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In this study, we extend Codeço’s classical SI-B epidemic and endemic model from a deterministic framework into a stochastic
framework. Then, we formulated it as a stochastic differential equation for the number of infectious individuals IðtÞ under the
role of the aquatic environment. We also proved that this stochastic differential equation (SDE) exists and is unique. The
reproduction number, R0, was derived for the deterministic model, and qualitative features such as the positivity and invariant
region of the solution, the two equilibrium points (disease-free and endemic equilibrium), and stabilities were studied to ensure
the biological meaningfulness of the model. Numerical simulations were also carried out for the stochastic differential equation
(SDE) model by utilizing the Euler-Maruyama numerical method. The method was used to simulate the sample path of the SI-
B stochastic differential equation for the number of infectious individuals IðtÞ, and the findings showed that the sample path
or trajectory of the stochastic differential equation for the number of infectious individuals IðtÞ is continuous but not
differentiable and that the SI-B stochastic differential equation model for the number of infectious individuals IðtÞ fluctuates
inside the solution of the SI-B ordinary differential equation model. Another significant feature of our proposed SDE model is
its simplicity.

1. Introduction

The fight against cholera is far from over; it, therefore,
becomes very reasonable to try and tackle the cholera infec-
tion also from theoretical and numerical points of view. It
must be emphasized that looking at the high death rates of
cholera, any research that aims at improving the success
rates becomes crucial.

Cholera is an acute intestinal infection caused by the
Vibrio cholerae bacterium being ingested in contaminated
water or food which is characterized by extreme diarrhea
and vomiting. Cholera has a brief incubation period, ranging
from one to five days. The bacteria Vibrio cholerae produces
a toxin known as enterotoxin that dehydrates and prevents
the human body from absorbing liquids which can lead to
death if treatment is delayed within two to three hours of
infection [1]. According to Crooks and Atesmachew [2], get-
ting portable drinking water and basic environmental

hygiene is a major problem in Africa and Asia where cholera
cases are on a continuous rise.

Cholera is one of the oldest diseases that continue to
harm people of all ages, generating epidemics and pandemic
outbreaks notwithstanding continued efforts to control its
transmission. There exist a number of environmental factors
that contribute to the spread of cholera infections. Because
Vibrio cholerae can travel around in the water, any change
in the hydrological cycle has the potential to modify the con-
centration of the pathogens in the water. Droughts and
floods can boost or decrease the transmission process
depending on the amount of rain and its seasonal nature [3].

The symptoms of cholera include painless watery stools,
extreme vomiting, irregular heartbeat, and low blood pressure
[4]. Most people do not fall sick with infection of cholera when
exposed toVibrio cholerae, but they can still infect other suscep-
tible individuals through polluted water, as they shed the path-
ogen in their stool for 7 to 14 days. According to Akor [5], most
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people who are sometimes exposed have mild or asymptomatic
symptoms, and at other times, symptoms are very severe. About
one in every 20 infected individuals develops severe diarrhea
with vomiting which could lead to dehydration.

The transmission of cholera can be direct or indirect [6].
The direct (human-to-human) transmission of cholera
occurs when the infected person contact, engages in sexual
activity with, or bites other infected individuals, whereas
indirect (environment-to-human) transmission of cholera
occurs when infected individuals consume Vibrio cholerae
bacteria through contaminated waters and food [7].

As cholera epidemics become a global health burden in
recent decades, researchers have paid more attention to
cholera epidemiology. The interactions of Vibrio cholerae
bacteria with its host and other pathogens in the environ-
ment have revealed that the dynamics of cholera are far
more complicated than imagined previously [3]. Several
mathematical models have been presented in the past by dif-
ferent authors to study the complicated epidemic and
endemic nature of cholera. The study done by Capasso and
Paveri-Fontana [8] in the Mediterranean formulated a deter-
ministic mathematical model to investigate the outbreak of
cholera that occurred in 1973. Codeco extended and explic-
itly included the role of the aquatic environment in the
dynamics of cholera in 2001, based on the work of Capasso
and Paveri-Fontana [8]. The study done by Hntsa and Kah-
say [9] focused on a mathematical model of the dynamical
behavior of a fractional order model of cholera. Opoku and
Afriyie [10] proposed and developed a dynamic mathemati-
cal model to analyze the role of the environment and control
measures on cholera transmission dynamics involving the
human population and the population of bacteria. Wang
and Modnak [7] developed and analyzed an epidemiological
model of cholera incorporating control measures, which is
an extension of the formulated model by Mukandavire
et al. [11] to better gain an understanding of the complex
dynamics of cholera which included medicinal treatment,
vaccination, and water sanitation effects. Hntsa and Kahsay
[9] formulated a deterministic mathematical epidemic
model to examine the influence of adequate cholera preven-
tion strategies on the disease’s dynamics. According to Mark
et al. [12], lytic bacteriophage specific for Vibrio cholerae
may decrease the severity of epidemics of cholera by killing
bacteria both in the infected persons and in the reservoir,
based on environmental and epidemiological studies of chol-
era epidemics in Dhaka. Ochoche [13] proposed and formu-
lated a mathematical model for transmission dynamics of
cholera control with a water treatment control strategy.
Fatima et al. [4] formulated and analyzed a mathematical
epidemic model for cholera control in Nigeria that differed
from earlier cholera models. In order to control cholera epi-
demics, this research model integrates treatment, water
hygiene, and environmental cleanliness. Togbenon and
Moyo [14] proposed and analyzed a mathematical model
for cholera transfer as a control strategy with a quarantine
class and vaccination parameter. Posny and Wang [15] pro-
posed in a periodic environment, a deterministic compart-
mental model for the dynamics of cholera. Seasonal
variation is incorporated into a broad formulation for the

pathogen concentration and the incidence in their model.
According to Fakai et al. [6], epidemics of cholera have been
on the rise and more than 250,000 cholera cases are recorded
worldwide annually. Flood, drought, and river height are all
factors that influence the outbreak of cholera. Draught and
flood, according to Codeco [3], are likely to have a complex
impact on the dynamics of cholera. Flooding can wash
infected feces and sewage into rivers, disrupting water deliv-
ery and worsening hygiene conditions. Nyabadza et al. [16]
developed a deterministic mathematical model to investigate
the mechanisms of cholera transmission in the face of scarce
resources which includes nonlinear recovery rates. Lemos-
paião et al. [17] researched an epidemic cholera model opti-
mum treatment with control in Portugal. They proposed in
the study a quarantine-treated cholera mathematics model
which employs an ideal control problem and controls a frac-
tion of infected individuals who will be treated in quarantine
until their recovery will be completed, with a reduced num-
ber of infected persons. Peter et al. [18] developed a deter-
ministic mathematical model to examine the degree of
sensitivity of certain factors that aid in cholera transmission
and management. Nyaberi and Malonza [19] researched the
trends of transmission dynamics of cholera through health
education and quarantine treatment as an epidemic control
measure, modeling disease transmission using ordinary dif-
ferential equations with an appropriate simple reproductive
number, R0, measured with the use of next-generation
matrices. Abdulai [20] conducted research on the dynamics
of the fractional order cholera transmission behavior model
in Ghana with the Atanackovic and Stankovic numerical
methods. Mwasa and Tchuenche [21] worked on a SIR
model combining programs for public health awareness,
vaccination, quarantine, and treatment as preventive mea-
sures to curb the illness.

