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Parameter estimation is a growing area of interest in statistical signal processing. Some parameters in real-life applications vary in
space as opposed to those that are static. Most common methods in estimating parameters involve solving an optimization
problem where the cost function is assembled variously, for example, maximum likelihood and maximum a posteriori
methods. However, these methods do not have exact solutions to most real-life problems. It is for this reason that Monte
Carlo methods are preferred. In this paper, we treat the estimation of parameters which vary with space. We use the
Metropolis-Hastings algorithm as a selection criterion for the maximum filter likelihood. Comparisons are made with the
use of joint estimation of both the spatially varying parameters and the state. We illustrate the procedures employed in
this paper by means of two hyperbolic SPDEs: the advection and the wave equation. The Metropolis-Hastings procedure
registers better estimates.

1. Introduction

Most state-space models are characterized by, among other
things, parameters—which can be constant or varying. A
parameter is comprehended and signified as a measurable
factor which defines a model and influences its operation.
As the parameter changes, so does the model; expressed
differently, a parameter is unique to a model it characterizes.
The choice of a certain model, therefore, is achieved by
choosing the right parameters. It occurs more often than
not—in hidden Markov models, for instance—that mea-
surements are available but the underlying signal is not
readily apparent. This forms an example where parameter
estimation is paramount: measurements are used to learn
the model parameters, which, in turn, are used to fit the
model.

Consider a signal and measurement equations, with a
spatially varying parameter signified by a d-dimensional
vector, θ,

Signal : dxt = f xt , θð Þdt + g xtð Þdβt ; t0 ≤ t, ð1aÞ

Measurement : dyt = h xt , θð Þdt + R1/2 tð Þdηt ; t0 ≤ t,
ð1bÞ

where the terms are as described in Table 1.
Parameter estimation problem concerns finding the

optimal parameter so that the signal best fits the data [1, 2].
This is, classically, achieved by an optimization procedure
where a cost function is minimized [3]. The cost function
mostly defines the discrepancy between the state and the
measurements. Intuitively, parameter estimation can be seen
as a procedure for seeking a parameter value that gives the
least discrepancy between the state and the corresponding
measurements (also known as the algebraic distance or the
residual). The method of least squares has been extensively
used to define an objective function. Given the increment
in measurement, dyt , of the state, xt , at time t, the objective
function, J ðθÞ, in the least-squares sense, is given by

J θð Þ =
ðt
t0

wt dyt − h xt , θð Þdtk k2, ð2Þ

where wt is the weighting function.
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Most commonly used procedures in the framework of
least squares include the following: linear least squares,
orthogonal least squares, gradient-weighted least squares,
and bias-corrected renormalization. This paper, however,
attends not to the study of least-squares approaches, they
being outside the scope of its design. Suffice it to only direct
the interested reader to the article [4] for an elaborate expla-
nation and application of least-squares methods in computer
vision. Instead, we study parameter estimation by means of
filtering. But before that, we mention a few merits and
demerits of least squares and other methods defined by
algebraic distances.

The use of algebraic distances in defining a cost function
is computationally efficient, and closed-form solutions are
possible. The end result, however, is not satisfactory. This
is due, in one part, to the fact that the objective function is
mostly not invariant with respect to Euclidean transforma-
tions, for example, translation. This limits the coordinate
systems to be used. In the other part, outliers may not con-
tribute to the parameters the same way as inliers [4]. Other
more satisfactory parameter estimation methodologies are
highly desired. We consider, in this paper, the use of Bayes-
ian inference techniques.

Estimation of parameters by means of a filter can be
achieved in a number of ways, one of them being the use
of the filter evidence, or its near approximation, and selec-
tion criteria for parameters which give a reasonable estimate
of the evidence. The second method involves updating the
parameters and the state at the same time. This is known
as dual estimation, which further subdivides into joint esti-
mation and a dual filter. Joint estimation entails subjoining
the vector of parameters to the state vector to form an
extended state-space. The filter is then implemented and
run forward in time with the hope of filter convergence to
the optimal state and parameter values. A dual filter, on
the other hand, involves implementing a filter for the state
and parameters simultaneously. The filter provides a self-
correcting mechanism which may lead to convergence of
state and parameter estimates.

The rest of this paper is arranged as follows. In the first
place, we introduce some notions on Bayesian inference of
parameters where we pass the limit in the mean in order
to move from a discrete setting to a continuum in time.
We introduce the different ways in which a filter can be used

for parameter estimation. In anticipation of application in
the later part of the paper, we introduce the stochastic advec-
tion and wave equation together with their spatial discretisa-
tion. We then illustrate how parameters are to be estimated
by means of a filter likelihood and the dual filters. Results
and discussions follow, and the conclusion forms the closing
part of this paper.

