. Notice that there is a typo in the first two terms
of solution (11) of Stulz [8] (see the discussion after Equa-
tion (60)).

In the derivation process, we find five particular solu-
tions, UðV ,H, τÞ in (23), YðV ,H, τÞ in (34), P1ðV ,H, τÞ in
(60), P2ðV ,H, τÞ in (A.12), and P3ðV ,H, τÞ in (B.12), for
the two-dimensional Black-Scholes-Merton Equation (1).
In fact, there are even simpler particular solutions of Equa-
tion (1), for examples, P4ðV ,H, τÞ =V is a solution, P5ðV ,
H, τÞ =H is also a solution, and P6ðV ,H, τÞ = P4 −U = V
Nððln ðV/HÞ + ð1/2Þσ2τÞ/σ ffiffiffi

τ
p Þ is also a solution. As given

in Haug [26], there are a variety of exotic options on two
risky assets, and our method may be helpful for studying
their solutions. For example, for an exchange-one-asset-
for-another option and the call option on the maximum of
two assets, we can similarly split the problem and solve them
using our three-step substitution method. The call option on
the maximum of two assets, as a second example, was dis-
cussed in Stulz [8] using parity relationships. Our method
here rederives the solution as given in Haug [26]. These
two examples are presented in Appendix C (Two Additional
Examples of Call Options on Two Risky Assets), which are
omitted here for brevity. As a result, we additionally find five
particular solutions of Equation (1), i.e., P7ðV ,H, τÞ in (C.7),
P8ðV ,H, τÞ in (C.9), P9ðV ,H, τÞ in (C.21), P10ðV ,H, τÞ in
(C.22), and P11ðV ,H, τÞ in (C.23). In fact, P12ðV ,H, τÞ = F
e−Rτ is also a solution. Altogether in this paper, we have 14
particular solutions of Equation (1). Because (1) is linear,
any linear combination of these solutions is also a solution.
Therefore, these particular solutions are the building blocks
for constructing solutions of various IBVPs. These as well
as our solution technique could be used to explore the solu-
tions of other exotic option-pricing problems on two assets.

Some of these solutions we obtained thus far have good
geometric symmetry between variables. For example, solu-
tions P4ðV ,H, τÞ =V and P5ðV ,H, τÞ =H are symmetric
in variables V and H, i.e., P4ðH, V , τÞ = P5ðV ,H, τÞ =H,
and P5ðH, V , τÞ = P4ðV ,H, τÞ =V : Using the identity Nð−ζÞ
= 1 −NðζÞ, we can show that solutions UðV ,H, τÞ in (23)
and YðV ,H, τÞ in (34) are also symmetric in variables
V and H, i.e., UðH, V , τÞ = YðV ,H, τÞ, and YðH, V , τÞ =U
ðV ,H, τÞ: Finally, solutions P1ðV ,H, τÞ in (60), P2ðV ,H, τÞ
in (A.12), P3ðV ,H, τÞ in (B.12), P9ðV ,H, τÞ in (C.21), P10
ðV ,H, τÞ in (C.22), and P11ðV ,H, τÞ in (C.23) all have geo-
metric symmetry with respect to their respective transfor-
mation variables ~ζ and ~λ as show in Equation (51).

Our method may not be applied directly to American
options with free boundaries or the case with stochastic vol-
atility. For American options, even if we can reduce the par-
tial differential equation to a simpler form, its analytical
solution with the free boundaries is still difficult to find.
For the case with stochastic volatility, while our method
might work well with the option price dependence on the
stock value, the price dependence on the variance is hard

to study using our current method. Either of these directions
requires further investigations and could be future research
projects.

Appendix

A. Derivation of Solution for P2

Here, we derive the solution, P2, to the PDE (1) subject to
conditions (3) and (38), using the three-step method
described in Sections 2 and 3.