Other researchers on cholera transmission dynamics
include Crooks and Atesmachew and Lemaitre et al. [2,
22], to mention but a few.

According to Liang et al. [23], mathematical models as a
tool in analyzing and predicting dynamical behavior in bio-
logical systems have been successfully used in the past decay.
Therefore, in this study, a stochastic differential equation
model would be used which provides an effective and effi-
cient tool to unravel the role of the aquatic environment in
the transmission dynamics and a better understanding of
the spread of cholera infection even under uncertainties. In
this study, we extend the deterministic model developed in
[3] by converting it to a stochastic model. To understand
the flow and prevent cholera infection in a better way, we
first study the deterministic model by deriving the R0, qual-
itative features such as positivity and invariant region of the
solution, and stabilities of both the disease-free and endemic
equilibriums to ensure the biological meaningfulness of the
model. Next, we pass to the stochastic differential equation
model and show the existence and uniqueness of the model.
Finally, numerical simulations are carried out using the
Euler-Maruyama scheme and analyzed with the aid of
MATLAB, and the findings showed that the sample path
of the stochastic differential equation for the number of
infectious individuals is continuous but not differentiable.
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The rest of the study is organized as follows: in Section 2,
the Codeco [3] cholera model is described and reformulated.
A qualitative analysis of the model is also discussed. In
Section 3, a stochastic differential equation (SDEs) is formu-
lated from transition probabilities. The existence and unique-
ness of the stochastic differential equation model are also
discussed. In Section 4, we use MATLAB software to investi-
gate the numerical simulation results. Finally, in Section 5,
we present our discussions and conclusions.

2. Model Formulation

The cholera model formulated by [3] is a system that
includes both the environment and human population, with
the environment-to-human transmission route represented
by a logistic function. This model incorporated explicitly
the environmental component, namely, the concentration
of Vibrio cholerae bacteria in water ðBÞ, into a regular SIR
system to create an epidemiological model of a combined
human-to-environment SI-B. In this study, we extend this
model to a stochastic model by adding a “noise” to the deter-
ministic model developed by [3]. Thus, we add a Brownian
motion (Wiener’s process) and the intensity or impact of
the stochastic environmental factors on the deterministic
model.

2.1. The Deterministic Model Equations. In this model, we
consider a deterministic compartmental human population
and a Vibrio cholera bacteria population. The total human
population is divided into three subclasses which are the sus-
ceptible population ðSÞ, the cholera infectious population ðIÞ
, and a Vibrio cholerae bacteria population ðBÞ. Susceptibles
are recruited with the rate of n through birth, susceptible can
get cholera with the rate of aB/K + B, where a is the contact
rate with untreated water and B/K + B is the probability of
an individual to catch cholera. Infected individuals also con-
tribute to the enhancement of the Vibrio cholera bacteria
population through excretion at the rate of e. The infected
individual may recover at the rate of r. In the aquatic envi-
ronment, the bacteria population also grows at a rate deter-

mined by environmental factors, and b is the size of bacteria
in the aquatic reservoir. A susceptible individual dies natu-
rally at a rate of μ. The above description of the model is
plotted in Figure 1, while the variables and parameters are
defined in Tables 1 and 2, respectively.

To extend the deterministic model in [3] to a stochastic
one, we reformulate the basic model as follows.

The above assumptions of the model lead to the system
of ordinary differential equations shown below as in [3].

dS
dt = n H − Sð Þ − aBS

K + B

dI
dt =

aBS
K + B

− rI

dB
dt = B nb −mbð Þ + eI

9>>>>>>>=
>>>>>>>;
, ð1Þ

with initial conditions Sð0Þ = S0, Ið0Þ = I0, Bð0Þ = B0.

2.2. Basic Properties of the Deterministic Model. For our
model to make sense, it is necessary to show at least that this
SI − B model has a solution, and also the solution will
remain within ð0,HÞ whenever it starts from there.

2.2.1. Positivity of the Solutions. In order for our model to be
realistic, solutions will have to be nonnegative at all times for
all t ≥ 0: We show that every state variable in the system
equations will remain nonnegative.

nH

nS

Susceptible
(S)

Environmental
factors

Aquatic toxigenic V.
cholerae

(B)

Infected
(I)

eI

nb-mb

rI

aBS

K + B

Figure 1: Flowchart of the deterministic Codeco’s cholera model.

Table 1: Definition of variables in Codeco’s model.

Variable Definition

S Number of susceptible individuals

I Number of infected individuals

B Toxigenic concentration of Vibrio cholerae
in water (cell/ml).
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Theorem 1. If our initial values of the parameters are fSð0Þ
≥ 0, Ið0Þ ≥ 0, Bð0Þ ≥ 0g, then the solution set fSðtÞ, IðtÞ, BðtÞg
is nonnegative for all t ≥ 0:

Proof. Let t∗ = sup ft > 0 : SðtÞ > 0, IðtÞ > 0, BðtÞ > 0g
Since SðtÞ, IðtÞ, and BðtÞ are continuous, we deduce that

t∗ > 0: If t∗ = +∞, then positivity holds but if 0 < t∗ < +∞,
SðtÞ = 0 or IðtÞ = 0, or BðtÞ = 0. Now, consider the first equa-
tion of model (1),

dS tð Þ
dt = nH −

aB tð ÞS tð Þ
K + B tð Þ − nS tð Þ: ð2Þ

Rewritten as

dS tð Þ
dt + n + λ tð Þð ÞS tð Þ = nH, ð3Þ

where λðtÞ = αBðtÞ/K + BðtÞ.

So, by integrating Equation (3), we have

d
dt S tð Þe nt+

Ð
λ τð Þdτ

À Á� �
= nHð Þe nt+

Ð
λ τð Þdτ

À Á
: ð4Þ

Thus,

S t∗ð Þe nt∗+
Ð t∗

0
λ τð Þdτ

� �
− S 0ð Þ =

ðt∗
0
e
Ð

n+λ tð Þð Þdt: nHð Þdt: ð5Þ

This implies

S t∗ð Þ = S 0ð Þe− nt∗+
Ð t∗

0
λ τð Þdτ

� �
+ e

− nt∗+
Ð t∗

0
λ τð Þdτ

� �
×
ðt∗
0
e
Ð

n+λ tð Þð Þdt: nHð Þdt,

S t∗ð Þ = T1S 0ð Þ + T1

ðt∗
0
e
Ð

n+λ tð Þð Þdt: nHð Þdt > 0,

ð6Þ

where T1 = e−ðnt∗+
Ð t∗

0
λðτÞdτÞ > 0,Sð0Þ > 0, and from the defini-

tion of t∗ above, we have BðtÞ > 0. Therefore, the solution
Sðt∗Þ > 0 and, hence, Sðt∗Þ ≠ 0:

Consider the second equation of model (1),

dI tð Þ
dt = aB tð ÞS tð Þ

K + B tð Þ − rI tð Þ, ð7Þ

which can be written as

dI tð Þ
dt + rI tð Þ = λ tð ÞS tð Þ, ð8Þ

where λðtÞ = αBðtÞ/K + Bðt.
Also, by integrating Equation (8), we have

d
dt I tð Þe

Ð
rdt

n o
= λ tð ÞS tð Þe

Ð
rdt
: ð9Þ

Thus,

I t∗ð Þert∗ − I 0ð Þ =
ðt∗
0
e
Ð
rdt
: λ tð ÞS tð Þð Þdt: ð10Þ

This implies,

I t∗ð Þ = I 0ð Þe−rt∗ + e−rt∗
ðt∗
0
e
Ð
rdt
: λ tð ÞS tð Þð Þdt,

I t∗ð Þ = T1I 0ð Þ + T1

ðt∗
0
e
Ð
rdt
: λ tð ÞS tð Þð Þdt > 0,

ð11Þ

where T1 = e−rt∗ > 0, Ið0Þ > 0, and from the above, SðtÞ > 0 :
then, the solution Iðt∗Þ > 0 and, hence, Iðt∗Þ ≠ 0:

Consider the third equation of model (1),

dB tð Þ
dt = eI tð Þ − mb − nbð ÞB tð Þ,

dB tð Þ
dt + mb − nbð ÞB tð Þ = eI tð Þ,

d
dt B tð Þe

Ð
mb−nbð Þdtn o

= e
Ð

mb−nbð Þdt : eI tð Þð Þ:

ð12Þ

Thus,

B t∗ð Þe mb−nbð Þt∗ − B 0ð Þ =
ðt∗
0
e
Ð

mb−nbð Þdt: eI tð Þð Þdt: ð13Þ

Table 2: Description of parameters in Codeco’s model.

Parameter Definition

H Total human population

n Birth and death rates of humans (day−1)
a Exposure rate of individuals to contaminated water (day−1)
K Vibrio cholerae concentration in water that yields 50% of catching cholera (cell/ml)

r Recovery rate of individuals (day−1)
nb −mb Difference between the growth rate and loss rate of Vibrio cholerae in the aquatic reservoir (day−1)

e Infected individual’s contribution to the Vibrio cholerae bacteria population in the aquatic reservoir (cell/ml day−1individual−1)

4 Journal of Applied Mathematics



This implies,

B t∗ð Þ = B 0ð Þe− mb−nbð Þt∗ + e− mb−nbð Þt∗
ðt∗
0
e
Ð

mb−nbð Þdt: eI tð Þð Þdt,

B t∗ð Þ = k1B 0ð Þ + k1

ðt∗
0
e
Ð

mb−nbð Þdt: eI tð Þð Þdt > 0,

ð14Þ

where k1 = e−ðmb−nbÞt∗ > 0 for ðmb − nb > 0Þ, Bð0Þ > 0 and
from the above, IðtÞ > 0 ; then the solution Bðt∗Þ > 0, and,
hence, Bðt∗Þ ≠ 0:

Based on the definition, t∗ is not finite which means
t∗ = +∞; therefore, the solutions of the Codeco model sys-
tem (1) are always positive.

2.2.2. Invariant Region for the Deterministic Model. In this
subsection, we obtain the invariant region of the model
Equation (1).

Theorem 2. The solutions for the model system (1) are con-
tained and remain in the region Ω = fðS, I, BÞj S ≥ 0, I ≥ 0, 0
≤ S + I ≤ Δ/n, 0 ≤ B ≤ eΔ/nqg, for all time t ≥ 0.

Proof. Consider the total human population, HðtÞ = SðtÞ + I
ðtÞ, its time derivative satisfies,

dH tð Þ
dt = dS tð Þ

dt + dI tð Þ
dt ,

dH tð Þ
dt = nH tð Þ − aB tð ÞS tð Þ

K + B tð Þ − nS tð Þ + aB tð ÞS tð Þ
K + B tð Þ − rI tð Þ:

ð15Þ

Let nH the rate of recruitment into the susceptible class
be Δ and S =H − I:

dH tð Þ
dt = Δ − nH tð Þ − nI tð Þ − rI tð Þ,

dH tð Þ
dt ≤ Δ − nH tð Þ:

ð16Þ

By integrating, we obtain

H tð Þ ≤ Δ

n
+ ke−nt , ð17Þ

where k is a constant. Initially, at t = 0,Hð0Þ − Δ/n ≤ k:
Therefore,

H tð Þ ≤ Δ

n
+ H 0ð Þ − Δ

n

� �
e−nt: ð18Þ

Thus,
lim

t⟶∞
HðtÞ ≤ Δ/n, which implies that 0 ≤HðtÞ ≤ Δ/n

Similarly,

dB tð Þ
dt = eI − qB ≤ e

Δ

n
− qB, ð19Þ

where q = ðmb − nbÞ:
By integrating, we obtain

B tð Þ ≤ eΔ
nq + ke−qt , ð20Þ

where k is a constant. Initially, at t = 0,

B 0ð Þ − eΔ
nq ≤ k: ð21Þ

Therefore,

B tð Þ ≤ eΔ
nq + B 0ð Þ − eΔ

nq

� �
e−qt: ð22Þ

Thus,
lim

t⟶∞
BðtÞ ≤ eΔ/nq, which implies that 0 ≤ BðtÞ ≤ eΔ/nq.

Therefore, the feasibility of the solution set of the system
of Equation (1) is in the region Ω = fðS, I, BÞjS ≥ 0, I ≥ 0, 0
≤ S + I ≤ Δ/n, 0 ≤ B ≤ eΔ/nqg; hence, the model is well posed
and biologically meaningful.

2.3. Existence and Stability of the Disease-Free Equilibrium.
Here, the existence of the equilibrium state of the model is
discussed.

We set dS/dt = dI/dt = dB/dt = 0 at the equilibrium state.
Therefore, by setting the model equations of the system

(1) to zero, we have

n H − Sð Þ − aBS
K + B

= 0, ð23Þ

aBS
K + B

− rI = 0, ð24Þ

nb −mbð ÞB + eI = 0: ð25Þ
There are no infections at the disease-free state; thus,

I = 0. Substituting this into Equation (25), we have ðnb −mbÞ
B = 0⟹ B = 0 provided nb −mb ≠ 0: Therefore, putting
B = 0 into Equation (23), we have nðH − SÞ = 0⟹ n = 0
and S =H:

Therefore, a disease-free equilibrium state exists and is
given by E0ðH, 0, 0Þ:

Now, we analyze the disease-free equilibrium’s stability.
Let us consider taking the Jacobian of the model Equations
(23)–(25) to prove that they are locally asymptotically stable
around the equilibrium point as in [19].

When it comes to disease spread, local asymptotic stabil-
ity means that if there is a small change or perturbation on
the system, the system will still return to the disease-free
equilibrium.
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2.4. Basic Reproductive Number for the Deterministic Model.
The basic reproductive number ðR0Þ is calculated from the
disease compartments as follows:

F : rate of appearance of new infection= ðfaBS/K + Bg/0Þ
V−

i : transfer rate of disease out of the disease compart-

ment =
rI

0

 !