2. Bayesian Parameter Inference

In Bayesian inference of parameters, the parameters are
treated as a random variable. The parameter is assigned a
prior, πt0

ðθÞ, based on some initial belief. Let tn such that
tn+1 > tn∀n = 0, 1, 2,⋯N be a partition of the interval ½t0, T�
and let δt = tn+1 − tn. Bayes’ rule gives the joint posterior of
parameters and the states;

π t0,T½ � x, θjYTð Þ
≈ l:i:m:

δt⟶0
N⟶∞

πt0:tN
xt0:tN , θjyt0:tN
� �

= l:i:m:
δt⟶0
N⟶∞

πt0:tN
yt0:tN

���xt0:tN , θ� �
πt0:tN

xt0:tN
��θÀ Á

πt0
θð Þ

πt0:tN
yt0:tN

� � ,

ð3aÞ

where YT = y½t0,T�,

πt0:tN
yt0:tN

���xt0:tN , θ� �
=
YN
n=1

πtn
ytn

���xtn , θ� �
,

πt0:tN
xt0:tN

��θÀ Á
= πt0

xt0
��θÀ ÁYN

n=1
πtn

xtn
��xtn−1 , θÀ Á

:

ð3bÞ

Now to arrive at the marginal posterior of parameters, we
integrate out the states from the joint posterior of states and
parameters, Equation (3a):

πt0:tN
θjyt0:tN
� �

=
ð πt0:tN

yt0:tN

���xt0:tN , θ� �
πt0:tN

xt0:tN
��θÀ Á

πt0
θð Þ

πt0:tN
yt0:tN

� � dxt0:tN :

ð4Þ

It turns out that direct computation of the integral in (4) is
difficult, especially with the increase inmeasurements [2]. This
challenge is circumvented through the use of recursive
techniques which include the use of filters and smoothers,
maximum a posteriori (MAP) estimates, and drawing samples
from the posterior using Markov Chain Monte Carlo
(MCMC) methods.

Table 1: Terms, their descriptions, and dimensions.

Term Name Dimension

xt State vector n × 1
f xt , tð Þ Drift function n × 1
g xt , tð Þ Diffusion function n ×m

βt , t > t0f g Brownian motion process m × 1
yt Output vector r × 1
h xt , tð Þ Sensor function r × 1
R tð Þ Time-function matrix r × r

ηt , t > t0f g Standard Brownian motion process r × 1
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To use recursive methods, we begin with the following
parameter posterior

π θjYTð Þ ≈ l:i:m:
δt⟶0
N⟶∞

π θjyt0:tN
� �

∝ l:i:m:
δt⟶0
N⟶∞

πt0:tN
yt0:tN

���θ� �
πt0

θð Þ,

ð5aÞ

where

πt0:tN
yt0:tN

���θ� �
=
YN
n=1

πtn
ytn

���yt1:tn−1 , θ� �
=
YN
n=1

πtn
ytn

���xtn , θ� �
πtn

xtn
��yt1:tn−1 , θ� �

dxtn :

ð5bÞ

The state’s predictive distribution, πtn
ðxtn jyt1:tn−1 , θÞ, can

be computed recursively as follows [2]:

πtn
xtn
��yt1:tn−1 , θ� �

=
ð
πtn

xtn
��xtn−1 , θÀ Á

πtn−1
xtn−1

��yt1:tn−1 , θ� �
dxtn−1 :

ð6aÞ

Instead of working with the posterior, πðθjYTÞ, it is quite
convenient to use the negative log-posterior obtained by
expressing the posterior as follows:

π θjYTð Þ ≈ l:i:m:
δt⟶0
N⟶∞

π θjyt0:tN
� �

∝ l:i:m:
δt⟶0
N⟶∞

exp −ψT θð Þð Þ, ð7Þ

where the energy function, ψTðθÞ, is given by

ψT θð Þ = − log πt0:tN
yt0:tN

���θ� �� �
− log πt0

θð ÞÀ Á
: ð8Þ

The maximum a posteriori (MAP) estimate can then be
obtained by the mode of the posterior distribution or, equiv-
alently, the minimum of the energy function, the latter of
which is easier to compute; that is,

bθMAP = argmax
θ

π θjYTð Þ = argmin
θ

ψT θð Þ: ð9Þ

One demerit of the MAP estimate is that it yields a point
estimate of the parameter posterior and therefore ignores the
dispersion of the estimate. Setting the prior, πt0

ðθÞ, to be a
uniform density, (9) yields a maximum likelihood estimate.