Step 1. We make a change of variables similar to (10) and
(40):

P2 V ,H, τð Þ = V f2 ξ, η, τð Þ, with ξ = ln V
F

� �
, η = ln H

V

� �
:

ðA:1Þ

Taking partial derivatives, we have

P2τ = V f2τ, P2V = f2 +Vf2ξ
1
V

+Vf2η −
1
V

� �
= f2 + f2ξ − f2η, P2H =Vf2η

1
H

= V
H

f2η,
P2VV = 1

V
f2ξ − f2η + f2ξξ − 2 f2ξη + f2ηη
� �

,

P2VH = 1
H

f2η + f2ξη − f2ηη
� �

, P2HH = V

H2 f2ηη − f2η
� �

:

ðA:2Þ

Substituting these partial derivatives into PDE (1), we
obtain

f2τ = R f2ξ +
1
2σ

2 f2ηη − f2η
� �

+ 1
2σ

2
V f2ξ + f2ξξ − 2f2ξη
� �

+ ρVHσVσH f2ξη,
ðA:3Þ

where σ2 = σV
2 + σH

2 − 2ρVHσVσH :

Step 2. To convert PDE (A.3) to a normal form, we make a
change of variables similar to (43):

f2 ξ, η, τð Þ = g2 ζ, λ, τð Þ, with ζ = ξ + R + 1/2ð Þσ2V
À Á

τ

σV
, λ

= η − 1/2ð Þσ2τ

σ
:

ðA:4Þ

Taking partial derivatives, we have

f2τ = g2τ +
R + 1/2ð Þσ2V

σV
g2ζ −

1
2σg2λ, f2ξ =

1
σV

g2ζ, f2η =
1
σ
g2λ,

f2ξξ =
1
σ2V

g2ζζ, f2ξη =
1

σσV
g2ζλ, f2ηη =

1
σ2 g2λλ:

ðA:5Þ
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Substituting these into (A.3), we find that

g2τ =
1
2 g2ζζ + g2λλ
À Á

+ ρVHσH − σV
σ

g2ζλ: ðA:6Þ

Step 3. Equation (A.6) is the same as (45), just with a differ-
ent constant, and it can be solved by using the similarity var-
iables given in (46), i.e.,

g2 ζ, λ, τð Þ = Z2
fζ, ~λ� �

, with~ζ = ζffiffiffi
τ

p , ~λ = λffiffiffi
τ

p : ðA:7Þ

Taking partial derivatives, substituting into (A.6), and
denoting constant

γ = ρVHσH − σV
σ

, ðA:8Þ

we obtain

Z
2e~ζe~ζ + 2γZ

2e~ζ~λ + Z2~λ~λ + ~ζZ2~ζ + ~λZ2~λ = 0: ðA:9Þ

With the use of Equations (A.1), (A.4), and (A.7), the
initial condition (38) for P2 becomes the following condition
for Z2 :

as τ⟶ 0, Z2 =
1, if ~ζ⟶∞ whenV > Fð Þ and ~λ⟶∞ whenV <Hð Þ,
0, if ~ζ⟶ −∞ whenV < Fð Þ or ~λ⟶ −∞ whenV >Hð Þ:

(

ðA:10Þ

Since PDE (A.9) and condition (A.10) are the same as
PDE (49) and condition (50), we have solution (51) for Z2,
i.e.,

Z2 =N2
~ζ, ~λ, γ
� �

=∬
~ζ,~λ
−∞,−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p
Á e− x2−2γxy+y2ð Þ/2 1−γ2ð Þð Þdxdy:

ðA:11Þ

Combining (A.11), (A.7), (A.4), and (A.1), we obtain the
solution for P2 as

P2 =VN2 γ2 + σV
ffiffiffi
τ

pÀ Á
, ln H/Vð Þ − 1/2ð Þσ2τ

σ
ffiffiffi
τ

p , ρVHσH − σV

σ

� �
,

with γ2 =
ln V/Fð Þ + R − 1/2ð Þσ2V

À Á
τ

σV
ffiffiffi
τ

p ,

ðA:12Þ

and this is the second term of the solution (11) in Stulz [8].