V+
i : transfer rate of infection into the disease compart-

ment by other means

=
0

nb −mbð ÞB + eI

 !
,

Vi = V−
i −V+

i =
rI

mb − nbð ÞB − eI

 !
:

ð26Þ

F = ∂FðE0Þ/∂xj : the Jacobian ofF with respect to disease
compartments ðxjÞ evaluated at disease-free equilibrium. The
model’s disease-free equilibrium point is obtained by setting

dS tð Þ
dt = dI tð Þ

dt = dB tð Þ
dt = 0,

nH tð Þ − aB tð ÞS tð Þ
K + B tð Þ − nS tð Þ = 0,

ð27Þ

aB tð ÞS tð Þ
K + B tð Þ − rI tð Þ = 0,

nb −mbð ÞB tð Þ + eI tð Þ = 0:
ð28Þ

Now, from system above, we have,

S∗ = nH
aB∗/K + B∗ð Þ + n

,

I∗ = aB∗S∗

r K + B∗ð Þ ,

B∗ = eI∗

nb −mb :

ð29Þ

From the equations above,
I∗ = 0 and ðnb −mbÞB∗ = 0⟹ B∗ = 0 provided nb −mb

≠ 0: Therefore, putting B∗ = 0 into S∗ = nH/ðaB∗/K + B∗Þ +
n, we have S∗ =H.

Therefore, E0 = ðSðtÞ, IðtÞ, BðtÞÞ = ðH, 0, 0Þ.

F =

∂m1
∂I

∂m1
∂B

∂m2
∂I

∂m2
∂B

0
BB@

1
CCA, ð30Þ

where

m1 =
aB tð ÞS tð Þ
K + B tð Þ − rI tð Þ:

m2 = nb −mbð ÞB tð Þ + eI tð Þ
ð31Þ

Then, the Jacobian matrix is given by the following equa-
tion:

F =
0 aSK

K + Bð Þ2
0 0

0
B@

1
CA: ð32Þ

At disease-free equilibrium,

S =H,
B = 0,

F = 0 aH
K

0 0

0
@

1
A:

ð33Þ

V = ∂ViðE0Þ/∂xj : the Jacobian of Vi with respect to dis-
ease compartments ðxjÞ evaluated at DFE,

V =
r 0
−e mb − nb

 !
,

V−1 = 1
r mb − nbð Þ

mb − nb 0
e r

 !
,

V−1 =

1
r

0

e
r mb − nbð Þ

1
mb − nb

0
BB@

1
CCA:

ð34Þ

Therefore,

FV−1 = 0 aH
K

0 0

0
@

1
A

1
r

0

e
r mb − nbð Þ

1
mb − nb

0
BB@

1
CCA,

FV−1 =
eaH

Kr mb − nbð Þ
aH

K mb − nbð Þ
0 0

0
B@

1
CA:

ð35Þ

Now, we calculate the eigenvalues of the matrix
eaH/Krðmb − nbÞ aH/Kðmb − nbÞ

0 0

 !
to determine the

basic reproduction number, R0 which is defined as the spectral
radius or the dominant eigenvalue of the matrix as in [7]. We
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compute this by j eaH/Krðmb − nbÞ aH/Kðmb − nbÞ
0 0

 !

− Iλj = 0, where I is a 2 × 2 identity matrix. Hence,

eaH
Kr mb − nbð Þ

aH
K mb − nbð Þ

0 0

0
B@

1
CA −

λ 0
0 λ

 !�������
������� = 0,

eaH
Kr mb − nbð Þ − λ

aH
K mb − nbð Þ

0 −λ

0
B@

1
CA

�������
������� = 0,

eaH
Kr mb − nbð Þ − λ

� �
λ = 0:

ð36Þ

Either eaH/Krðmb − nbÞ − λ = 0 or λ = 0⇒ λ1 = eaH/K
rðmb − nbÞ and λ2 = 0

The eigenvalues of FV−1 are feaH/Krðmb − nbÞ, 0g:
Clearly, λ1 is the dominant eigenvalue and becomes the
basic reproduction number R0 of the model as in [7].

R0 =
eaH

Kr mb − nbð Þ : ð37Þ

With respect to the cholera disease, the basic reproduc-
tion number (R0) describes the expected number of cholera
infections generated by one cholera case in a susceptible
population [7].

Theorem 3. The disease-free equilibrium points of the system
(1) is asymptotically stable if and only if R0 < 1 [19].

Proof. The Jacobian matrix is given by

J S0, I0, B0ð Þ =

−n −
aB

K + B
0 −

aSK

K + Bð Þ2
aB

K + B
−r

aSK

K + Bð Þ2
0 e nb −mb

2
6666664

3
7777775
: ð38Þ

Now, at disease-free equilibrium point, ðS0, I0, B0Þ =
ðH, 0, 0Þ.

J S0, I0, B0ð Þ =
−n 0 −

aH
K

0 −r
aH
K

0 e nb −mb

2
666664

3
777775: ð39Þ

The equilibrium point is asymptotically stable if the
following condition (Routh-Hurwitz) holds for polynomial P
and its determinant.

The Jacobian matrix has characteristic equation given as,

P J S0, I0, B0ð Þ − λIj j =
−n − λ 0 −

aH
K

0 −r − λ
aH
K

0 e nb −mb − λ

�����������

�����������
= 0,

−n − λð Þ
−r − λ

aH
K

e nb −mb − λ

�������
������� − 0

0 aH
K

0 nb −mb − λ

�������
�������

−
aH
K

0 −r − λ

0 e

�����
����� = 0,

−n − λð Þ −r − λð Þ nb −mbð Þ − λð Þ − aeH
K

� �
= 0,

−n − λð Þ λ2 + mb − nbð Þ + rð Þλ + r mb − nbð Þ − aeH
K

� �
= 0,

λ3 + n + mb − nbð Þ + rð Þλ2 − n + rð Þ nb −mbð Þ − rn + aeH
K

� �
λ

− rn nb −mbð Þ + naeH
K

� �
= 0,

ð40Þ

λ3 + n + mb − nbð Þ + rð Þλ2 + n + rð Þ mb − nbð Þ + rn −
aeH
K

� �
λ

+ rn mb − nbð Þ − naeH
K

� �
= 0:

ð41Þ
It is observed that the Jacobian matrix characteristic

equation has three roots.

We can rewrite the characteristic Equation (40) as PðλÞ
= λ3 + Aλ2 + Bλ + C = 0, where

A = r + n + mb − nbð Þ,
B = nr + r + nð Þ mb − nbð Þ − aeH

K
= n mb − nb + rð Þ + r mb − nbð Þ 1 − R0ð Þ,

C = nr mb − nbð Þ − naeH
K

= nr mb − nbð Þ 1 − R0ð Þ,

AB − C = mb − nb + n + rð Þ n mb − nb + rð Þ + r mb − nbð Þ 1 − R0ð Þð Þ:
ð42Þ

Therefore, the eigenvalues that correspond to the equi-
librium E0 are

λ1 = −n,

λ2,3 =
− mb − nb + rð Þ ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mb − nb + rð Þ2 − 4 r mb − nbð Þ 1 − R0ð Þð Þ

q
2 :

ð43Þ
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We haveA > 0, B > 0, C > 0 andAB − C > 0 and according
to the Routh-Hurwitz criterion, all the characteristic equa-
tion’s roots have negative real part when R0 < 1 and ðmb −
nbÞ > 0. Hence, the disease-free equilibrium (DFE) point is
stable given that R0 < 1 [19].