3. Metropolis-Hastings Method

Metropolis-Hastings (named after Nicholas Constantine
Metropolis (1915-1999) and Wilfred Keith Hastings (1930-
2016)) [5] is a Markov Chain Monte Carlo sampling algo-
rithm with optimal convergence. It is premised on detailed
balance and ergodicity. Given a probability density, say
πðθÞ, from which it is difficult to sample (for instance, if the
said distribution is known to a normalization constant),

and given another distribution ρðθÞ, say from which it is easy
to sample, then detailed balance is the condition

π θkð Þρ θkjθk+1ð Þ = π θk+1ð Þρ θk+1jθkð Þ, ð10Þ

where ρðθkjθk+1Þ is a transition distribution. The detailed
balance condition is necessary for any random walk to
asymptotically converge to a stationary distribution. Ergodic-
ity is meant that there is a nonzero probability in moving
from a state to any other state in a Markov Chain.

The following algorithm summarises the Metropolis-
Hastings procedure.

4. Dual Estimation

Dual estimation comprehends simultaneous estimation of
state and parameters by means of an appropriate filter. The
self-correcting mechanism of the filter is taken advantage
of to converge to both the true state and the true parameters.
Depending on the initial parameter, the filter sooner or later
converges to the true parameter value. Dual estimation can
be achieved in two ways: joint estimation and by a dual
filter [6–8].

4.1. Joint Estimation (Augmented State-Space). In joint esti-
mation, the state vector is augmented with the vector of
parameters to form an extended state-space, and then, the
filter is run forward in time for an update of both the state
and the parameters. The parameters are induced with artifi-
cial dynamics or are made to assume a random walk; that is,
respectively,

dzt = ζt ; t0 ≤ t, ð11Þ

where

dzt =
dxt

dθt

 !
, ζt =

f xt , θð Þdt + g xtð Þdβt

0

 !
, ð12aÞ

or where

ζt =
f xt , θð Þdt + g xtð Þdβt

σdχt

 !
, ð12bÞ

in which fχt , t > t0g is a d-dimensional standard Brownian
motion vector process and σ is a small constant. A filter is
then implemented with the augmented state zt in the place
of xt . The demerit of this method is that the extended
state-space has an increased degree of freedom owing to
many unknowns, of both the state and the parameters,
which renders the filter unstable and intractable, especially
in nonlinear models [8].

4.2. Dual Filter. Dual filtering of the state and parameters is
attained by use of two filters, one for state update and
another for updating parameters, both run simultaneously.
The two filters interact symbiotically in that one provides
the update of the state to be used by the other, whilst the
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other provides an update of the parameters to be used by the
former. A very good example in literature is the dual
extended Kalman filter [9] used for estimating neural net-
work models and the weights. In this case, the state is the
model signal and the weights are parameters. Another exam-
ple appears in [10] where a dual filter comprising the ensem-
ble transform particle filter (ETPF) and the feedback particle
filter (FPF) is used for simultaneous estimation of the state
of a wave equation and its speed.

The model for the dual filter of our consideration com-
prises a d-dimensional vector equation of artificial dynamics
of parameters together with the state-space model, Equa-
tions (1a) and (1b):

Parameter : dθt = 0, t0 ≤ t, ð13aÞ

Signal : dxt = f xt , θtð Þdt + g xtð Þdβt , t0 ≤ t, ð13bÞ

Measurement : dyt = h xtð Þdt + R1/2 tð Þdηt , t0 ≤ t, ð13cÞ

where the nomenclature and dimensions remain as stipu-
lated for Equations (1a) and (1b).

In the following, we introduce the equations to which
we shall apply dual filters in estimating spatially varying
parameters.

5. Application Equations

5.1. Advection Equation. We take up an advection equation,
excited with the space-time white noise process, with some
diffusion term added to it, and on a periodic spatial domain
of length L, which we write as follows:

∂u
∂t

= ∂ C xð Þuð Þ
∂x

+ μ
∂2u
∂x2

+ σ _βx,t , 0 ≤ t ≤ Tt × 0 ≤ x ≤ L, ð14Þ

where CðxÞ is a spatially varying velocity (of which constant
velocity is a special case), σ is a constant, and uðx, tÞ is the
function to be obtained, whose function describes the state
of the signal. μ is a constant whilst _βx,t is the space-time
white noise process where the dot denotes the singularity
of the noise process.