B. Derivation of Solution for P3

Here, we derive the solution, P3, to the PDE (1) subject to
conditions (3) and (39), using the three-step method
described in Sections 2 and 3.

Step 1. We make a change of variables similar to (10) and
(40):

P3 V ,H, τð Þ = −F e−Rτ f3 ξ, η, τð Þ, with ξ = ln H
F

� �
, η = ln V

F

� �
:

ðB:1Þ

Taking partial derivatives, we have

P3τ = RFe−Rτ f3 − Fe−Rτ f3τ, P3V = −Fe−Rτ f3η
1
V
,

P3H = −Fe−Rτ f3ξ
1
H
,

P3VV = F

V2 e−Rτ f3η − f3ηη
� �

, P3VH = −
F

VH
e−Rτ f3ξη,

P3HH = F

H2 e−Rτ f3ξ − f3ξξ
À Á

:

ðB:2Þ

Substituting these partial derivatives into PDE (1), we
obtain

f3τ = R −
1
2σ

2
V

� �
f3η + R −

1
2σ

2
H

� �
f3ξ

+ 1
2 σ2V f3ηη + σ2H f3ξξ + 2 ρVHσVσH f3ξη
� �

:

ðB:3Þ

Step 2. To convert PDE (B.3) to a normal form, we make a
change of variables similar to (43):

f3 ξ, η, τð Þ = g3 ζ, λ, τð Þ, with ζ = ξ + R − 1/2ð Þσ2H
À Á

τ

σH
, λ

= η + R − 1/2ð Þσ2V
À Á

τ

σV
:

ðB:4Þ

Taking partial derivatives, we have

f3τ = g3τ +
R − 1/2ð Þσ2

H

σH
g3ζ +

R − 1/2ð Þσ2V
σV

g2λ,

f3ξ =
1
σH

g3ζ, f3η =
1
σV

g3λ,

f3ξξ =
1
σ2H

g3ζζ, f3ξη =
1

σHσV
g3ζλ, f3ηη =

1
σ2V

g3λλ: ðB:5Þ

Substituting these into (B.3), we find that

g3τ =
1
2 g3ζζ + g3λλ
À Á

+ ρVH g3ζλ: ðB:6Þ

Step 3. Equation (B.6) is the same equation as (45), just with
a different constant, and it can be solved by using the simi-
larity variables given in (46), i.e.,

g3 ζ, λ, τð Þ = Z3
fζ, ~λ� �

, with~ζ = ζffiffiffi
τ

p , ~λ = λffiffiffi
τ

p : ðB:7Þ
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Taking partial derivatives, substituting into (B.6), and
denoting constant

γ = ρVH , ðB:8Þ

we obtain

Z
3e~ζe~ζ + 2γZ

3e~ζ~λ + Z3~λ~λ + ~ζZ3~ζ + ~λZ3~λ = 0: ðB:9Þ

With use of Equations (B.1), (B.4), and (B.7), initial con-
dition (39) for P3 becomes the following condition for Z3 :

as τ⟶ 0, Z3 =
1, if ~ζ⟶∞ whenH > Fð Þ and ~λ⟶∞ whenV > Fð Þ,
0, if ~ζ⟶ −∞ whenH < Fð Þ or ~λ⟶ −∞ whenV < Fð Þ:

(

ðB:10Þ

Since PDE (B.9) and condition (B.10) are the same as
PDE (49) and condition (50), we have solution (51) for Z3,
i.e.,

Z3 =N2
~ζ, ~λ, γ
� �

=∬
~ζ,~λ
−∞,−∞

1
2π

ffiffiffiffiffiffiffiffiffiffiffiffi
1 − γ2

p e− x2−2γxy+y2ð Þ/2 1−γ2ð Þð Þdx dy:

ðB:11Þ

Combining (B.11), (B.7), (B.4), and (B.1), we obtain the
solution for P3 as

P3 = −F e−Rτ N2 γ1, γ2, ρVHð Þ,  ðB:12Þ

where γ1 and γ2 are defined in (60) and (A.12), respectively.
This solution given in (B.12) is the third term of solution
(11) in Stulz [8].