2.5. Existence and Stability of the Endemic Equilibrium. I ≠ 0
will be used to find the endemic state of the system of
Equation (1). We now investigate if the endemic equilibrium
condition of the system is stable.

n H − Sð Þ − aBS
K + B

= 0, ð44Þ

aBS
K + B

− rI = 0, ð45Þ

nb −mbð ÞB + eI = 0, ð46Þ
From Equation (46),

B = eI
mb − nb : ð47Þ

From Equation (45),

S = K + Bð ÞrI
aB

: ð48Þ

From Equation (44),

nH − S n + aB
K + B

� �
= 0: ð49Þ

Substitute Equation (48) into Equation (49).

nH −
B + Kð ÞrI
aB

� �
n + aB

B + K

� �
= 0,

nH − rI
n B + Kð Þ

aB
+ 1

� �
= 0:

ð50Þ

Substitute Equation (47) into Equation (50).

nH − rI
K + eI/mb − nbð Þð Þ
aeI/mb − nb n + 1

� �
= 0,

naeH − nrK mb − nbð Þ − erI n + að Þ = 0,

I = naeH − nrK mb − nbð Þ
er n + að Þ :

ð51Þ

Supposedly, for I > 0,

naeH − nrK mb − nbð Þ
er n + að Þ > 0,

aeH
rK mb − nbð Þ > 1:

ð52Þ

Therefore, R0 > 1, where R0 is the reproduction number
and is written as R0 = aeH/rKðmb − nbÞ:

We observed from the analysis that if R0 > 1 and ðmb
− nbÞ > 0, there exists a positive endemic equilibrium.

Theorem 4. The endemic equilibrium state E∗ is locally
asymptotically stable if R0 > 1:

Proof. To confirm the stability of the endemic equilibrium
state, we used the system of Equation (1), so substituting
B∗ for B, S∗ for S and taking E∗ = ðS∗, I∗, B∗Þ as the endemic
equilibrium, the Jacobian matrix of the system Equation (1)
becomes,

J E∗ð Þ =
−n −W 0 −U

W −r U

0 e −V

2
664

3
775, ð53Þ

where

W = aB∗

K + B∗ = na R0 − 1ð Þ
a + nR0

,

U = aS∗K

K + B∗ð Þ2 = r a + nð Þ mb − nbð Þ
e a + nR0ð Þ ,

V = mb − nbð Þ:

ð54Þ

The characteristic polynomial of the matrix JðE∗Þ is

det J E∗ð Þ − λI½ � = a0λ
3 + a1λ

2 + a2λ + a3, ð55Þ

where

a0 = 1,
a1 = n + r +W + V ,
a2 = nr + nV + rW + VW − eU ,
a3 = nrV + rVW − neU :

ð56Þ

The Routh-Hurwitz criterion [19] requires a0 > 0,a1 > 0,
a2 > 0,a3 > 0, and a1a2 − a0a3 > 0 as the necessary conditions
for the endemic equilibrium state to be locally asymptoti-
cally stable, i.e, all roots of the characteristic polynomial
above have negative real parts. Clearly a0 > 0,a1 > 0, since
n,a > 0 and R0 > 1. Similarly, a2, a3 > 0, since n,e,r,a,
ðmb − nbÞ > 0 and R0 > 1 if and only if nr + nV + rW +
VW> eU and nrV + rVW> neU:

Now, it remains to show that a1a2 − a0a3 > 0: Thus,

n + r +W +Vð Þ nr + nV + rW +WV − eUð Þ
− nrV + rWV − neUð Þ = n2r + n2V + nrW + nWV+ nr2

+ r2W + nrW + nWV+ rW2 +W2V + nrV + nV2

+ rWV+WV2 − reU − eWU − eVU > 0:
ð57Þ
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Therefore, when R0 > 1, the model system (1) has a unique
endemic equilibrium E∗, and it is stable if ðn2r + n2V + nrW
+ nWV+ nr2 + r2W + nrW + nWV+ rW2 +W2V + nrV +
nV2 + rWV+WV2Þ > ðreU + eWU+ eVUÞ, and ðmb − nbÞ
> 0.

3. Transition Probabilities

Allen [24] developed the Ito stochastic differential equations
from transition probabilities approach, which is based on the
diffusion process. The stochastic differential equation to be
formed is in the form,

dX tð Þ = f X tð Þ, tð Þdt + g X tð Þ, tð ÞdW tð Þ, ð58Þ

where f ðXðtÞ, tÞ is the drift (deterministic part of the
model), gðXðtÞ, tÞ is the diffusion part given as gðXðtÞ, tÞ
=V1/2, V is the covariance to order Δt, VΔt is the approxi-
mate covariance matrix, and WðtÞ is the vector of indepen-
dent Wiener’s process.

From the deterministic equations above, we formulate
the stochastic differential equation as

dX tð Þ = f X tð Þ, tð Þdt + g X tð Þ, tð ÞdW tð Þ, ð59Þ

where f ðXðtÞ, tÞ = Ε½ΔX/Δt, and gðXðtÞ, tÞ = ffiffiffiffi
V

p
=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ε½ΔXðΔXÞT �/Δt
q

[24].

Throughout this study, we assume that time is a contin-
uous variable and the state variables SðtÞ and IðtÞ are contin-
uous random variables. Now, let ΔS = Sðt + ΔtÞ − SðtÞ and
ΔI = Iðt + ΔtÞ − IðtÞ: In addition, we also assume that the
change (transition) of random variables SðtÞ and IðtÞ is
approximately normally distributed, ΔSðtÞ ~NðμðsÞΔt, σ2
ðsÞΔtÞ and ΔIðtÞ ~NðμðIÞΔt, σ2ðIÞΔtÞ for small time
intervals Δt.

Let XðtÞ = ½X1, X2�T , where X1 and X2 correspond to the
number of individuals SðtÞ, IðtÞ ∈ ½0,H�, respectively, and B
ðtÞ is the concentration of Vibrio cholerae bacteria in the
aquatic environment. But BðtÞ was not considered as it is
not compartment occupancy as the susceptible and the
infected; as a result, its transition is not taken into consider-
ation in formulating the transitions.

The following are needed in forming a stochastic dif-
ferential equation model: the expectation Ε½ΔX� and the
covariance Ε½ΔXðΔXÞT � which is a matrix. To compute
the expectation and the covariance matrix, the possible
changes or the transitions along with their associated
probabilities are first computed as shown in Table 3 below.
The transition probabilities are formulated from the deter-
ministic model.