Equation (14) needs a remark owing to the roughness of
the stochastic-forcing term _βx,t , which is a mixed distribu-
tional derivative of the Brownian sheet. As is well known
(see [11] for details), the Brownian sheet is nowhere differ-
entiable. We, however, use the method introduced in [12];
that is, we approximate the noise term as follows. Let the
domain 0 ≤ t ≤ Tt × 0 ≤ x ≤ L be tessellated into rectangles
½tn, tn+1� × ½xi, xi+1� of dimensions δt × δx each, for n = 1, 2,
3,⋯, T and i = 1, 2, 3,⋯,N so that δt = Tt/T and δx = L/N .
Then,

_βx,t ≈
1

δxδt
〠
N

i=1
〠
T

n=1
ωi,n δxδtð Þ1/2χi xð Þχn tð Þ, ð15Þ

where fωi,ngNi=1 are independent and identically distributed
random variables of mean 0 and unit variance. χiðxÞ and
χnðtÞ are characteristic functions and are given by

χn tð Þ =
1, if tn ≤ t ≤ tn+1,
0, otherwise,

(

χi xð Þ =
1, if xi ≤ x ≤ xi+1,
0, otherwise:

( ð16Þ

By a three-point upwind scheme in space [13], we discre-
tise (14) and arrive at the following:

dui
dt

≈
3Ciui − 4Ci−1ui−1 + Ci−2ui−2

2δx
+ μ

3ui+2 − 16ui+1 + 26ui − 16ui−1 + 3ui−2
4δx2 + σ

1ffiffiffiffiffi
δx

p _ωi,

ð17Þ

where δx is the spatial step size and fωi,t , t > t0g is the stan-
dard Brownian motion process. The ith grid point is repre-
sented by xi = iδx. With this notation, ui,n is understood to
mean the value of u at the ith grid point at time tn.

Time discretisation, by means of the Euler-Maruyama
scheme, leads to

ui,tn+1 = ui,tn +
3Ciui,tn − 4Ci−1ui−1,tn + Ci−2ui−2,tn

2δx δt

+ μ
3ui+2,tn − 16ui+1,tn + 26ui,tn − 16ui−1,tn + 3ui−2,tn

4δx2 δt

+ σ
δt1/2ffiffiffiffiffi
δx

p ωi,tn ,

ð18Þ

where ωi,tn is a random variable of mean 0 and variance 1.
The time increment, δt > 0, is such that the limit of δui as
δt⟶ 0 is dui. Furthermore, n = 1, 2, 3,⋯, T . We use the
following initial value.

u x, t0ð Þ = sin xð Þ: ð19Þ

Moreover, CðxÞ = eλðxÞ where

λ xð Þ = sin 2πxð Þ: ð20Þ

Considering every grid point in (18) leads to a vector
representation of the signal u. To do so requires the follow-
ing shorthand for operations:

D1uð Þi ≔
3ui − 4ui−1 + ui−2

2δx , ∀i = 1, 2, 3,⋯,N , ð21Þ

DT
1 u

À Á
i
≔

ui+2 − 4ui+1 + 3ui
2δx , ∀i = 1, 2, 3,⋯,N , ð22Þ
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so that

D1D
T
1 u

À Á
i
≔

3ui+2 − 12ui+1 + 9ui
4δx2 + −4ui+1 + 16ui − 12ui−1

4δx2

+ ui − 4ui−1 + 3ui−2
4δx2

= 3ui+2 − 16ui+1 + 26ui − 16ui−1 + 3ui−2
4δx2 , ∀i = 1, 2, 3,⋯,N:

ð23Þ

We finally have

utn+1 = utn + F tnð Þutnδt +G tnð Þωtn
, ð24Þ

where utn is an N-dimensional column vector at time tn
comprising of elements ui,tn , i = 1, 2, 3,⋯,N , and

F tnð Þ = D1Cdiag − μD1D
T
1

Â Ã
,G tnð Þ = σ

δt1/2ffiffiffiffiffi
δx

p IN×N

� �
,

ð25Þ

in which Cdiag is a diagonal matrix made of the elements of C
and IN×N is the Nth-order identity matrix.

The surface and contour plots for the stochastic advec-
tion equation are shown below, that is, when σ = 0:1. The
ruggedness evident in Figure 1 is consequent upon the addi-
tion of noise to the underlying dynamics.

In the next subsection, we introduce the wave equation.