C. Two Additional Examples of Call Options on
Two Risky Assets

C.1. Exchange-One-Asset-for-Another Options. The IBVP for
an exchange-one-asset-for-another option consists of PDE
(1) with boundary condition (3) and initial condition

Pexch V ,H, 0ð Þ =max Q1V −Q2H, 0f g, ðC:1Þ

where Q1 and Q2 are the quantity of assets V and H, respec-
tively (see Margrabe [27]). Notice that the initial condition
(C.1) can be rewritten as

Pexch V ,H, 0ð Þ =
Q1V −Q2H, if Q1V >Q2H,
0, if Q1V <Q2H:

(
ðC:2Þ

Similar to the case in Section 2, we split IBVPs (1), (3),
and (C.2) into two subproblems with Pexch = P7 − P8, where
P7 satisfies (1), (3), and

P7 V ,H, 0ð Þ =
Q1V , if Q1V >Q2H,
0, if Q1V <Q2H,

(
ðC:3Þ

and P8 satisfies (1), (3), and

P8 V ,H, 0ð Þ =
Q2H, if Q1V >Q2H,
0, if Q1V <Q2H:

(
ðC:4Þ

Let us summarize the solution steps for P7 using the
three-step method described in Section 2. Similar to (10),
we first use the change of variables:

P7 V ,H, τð Þ =Q1Vf1 ξ, τð Þ, with ξ = ln Q1V
Q2H

� �
, ðC:5Þ

and we find that PDE (1) becomes (12). As shown in Section
2, Equation (12) can be converted into (15) by the change of
variables (13). Using the similarity variable (16), Equation
(15) can be solved to obtain (20). With use of (C.5), (13),
and (16), initial condition (C.3) becomes as follows:

as τ⟶ 0, Z1 =
1, if ~ζ⟶∞ whenQ1V >Q2Hð Þ,
0, if ~ζ⟶ −∞ whenQ1V <Q2HÞð Þ:

(
ðC:6Þ

Therefore, the solution for P7 is given by

P7 =Q1VN
ln Q1V/Q2Hð Þ + 1/2ð Þσ2τ

σ
ffiffiffi
τ

p
� �

: ðC:7Þ

Now, let us summarize the solution steps for P8 using the
three-step method described in Section 2. Similar to (24), we
first use the change of variables

P8 V ,H, τð Þ =Q2H f2 ξ, τð Þ, with ξ = ln Q1V
Q2H

� �
, ðC:8Þ

and we find that PDE (1) becomes (26). As shown in Section
2, Equation (26) can be converted into (29) by the change of
variables (27). Using the similarity variable (30), Equation
(29) can be solved to obtain (31). With use of (C.8), (27),
and (30), initial condition (C.4) becomes (C.6). Therefore,
the solution for P8 is given by

P8 =Q2HN
ln Q1V/Q2Hð Þ − 1/2ð Þσ2τ

σ
ffiffiffi
τ

p
� �

: ðC:9Þ

Combining (C.7) and (C.9) with Pexch = P7 − P8, we
obtain the solution to the option to exchange one asset for
another as

Pexch =Q1VN
ln Q1V/Q2Hð Þ + 1/2ð Þσ2τ

σ
ffiffiffi
τ

p
� �

−Q2HN
ln Q1V/Q2Hð Þ − 1/2ð Þσ2τ

σ
ffiffiffi
τ

p
� �

:

ðC:10Þ

C.2. Call Option on the Maximum of Two Assets. The IBVP
for a call option on the maximum of two assets consists of
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PDE (1) with boundary condition (3) and initial condition