In Table 3, the expectation is computed as follows:

Ε ΔX½ � = 〠
4

i=1
PiΔXi = P1ΔX1 + P2ΔX2 + P3ΔX3 + P4ΔX4,

ð60Þ

substituting the values of Pi, ΔXi and ½X1, X2�T = ½SðtÞ, IðtÞ�T
into Equation (60),

Ε ΔX½ � = P1
1

0

" #
+ P2

−1

1

" #
+ P3

−1

0

" #
+ P4

0

−1

" #

=
P1

0

" #
+

−P2

P2

" #
+

−P3

0

" #
+

0

−P4

" #

=
P1 − P2 − P3

P2 − P4

" #
=

nHΔt −
aBS
K + B

Δt − nSΔt

aBS
K + B

Δt − rIΔt

2
664

3
775∴Ε ΔX½ �

=
n H − Sð Þ − aBS

K + B

aBS
K + B

− rI

2
664

3
775Δt:

ð61Þ

And the covariance matrix is also computed as follows:

Ε ΔX ΔXð ÞT
h i

= 〠
4

i=1
PiΔXi ΔXið ÞT = P1ΔX1 ΔX1ð ÞT

+ P2ΔX2 ΔX2ð ÞT + P3ΔX3 ΔX3ð ÞT
+ P4ΔX4 ΔX4ð ÞT ,

ð62Þ

substituting the values of Pi, ΔXi and ½X1, X2�T = ½SðtÞ, IðtÞ�T
into Equation (62),

Ε ΔX ΔXð ÞT
h i

= P1
1

0

" #
1 0½ � + P2

−1

1

" #
−1 1½ �

+ P3
−1

0

" #
−1 0½ � + P4

0

−1

" #
0  − 1½ �

= P1
1 0

0 0

" #
+ P2

1 −1

−1 1

" #
+ P3

1 0

0 0

" #

+ P4
0 0

0 1

" #
=

P1 + P2 + P3 −P2

−P2 P2 + P4

" #

=
nHΔt + aBS

K + B
Δt + nSΔt −

aBS
K + B

Δt

−
aBS
K + B

Δt
aBS
K + B

Δt + rIΔt

2
664

3
775∴Ε ΔX ΔXð ÞT

h i

=
n H + Sð Þ + aBS

K + B
−

aBS
K + B

−
aBS
K + B

aBS
K + B

+ rI

2
664

3
775Δt:

ð63Þ

Table 3: Transition probabilities.

Possible changes Probabilities Description

ΔX1 = 1 0½ �T P1 = nHΔt Birth of a susceptible

ΔX2 = −1 1½ �T P2 =
aBS
K + B

Δt Susceptible becomes infected

ΔX3 = −1 0½ �T P3 = nSΔt Susceptible dies natural death

ΔX4 = 0 − 1½ �T P4 = rIΔt Infected recovers
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In Equation (61),

E ΔX½ �
Δt =

n H − Sð Þ − aBS
K + B

aBS
K + B

− rI

2
664

3
775 = f X tð Þ, tð Þ, ð64Þ

and in Equation (63),

E ΔX ΔXð ÞT
h i

Δt
=

n H + Sð Þ + aBS
K + B

−
aBS
K + B

−
aBS
K + B

aBS
K + B

+ rI

2
664

3
775 = V X tð Þ, tð Þ:

ð65Þ

Now, we compute V1/2.
According to Allen [24], in a 2-dimensional system

g =V1/2 can be computed exactly, and it is computed as
follows:

g = V1/2 = 1
β

δ + θ ρ

ρ ω + θ

" #
, ð66Þ

where θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δω − ρ2

p
and β =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
δ + ω + 2θ

p
with

δ = n H + Sð Þ + aBS
K + B

,

ρ = −
aBS
K + B ,

ω = aBS
K + B

+ rI:

ð67Þ

Therefore, θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnðH + SÞ + aBS/K + BÞðaBS/K + B + rIÞ − ðaBS/K + BÞ2

q
:

θ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + Sð Þ aBS

K + B
+ rI

aBS
K + B

+ n H + Sð ÞrI
r

, ð68Þ

and β =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðH + SÞ + 2aBS/K + B + rI + 2θ

p
.

Therefore, the stochastic differential equation for the
dynamics of the cholera infection is given as follows: dXðtÞ
= f ðXðtÞ, tÞdt + gðXðtÞ, tÞdWðtÞ with the initial condition
Xð0Þ = X0 and WðtÞ = ½W1ðtÞ,W2ðtÞ�T ,W1ðtÞ, andW2ðtÞ
represent independent Wiener’s process. For each compart-
ment, the following differential equations are obtained:

dS tð Þ = n H − Sð Þ − aBS
K + B

� �
dt + δ + θ

β
dW1 tð Þ + ρ

β
dW2 tð Þ

dI tð Þ = aBS
K + B

− rI
� �

dt + ρ

β
dW1 tð Þ + ω + θ

β
dW2 tð Þ

9>>>=
>>>;
:

ð69Þ

The stochastic differential equations above are known as
stochastic differential equations SI-B model.

Now, we model the populations each in system (69) to a
single dimension Brownian motion (Wiener’s process). Thus,
we write equations of system (69) in their simplified form.

Let us integrate the first equation of system (69),

ðt
0
dS sð Þ =

ðt
0

n H − Sð Þ − aBS
K + B

� �
ds +

ðt
0

δ sð Þ + θ sð Þ
β sð Þ

� �
dW1 sð Þ

+
ðt
0

ρ sð Þ
β sð Þ
� �

dW2 sð Þ,
S tð Þ =

ðt
0

n H − Sð Þ − aBS
K + B

� �
ds +

ðt
0

δ sð Þ + θ sð Þ
β sð Þ

� �
dW1 sð Þ

+
ðt
0

ρ sð Þ
β sð Þ
� �

dW2 sð Þ:

ð70Þ

Now, we define

M tð Þ =
ðt
0

δ sð Þ + θ sð Þ
β sð Þ

� �
dW1 sð Þ +

ðt
0

ρ sð Þ
β sð Þ
� �

dW2 sð Þ: ð71Þ

According to Greenhalgh et al. [25], the above is amartin-
gale in terms of filtration and can be written in its quadratic
variation as follows:

M tð Þh i =
ðt
0

δ sð Þ + θ sð Þð Þ2
β sð Þ2

 !
ds +

ðt
0

ρ sð Þ2
β sð Þ2

 !
ds

=
ðt
0

ρ sð Þ2 + δ sð Þ2 + 2δ sð Þθ sð Þ + θ sð Þ2
β sð Þ2

 !
ds

=
ðt
0

−aBS/K + Bð Þ2 + n H + Sð Þ + aBS/K + Bð Þð Þ2 + 2 n H + Sð Þ + aBS/K + Bð Þð Þ θð Þ +
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + Sð Þ aBS/K + Bð Þ + rI aBS/K + Bð Þ + n H + Sð ÞrI

p� �2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + Sð Þ + 2aBS/K + Bð Þ + rI + 2θ

p� �2

0
BBBBBBBB@

1
CCCCCCCCA
ds

=
ðt
0

n H + Sð Þ + aBS/K + Bð Þð Þ n H + Sð Þ + 2aBS/K + Bð Þ + rI + 2θð Þ
n H + Sð Þ + 2aBS/K + Bð Þ + rI + 2θ

� �
ds

=
ðt
0

n H + Sð Þ + aBS
K + B

� �
ds:

ð72Þ
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Martingale representation theorem allows the above
equation to be written as Ito integral [25] in terms of Brow-
nian motion as

M tð Þ =
ðt
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + Sð Þ + aBS

K + B

r
dw sð Þ: ð73Þ

As a result,

dS tð Þ = n H − S tð Þð Þ − aB tð ÞS tð Þ
K + B tð Þ

� �
dt

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + S tð Þð Þ + aB tð ÞS tð Þ

K + B tð Þ

s !
dw tð Þ:

ð74Þ

Similarly, the same process could be applied to the sec-
ond equation of system (69) to get the following:

dI tð Þ = aB tð ÞS tð Þ
K + B tð Þ − rI tð Þ

� �
dt +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB tð ÞS tð Þ
K + B tð Þ + rI tð Þ

s !
dW3 tð Þ,

dI tð Þ = aB tð Þ H − I tð Þð Þ
K + B tð Þ − rI tð Þ

� �
dt

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB tð Þ H − I tð Þð Þ

K + B tð Þ + rI tð Þ
s !

dW3 tð Þ:

ð75Þ

Hence, the system of stochastic differential Equations
(74) and (75) describe how the susceptible and the infected
population change with respect to time for HðtÞ > 0: How-
ever, this system can be more simply described by the sto-
chastic differential equatio.

dI tð Þ = aB tð Þ H − I tð Þð Þ
K + B tð Þ − rI tð Þ

� �
dt

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB tð Þ H − I tð Þð Þ

K + B tð Þ + rI tð Þ
s !

dW3 tð Þ,
ð76Þ

where SðtÞ + IðtÞ =HðtÞ > 0.