5.2. Wave Equation. The wave equation—for our considera-
tion—is given by

∂2u
∂t2

= ∂ C xð Þ∂u/∂xð Þ
∂x

+ μ
∂3u
∂x2∂t

+ σ _βx,t ,  0 ≤ t ≤ Tt × 0 ≤ x ≤ L,

ð26Þ

where CðxÞ = eλðxÞ is the wave velocity and is for a wave
travelling in a heterogeneous medium and uðx, tÞ is the
function to be obtained, whose function, as in the previous
subsection, describes the state of the signal. Moreover, σ is
a constant and _βx,t , as before, is the space-time white noise.

We employ mixed difference schemes to discretise (26)
in space, so that we have

dui
dt

≈ pi, ð27aÞ

dpi
dt

≈
Ci+1wi+1 − Ciwi

δx
+ μ

pi+1 − 2pi + pi−1
δx2

+ 1ffiffiffiffiffi
δx

p _ωi,

ð27bÞ
where wi ≔ ðui − ui−1Þ/δx and δx is the spatial step size. For
time integration, we use Verlet’s method, because of its
geometric properties, namely, volume preservation, sym-
plecticity, conservation of first integrals, and reversibility

[14, 15]—whose method, applied to the deterministic part
of Equations (27a) and (27b), yields

ui,tn+1 = ui,tn + pi,tn+1/2δt, ð28aÞ

pi,tn+1/2 = pi,tn +
Ci+1wi+1,tn − Ciwi,tn

δx
δt
2

+ μ
pi+1,tn − 2pi,tn + pi−1,tn

δx2
δt
2 ,

ð28bÞ

pi,tn+1 = pi,tn+1/2 +
Ci+1wi+1,tn+1 − Ciwi,tn+1

δx
δt
2

+ μ
pi+1,tn+1 − 2pi,tn+1 + pi−1,tn+1

δx2
δt
2 + σ

δt1/2ffiffiffiffiffi
δx

p ωi,tn ,

ð28cÞ
where δt is the time step and wi,tn ≔ ðui,tn − ui−1,tnÞ/δx.
Substituting Equation (28b) into Equations (28a) and (28c),
we get

ui,tn+1 = ui,tn + pi,tn +
Ci+1wi+1,tn − Ciwi,tn

δx
δt
2

+ μ
pi+1,tn − 2pi,tn + pi−1,tn

δx2
δt
2 ,

ð29aÞ

pi,tn+1 = pi,tn +
Ci+1wi+1,tn − Ciwi,tn

δx
δt
2

+ μ
pi+1,tn − 2pi,tn + pi−1,tn

δx2
δt
2

+
Ci+1wi+1,tn+1 − Ciwi,tn+1

δx
δt
2

+ μ
pi+1,tn+1 − 2pi,tn+1 + pi−1,tn+1

δx2
δt
2 + σ

δt1/2ffiffiffiffiffi
δx

p ωi,tn :

ð29bÞ
We use the following initial values:

u x, 0ð Þ = exp −4 x − 0:5Lð Þ:2À Á
, ð30aÞ

p x, 0ð Þ = 0, ð30bÞ

where L is the length of the domain. Now, CðxÞ = eλðxÞ where

λ xð Þ = sin xð Þ: ð31Þ

Considering every grid point leads to a vector representa-
tion of the signal u. We use the following shorthand:

D2uð Þi ≔
ui − ui−1

δx
, ∀i = 1, 2, 3,⋯,N: ð32Þ

Equations (29a) and (29b) then become

utn+1
= utn

+ Ftnutn
+G tnð Þωtn

, ð33Þ
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Solution: advection equation
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Figure 1: Contour and surface plots for a single realisation of the stochastic advection equation under the following setting: L = 2π, N = 100,
δx = L/N , δt = 0:007, T = 1000, σ = 0:1, μ = 0:01, CðxÞ = eλðxÞ where λðxÞ = sin ð2πxÞ, and ut0 = sin ðxÞ.
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where

F tnð Þ = −I2N×2N

+
IN×N −

δt2

2 D2 Cdiag xð ÞDT
2

À
δtIN×N −

δt2

2 μD2D
T
2

−
δt
2 D2 Cdiag xð ÞDT

2
À

IN×N −
δt
2 μD2D

T
2

26664
37775

×
IN×N 0N×N

δt
2 D2 Cdiag xð ÞDT

2
À Á

IN×N −
δt
2 μD2D

T
2

264
375
−1

,

u =
p

u

 !
,G tnð Þ =

0N×N 0N×N

0N×N σ
δt1/2ffiffiffiffiffi
δx

p IN×N

264
375, ω =

ω

ω

 !
,

ð34Þ

where I2N×2N is the identity matrix of order 2N whilst 0N×N is
an Nth-order null matrix. 0N is an Nth-dimensional null
vector. FðtnÞ ∈ℝ2N×2N , GðtnÞ ∈ℝ2N×2N , and ω ∈ℝN .