Pmax V ,H, 0ð Þ =max max V ,Hð Þ − F, 0f g: ðC:11Þ

Notice that the initial condition (C.11) can be rewritten
as

Pmax V ,H, 0ð Þ =
V − F, if V >H andV > F,
H − F, if V <H andH > F,
0, if V >H andV < Fð Þ or V <H andH < Fð Þ:

8>><>>:
ðC:12Þ

Similar to the case in Section 3, IBVPs (1), (3), and
(C.12) can be split as Pmax = P9 + P10 + P11, where P9 satisfies
(1), (3), and

P9 V,H, 0ð Þ =
V , if V >H andV > F,
0, if V <H orV < F,

(
ðC:13Þ

P10 satisfies (1), (3), and

P10 V ,H, 0ð Þ =
H, if V <H andH > F,
0, if V >H orH < F,

(
ðC:14Þ

and P11 satisfies (1), (3), and

P11 V ,H, 0ð Þ =
−F, if V >H andV > Fð Þ or V <H andH > Fð Þ,
0, if V < F orH < F:

(
ðC:15Þ

Let us summarize the solution steps for P9 using the three-
step method described in Section 3:

(1) Similar to (40), we first use the change of variables:

P9 V ,H, τð Þ =H f1 ξ, η, τð Þ, with ξ = ln V
F

� �
, η = ln V

H

� �
,

ðC:16Þ

and PDE (1) becomes

f1τ = R f1ξ +
1
2σ

2 f1ηη + f1η
� �

+ 1
2σ

2
V f1ξ + f1ξξ + 2f1ξη
� �

− ρVHσVσH f1ξη,
ðC:17Þ

where σ2 = σV
2 + σH

2 − 2ρVHσVσH :

(2) Similar to (43), we then use the change of variables:

f1 ξ, η, τð Þ = g1 ζ, λ, τð Þ, with ζ = ξ + R + 1/2ð Þσ2V
À Á

τ

σV
, λ

= η + 1/2ð Þσ2τ

σ
,

ðC:18Þ

and (C.17) becomes

g1τ =
1
2 g1ζζ + g1λλ
À Á

+ σV − ρVHσH

σ
g1ζλ: ðC:19Þ

Finally, we use the change of variables (46) to obtain (49)
with γ = ðσV − ρVHσHÞ/σ:

With use of (C.16), (C.18), and (46), initial condition
(C.13) becomes as follows:

as τ⟶ 0, Z1 =
1, if ~ζ⟶∞ whenV > Fð Þ and ~λ⟶∞ whenV >Hð Þ,
0, if ~ζ⟶ −∞ whenV < Fð Þ or ~λ⟶ −∞ whenV <Hð Þ:

(

ðC:20Þ

Therefore, the solution for P9 is given by

P9 = VN2
ln V/Fð Þ + R + 1/2ð Þσ2V

À Á
τ

σV
ffiffiffi
τ

p ,
�

ln V/Hð Þ + 1/2ð Þσ2τ
σ
ffiffiffi
τ

p , σV − ρVHσH

σ

�
:

ðC:21Þ

A similar procedure as above (see also the derivation in
Appendix A) gives P10 as

P10 =HN2
ln H/Fð Þ + R + 1/2ð Þσ2H

À Á
τ

σH
ffiffiffi
τ

p ,
�

ln H/Vð Þ + 1/2ð Þ1/2σ2τ
σ
ffiffiffi
τ

p , σH − ρVHσV
σ

�
:

ðC:22Þ

A procedure similar to that in Appendix B gives P11 as

P11 = −F e−Rτ 1 −N2 −γ2,−γ1, ρVHð Þð Þ, ðC:23Þ

where γ1 and γ2 are given in (60) and (A.12), respectively.
Finally, we use Pmax = P9 + P10 + P11 to obtain the solu-

tion to the call option on the maximum of two assets, as
given in Section 5.7 of Haug [26].
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