3.1. Existence and Uniqueness for the Stochastic Differential
Equations. In this section, in order for the stochastic differ-
ential equation model (74) and (75) to make sense, we need
to show at least that this model does not only have a unique
solution but also exist.

Assume that the coefficients in the system of stochastic
differential equation,

dX tð Þ = f i X tð Þ, tð Þdt + 〠
n

i=1
〠
m

j=1
gij X tð Þ, tð ÞdW tð Þ, ð77Þ

where XðtÞ = ðX1ðtÞ, X2ðtÞÞT ,WðtÞ = ðW1ðtÞ,W2ðtÞÞT , f iðX
ðtÞ, tÞ is a 2-dimensional vector with entries f iðx, tÞ and gij
ðXðtÞ, tÞ is a 2 × 2 matrix with entries gijðx, tÞ satisfy the fol-
lowing Lipschitz and growth conditions in the equations

below for some constant k <∞, and for all t ∈R and x, y
∈R2 as in Ogunlade et al. [26].

f x, tð Þ − f y, tð Þk k ≤ k x − yk k
g x, tð Þ − g y, tð Þk k ≤ k x − yk k
f x, tð Þk k ≤ k xk k
g x, tð Þk k ≤ k xk k

9>>>>>=
>>>>>;
,

gk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
〠
m

j=1
gij xð Þ2

vuut ,

fk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
n

i=1
f i xð Þ2,

s

ð78Þ

Then, for each x0 ∈R
2, the system of stochastic differen-

tial Equation (77) has a unique solution in which Xð0Þ = x0:
Now, consider Equations (69) and (74),

dS tð Þ = n H − S tð Þð Þ − aB tð ÞS tð Þ
K + B tð Þ

� �
dt

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + S tð Þð Þ + aB tð ÞS tð Þ

K + B tð Þ

s !
dw tð Þ,

dI tð Þ = aB tð Þ H − I tð Þð Þ
K + B tð Þ − rI tð Þ

� �
dt

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aB tð Þ H − I tð Þð Þ

K + B tð Þ + rI tð Þ
s !

dW3 tð Þ,
ð79Þ

with the following:

X 0ð Þ = S 0ð Þ, I 0ð Þ, B 0ð Þ½ �, ð80Þ

f1 = n H − S tð Þð Þ − aB tð ÞS tð Þ
K + B tð Þ , ð81Þ

f2 =
aB tð Þ H − I tð Þð Þ

K + B tð Þ − rI tð Þ: ð82Þ

Then, a constant M > 0 exists such that

∂f1
∂S

����
���� = −n −

aB
K + B

����
���� ≤M,

∂f1
∂I

����
���� = 0,

∂f2
∂S

����
���� = 0,

∂f2
∂I

����
���� = −

aB
K + B

− r
����

���� ≤M:

ð83Þ

The diffusion matrix’s elements are continuously
differentiable.
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Also, for Equations (74) and (75) as a system,

fk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
2

i=1
f i xð Þ2

s
and gk k =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
〠
2

i=1
〠
2

j=1
gij xð Þ2

vuut , ð84Þ

where k f k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnðH − SÞ − aBS/K + BÞ2 + ðaBS/K + B − rIÞ2

q
,

and

gk k =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n H + Sð Þ + 2 aBS

K + B
+ rI

r
: ð85Þ

Both f i and gij are continuously differentiable at ½Sð0Þ, Ið0
Þ, Bð0Þ� and, hence, satisfy the Lipschitz condition by the mean
value theorem for calculus. The norms are bounded because
they exist. As a result, the drift and the diffusion matrices are
bounded and, hence, satisfy the conditions for uniqueness and
existence of the solution criteria [26].

4. Numerical Results and Discussion

In this section, we carry out numerical simulations of the sto-
chastic differential equation model and ordinary differential
equation model. The aim of these simulations is to demon-
strate numerically the stochastic fluctuations of the infective
of the Codeco cholera model for a given initial conditions
and a population size.

To achieve this, the Euler-Maruyama scheme was imple-
mented inMATLAB to integrate the model and the individual
sample path behavior of the stochastic differential equations
(SDEs) models compared to their deterministic solution. In
our simulations, one infective is considered and introduced
into the population. The Euler-Maruyama scheme is one of
the numerical schemes for determining sample paths of sto-
chastic differential equations [27]. We approximate our sto-
chastic differential equation model in the Euler-Maruyama
scheme as follows: Sðt + dtÞ = SðtÞ + f ðSðtÞ, tÞdt + gðSðtÞ, tÞ½
Wðt + dtÞ −WðtÞ� and Iðt + dtÞ = IðtÞ + f ðIðtÞ, tÞdt + gðIðtÞ
, tÞ½Wðt + dtÞ −WðtÞ�, where dt is the time step.

Throughout the study, we use time = 100 days. Thus, the
time axis is the number of time steps. The actual total time of
100dt = 1 and the time step dt = 0:01:

The values of our model parameters are based on pub-
lished epidemiological data shown in Table 4.

The sample paths of the SI-B stochastic differential,
Equations (69) and (74), are shown below in Figures 2–7.

In Figure 2, we observed that at finite time, the suscepti-
ble population drops gradually to zero, and the entire indi-
vidual in the population gets infected.

In Figure 3(b), we tried to demonstrate the impact of the
Vibrio cholerae bacterium concentration in the water supply
on the number of infected individuals. With Vibrio cholerae
bacterium concentration of Bð0Þ = 100 cell/ml, Ið0Þ = 1 and a
step size of dt = 0:01, we observed that the SI − B Stochastic
Differential Equations (SDE) model sample path of IðtÞ is
continuous but not differentiable. The nowhere differentia-
bility indicates a Wiener process property. The results from

the stochastic model also indicate that there will not be
much increase in cholera disease (few infections), and within
a few days, it dies out of the community since the Vibrio cho-
lerae bacterium concentration in the water supply is small.
According to Doldersum [28], cholera is a dose-dependent
disease that requires 104 cells for an infection. We also, in
Figure 3, display the numerical results to compare both the
deterministic model and the stochastic one when the basic
reproduction number of the deterministic model, R0 =
0:7576. We see that the infectious population in the stochas-
tic case goes extinct earlier than that of the deterministic
one. Furthermore, the stochastic behavior of the curves
shows real life as compared to the deterministic one. Thus,
stochastic models are better due to their incorporation of
white noise or stochastic environmental factors than their
deterministic counterparts.