The contour and surface plots for a single realisation of
stochastic wave equation are in Figure 2.

For the purpose of estimating the speed of the wave,
which varies spatially, we give a little prelude to estimation
of spatially varying parameters in the next section.

6. Estimating Spatially Varying Parameters

Varying parameters exist naturally, an example being in the
speed of a wave moving in a heterogeneous media. Varying
parameters present a challenge owing to their varying nature
as opposed to static (in time) parameters. There are three
broad categories of varying parameters: spatially varying
parameters, parameters that vary with time, and parameters
that vary with both time and space. Estimation of time-
varying parameters, albeit for deterministic models, and
application to estimation of parameters in a HIV/AIDS
model, appears in [16]—in which least-squares methods
have been used. Although consistent estimates are realised,
extension to nonlinear models remains to be realised. In this
chapter, we study spatially varying parameters using filtering
algorithms. We also provide applications in order to evaluate
the performance of the algorithms introduced here.

The strategy employed in this study comprises of three
steps:

(1) Express the parameter θðxÞ as a Fourier series with a
given number of modes, say, Nm and collect all the
coefficients in a vector λ

(2) By means of an appropriate filtering algorithm, esti-
mate the vector of hyperparameters, λ

(3) Substitute the estimated constant coefficients back in
the Fourier series to obtain an estimate of the param-
eter θðxÞ

To illustrate this method, we employ it to estimate the
velocity of a wave travelling in a heterogeneous media. Let

the parameter, CðxÞ, x ∈ℝN , where N is the number of
dimensions, be given by

C xð Þ = exp f xð Þð Þ, ð35Þ

where

f xð Þ = a0 + 〠
Nm

k=1

ak
k2

sin kxð Þ

+ 〠
Nm

k=1

bk
k2

cos kxð Þ,  k = 1, 2, 3,⋯,Nm,
ð36Þ

where the coefficients a0, ak, and bk are drawn randomly
from a normal distribution of mean 0 and variance 1. This
way, the parameter CðxÞ will be positive for all values of x.
The aim of this section is to obtain an estimate CðxÞest of
the wave velocity CðxÞ by means of the Kalman-Bucy filter
(KBF) and ensemble Kalman-Bucy filter (EnKBF) [17]. To
this end, we use a function

g xð Þ = A0 + 〠
ℵm

k=1

Ak

k2
sin kxð Þ

+ 〠
ℵm

k=1

Bk

k2
cos kxð Þ,  k = 1, 2, 3,⋯,ℵm,

ð37Þ

where ℵm ≤Nm so that

C xð Þest = exp g xð Þð Þ: ð38Þ

Let λ ∈ℝ2ℵm+1 be a vector whose elements are the
coefficients of the function gðxÞ. That is,

λ =

A0

A1

B1

A2

B2

⋮

Aℵm

Bℵm

0BBBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCCA

: ð39Þ

Estimation of the spatially varying parameter, CðxÞ, is
equivalent to estimating the parameters that form the vector
λ. We consider two methods: using the likelihood with the
Metropolis-Hastings method and using a dual filter. Let us
now consider each method in turn.

7Journal of Applied Mathematics



7. Using the Likelihood with
Metropolis-Hastings Method

We now adapt Algorithm 1 to estimating the vector of
parameters, λ. We let each parameter λi have artificial
dynamics with the transition density

ζk+1 λi,k+1
��λi,kÀ Á

=N λi,k cos ϕð Þ, ω
ℵ

sin ϕð Þ
� �

, ð40Þ

where ℵ is the mode number and the constants ϕ and ω are
to be chosen. The density π is defined by the filter likelihood,

π δy t0,T½ �
���~u t0,T½ �, λk

� �
= l:i:m:

δt⟶0
N⟶∞

πt0:tN
δyt0:tN

���~ut0:tN , λk� �
, ð41Þ

where ~utn is the filter prediction of the state at time tn. Notice
that the parameters, λ, are implicitly contained in the
dynamics.