In Figure 4, we observe that when the basic reproduction
number is greater than one, the infection persists in both the
deterministic case and the stochastic one. We also see that
the infectious population in the stochastic case fluctuates
randomly which shows a real life behavior, while in the
deterministic case, the random fluctuations were not
observed. In Figure 4, we can further say that the stochastic
solutions are more realistic than deterministic ones.

In Figure 5, we tried to demonstrate the impact of the
Vibrio cholerae bacterium concentration in the water supply
on the number of infected individuals by simulating the sto-
chastic differential equation model and the corresponding
deterministic model. With Vibrio cholerae bacterium con-
centration of Bð0Þ = 100cell/ml, Ið0Þ = 1 and a step size of
dt = 0:01, we observed that the SI − B stochastic differential
equations (SDE) model sample path of IðtÞ fluctuates in
the solution of the SI − B ordinary differential equations
(ODE) model. The results from both the stochastic model
and the deterministic model indicate that there will not be
much increase in cholera disease since the Vibrio cholerae
bacterium concentration in the water supply is small.
According to [28], cholera is a dose-dependent disease,
which requires 104 cells for an infection.

In Figure 6, we tried to demonstrate the impact of the
Vibrio cholerae bacterium concentration in the aquatic res-
ervoir on the number of infected populations. The numerical
results were obtained by varying the value of the Vibrio cho-
lerae bacterium concentration, BðtÞ while keeping other
parameters constant. The result from the stochastic model
maintained their perturbing property due to the randomness

Table 4: Parameter values for model simulation.

Parameter Values Unit

n 0.0001 day−1

a 0.5 day−1

K 10^6 cell/ml
r 0.2 day−1

mb − nb 0.33 day−1

e 10 cell/ml day−1 person−1
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Figure 2: Computer simulation of sample path of SðtÞ for the SDESI − B cholera model and the corresponding deterministic solution with
dt = 0:01, Ið0Þ = 1, Bð0Þ = 1000cell/ml, H = 10000:
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(a) Deterministic case
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(b) Stochastic case

Figure 3: Graph of deterministic and stochastic SI-B cholera model, respectively.
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Figure 4: Deterministic and stochastic plot of the infectious population of the SI-B cholera model over time when R0 = 1:0455:
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Figure 5: Computer simulation of sample path of IðtÞ for the SDESI − B cholera model and the corresponding deterministic solution with
dt = 0:01, Ið0Þ = 1, Bð0Þ = 100cell/ml, H = 10000:

14 Journal of Applied Mathematics



0 10 20 30 40 50 60 70
Time (days)

80 90 100
0

2

4

6

8

10

12

14

16
SDE Model for Codeco SIB Cholera Formulation

N
um

be
r o

f i
nf

ec
tiv

es

Figure 6: Computer simulation of sample path of IðtÞ for the SDESI − B cholera model with dt = 0:01, Ið0Þ = 1, Bð0Þ = 1000cell/ml, H =
10000:
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Figure 7: Computer simulation of sample path of IðtÞ for the SDESI − B cholera model and the corresponding deterministic solution with
dt = 0:01, Ið0Þ = 1, Bð0Þ = 1000cell/ml, H = 10000:
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behavior. However, the overall outcome is that the number
of infected individuals increases significantly with increasing
value of Vibrio cholerae bacterium concentration in the
water supply. We also observed that the SI − B stochastic dif-
ferential equation model’s sample path of IðtÞ is continuous
but not differentiable. The nowhere differentiability indi-
cates a Wiener process property.

Therefore, we can infer that, when the Vibrio cholerae
bacterium concentration in the water supply is increasing,
and other parameters are kept constant, the cholera disease
transmission expands in the community.

In Figure 7, we tried to demonstrate the impact of the
Vibrio cholerae bacterium concentration, BðtÞ, in the water
supply on the number of infected individuals. The numerical
result was obtained by varying the value of BðtÞ while keep-
ing other parameters constant. In both the stochastic differ-
ential equation model and the deterministic model (black
dashed curve), when the value of BðtÞ increased from 100
cell/ml to 1000 cell/ml, there is a significant and regular
increase in the number of infected individuals. We also
observed that the SI − B stochastic differential equation
(SDE) model’s sample path of IðtÞ fluctuates in the solution
of the SI − B ordinary differential equation (ODE) model.
Therefore, increase in bacteria level in the aquatic environ-
ment leads to an increase in infections.

5. Discussions and Conclusions

In this work, Codeco’s work on modeling cholera outbreak
and endemic under the influence of the aquatic environment
is reviewed and extended to stochastic model using transi-
tion probabilities. A stochastic differential equation model
is designed from the deterministic model and both investi-
gated for the dynamics of cholera transmission. The stochas-
tic model is a 2-dimensional diffusion process of the
susceptible and the infected classes. Our focus is on the
interaction of the pathogens from the environment to
human and the shedding of bacteria from the infected indi-
viduals into the environment.

For the deterministic model, a basic reproductive num-
ber R0 was obtained which predicts whether the disease is
eradicated or remain in the given population. We also, via
mathematical analysis, shown that the model solutions are
all nonnegative and bounded in a given region and, thus,
exist uniquely. The disease-free equilibrium and the endemic
equilibrium are, respectively, derived as R0 < 1 and R0 > 1,
and the stability of both is examined. It is found that the
disease-free equilibrium state exists and is locally asymptot-
ically stable; hence, when R0 < 1, there will be no cholera
outbreak in the community. It was also found that there is
an asymptotically stable positive endemic equilibrium
locally; so, if R0 > 1, there will be an outbreak of disease in
the community. At zero infections and zero toxigenic bacte-
ria, the disease-free state stability is achieved.

For the transition probabilities stochastic differential
equations (SDEs), we determined the existence and unique-
ness of the solutions using mean-value theorem of calculus.

The Euler-Maruyama numerical method is used to sim-
ulate the sample trajectories of the stochastic differential

equation model via numerical simulations. The findings
show that the sample paths of the stochastic differential
equation model fluctuate in the solution of the correspond-
ing deterministic model and are continuous but not differen-
tiable which is a Wiener process property. Also, it is
observed from the graphs that cholera outbreak is indepen-
dent of the number of infected individual but on ingestion
and discharge of the bacteria into the aquatic environment
and the infectious population decreases, while the toxigenic
Vibrio cholerae bacteria concentration in water remains
low any time the infected individual’s contribution to the
aquatic reservoir is small. This keeps the reproductive num-
ber, R0, less than a unit and greater than a unit any time the
concentration of toxigenic Vibrio cholerae in water supply
and each infected individual’s contribution to the aquatic
reservoir increases in the population. We also find out that
the Vibrio cholerae bacteria concentration in the water
depends mostly on the rate at which people are exposed to
contaminated water supply and on each infected individual’s
contribution to the aquatic reservoir.

Therefore, cholera transmission dynamics may also be
studied applying stochastic differential equation (SDEs)
models which allows for the inclusion of randomness.
According to Keeling et al. [29], real world problems such
as diseases experience stochasticity in terms of opportunities
for transmission.
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