Solution: wave equation
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Figure 2: Plots for a single realisation of the stochastic wave equation. The settings are L = 2π, N = 100, δx = L/N , δt = 0:005, and T = 1000,
μ = 0:01, σ = 0:2, CðxÞ = eλðxÞ where λðxÞ = sin ðxÞ, and ut0 = exp ð−4ðx − 0:5LÞ:2Þ.
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Example 1. Advection equation.
We take the advection equation, of Section 5.1, and the

given initial conditions. Furthermore, let there be time-
continuous measurements of the state, u, given by

dyt =H tð Þu x, tð Þdt +Q tð Þdηx,t , ð42Þ

where fηt,xg is the standard space-time Brownian motion
process. The initial values of ut , fβtg, and fηt,xg are uncor-
related. The aim is to estimate the spatially varying velocity,
CðxÞ, by means of filter likelihood and the Metropolis-
Hastings algorithm.

We follow the discretisation described in Section 5.1 for
the advection equation.

The measurements’ equation, (42), is discretised in time
using the Euler-Maruyama scheme to yield

δytn =H tnð Þu x, tnð Þδt + R1/2 tnð Þδηtn , ð43Þ

upon substituting R =QQT /δx and where E½δηtnδηTtn � =
Ir×rδt. The observation likelihood pdf for the KBF is Gauss-
ian since the initial condition and the observation errors are
Gaussian. So is the posterior pdf. With observation incre-

ments expressed as in (43), the observation increment likeli-
hood pdf is

π δyt0:tN

���~utN , λk� �
∝
YN
n=0

exp −
1
2 δytn −H tnð Þ~utnδt
 2

δtR tnð Þ

� �
:

ð44Þ

Similarly, the filter forecast pdf is

π utN
��δytN−1:t0

� �
∝
YN
n=0

exp −
1
2 utn − ~utn
 2

Ptn

� �
: ð45Þ

The next step is to implement a KBF and EnKBF and to
obtain the likelihood at each time step. This is followed by
implementing a Metropolis-Hastings algorithm.

The same is repeated but with EnKBF in the place of
KBF. Algorithm 3 is the pseudocode showing the basic steps.

Results for the first 2 parameters are shown in Figure 3.
The results in Figure 3 show that the EnKBF performs like
the KBF filter. This agrees with the theory (see, for example,
[17]) that the EnKBF yields optimal results in the limit
M⟶∞. It is also noteworthy that the Metropolis-
Hastings algorithm converges to the true parameter esti-
mate. This can be seen in Figure 3(a), for example, where

1: Draw eθ from ρðeθjθkÞ
2: Set θk+1 ⟵ eθ with probability α =min ð1, ðπðeθÞρðθkjeθÞ/πðθkÞρðeθjθkÞÞÞ
3: Otherwise, set θk+1 ⟵ θk

Algorithm 1: Metropolis-Hastings.

Require: δt, ℵm, N , ut0 , πtn
, and λk.

Ensure: fλkgTk=1.
1: for k = 1 to N do
2: Draw ~λ ~N ðλi,k cos ðϕÞ, ðω/ℵmÞ sin ðϕÞÞ ∀i = 1, 2,⋯, 2ℵm + 1.
3: Compute CkðxÞ = exp ðgðx, λkÞÞ.
4: for n = 1 to T , δt > 0 do
5: Run a single-step KBF prediction mean ~utn+1 = utn + Fðtn, λkÞutnδt
6: Run a single-step KBF prediction covariance ~Ptn+1

= Ptn
+ Fðtn, λkÞPtn

δt + Ptn
FTðtn, λkÞδt + GðtnÞGTðtnÞδt

7: Run a single-step KBF analysis mean utn+1 = ~utn+1 + Ptn
HTðtnÞR−1ðtnÞðdytn −Hðtn, λkÞ~utnδtÞ

8: Run a single-step KBF analysis covariance Ptn+1
= ~Ptn+1

+ GðtnÞGTðtnÞδt − ~Ptn
HTðtnÞR−1ðtnÞHðtnÞPtn

δt
9: end for
10: Metropolis-Hastings
11: Compute αratio = ðπðδytN :t0 j~utN , λkÞ/πðδytN :t0 j~utN , λk−1ÞÞðρλð~λÞ/ρλðλkÞÞ
12: Compute α =min ð1, αratioÞ
13: if α >Uð0, 1Þ then
14: ~λ = λk
15: else
16: λk = ~λ
17: end if
18: end for

Algorithm 2: KBF likelihood with MH.
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the filter estimate converges after about 100 parameter
draws.

We now look at the errors in the parameter estimates,
the better to see the performance of the filters for the 21
hyperparameters.

Figure 4(b) plots the boxplots showing the dispersion of
parameter estimates resulting from the use of EnKBF and
the root mean square errors for parameter estimates for
both the EnKBF and KBF. The RMSE values are computed
as follows.

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
〠
N

k=1
λi,k − λtruei

À Á2vuut , ð46Þ

where λi,k is the estimate of the ith parameter at the
Metropolis-Hastings cycle k and λtruei is the trueith
parameter.

The RMSE for both the KBF and EnKBF, as shown in
Figure 4(b), indicate that the performance of EnKBF
matches that of the KBF for the 21 parameters. These heuris-
tic results corroborate the theoretical findings. The boxplot,
Figure 4(a), shows the dispersion of parameter samples in
the case when EnKBF is used. The result indicates that the
estimates match the true parameter values, with not so many
outliers. This is indicative of the performance of not only
EnKBF but also the Metropolis-Hastings procedure in locat-
ing the true parameter values and ensuring that no large
excursions are made from the true parameter values.

We now implement Algorithms 2 and 3 for the discre-
tised wave equation, (33).

Example 2. Wave equation.
We take the wave equation of Section 5.2 and the

associated initial conditions, Equations (30a) and (30b).
The measurements are given by (42). The initial values of
ut , fβtg, and fηtg are uncorrelated. The aim is to estimate
the spatially varying velocity, CðxÞ, by means of filter likeli-
hood and the Metropolis-Hastings algorithm.

The discretisation of the wave equation is as shown in
Section 5.2. Figures 5(a) and 5(b) show the results.

The results in Figure 5 indicate a close match in the
performance of the EnKBF and KBF. This is as was antici-
pated in the theoretical findings, some of which are found
in [17]. Notice also that the two filters converge to the true
parameter values after a few parameter draws (about 50 in
Figure 5(a) and 100 in Figure 5(b))—which is indicative of
the robustness of the Metropolis-Hastings algorithm atop
the EnKBF and KBF filters. The results also show that there
are no wide excursions from the true parameter values,
which testifies to the good performance of Algorithms 2
and 3.

In Figure 6 are plotted the boxplots showing the disper-
sion of the 21 hyperparameter estimates resulting from the
use of EnKBF and the root mean square errors for parameter
estimates for both the EnKBF and KBF.

The EnKBF elicits an optimal performance as can be
seen in Figure 6(b) where the RMSEs for both the EnKBF

Require: δt, ℵm, M, N , fuit0g
M

i=1, πtn
, and λ0.

Ensure: fλkgTk=1.
1: for k = 1 to N do
2: Draw ~λ ~N ðλi,k cos ðϕÞ, ðω/ℵmÞ sin ðϕÞÞ ∀i = 1, 2,⋯, 2ℵm + 1.
3: Compute CkðxÞ = exp ðgðx, λkÞÞ.
4: for n = 1 to T , δt > 0 do
5: for i = 1 to M do
6: Run a single-step EnKBF prediction ensemble ~uitn+1 = uitn + Fðtn, λkÞuitnδt
7: Run a single-step EnKBF analysis ensemble uitn+1 = ~uitn+1 + Ptn

HTðtnÞR−1ðtnÞðdytn + εi −HðtnÞ~uitnδtÞ
8: end for
9: Compute prediction ensemble mean: �utn = 1/M∑M

i=1~u
i
tn
.

10: Compute analysis ensemble mean: ûtn = 1/M∑M
i=1u

i
tn
.

11: Compute covariance: Ptn
= 1/M − 1∑M

i=1ðuitn − ûtnÞðuitn − ûtnÞ
T .

12: end for
13: Metropolis-Hastings
14: Compute αratio = ðπðδytN :t0 j�utN , λkÞ/πðδytN :t0 j�utN , λk−1ÞÞðρλð~λÞ/ρλðλkÞÞ
15: Compute α =min ð1, αratioÞ
16: if α >Uð0, 1Þ then
17: ~λ = λk
18: else
19: λk = ~λ
20: end if
21: end for

Algorithm 3: EnKBF likelihood with MH.
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and the optimal filter (KBF) match for all the 21 hyperpara-
meters. This also, as in the advection equation above, is in
agreement with the theoretical findings that the EnKBF

attains an optimal estimate in the limit M⟶∞. The box-
plot, Figure 6(a), shows that the mean of EnKBF parameter
estimates matches the true parameter values. What is more,
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Figure 3: Plots for velocity parameters for the first three parameters in λ obtained using KBF and EnKBF and run for 1000 time steps and
for 1000 Metropolis-Hastings cycles. The number of particles used for EnKBF isM = 1000, the time step size used in both filters is dt = 0:01,
μ = 0:001, and 100 grid points are used. The plots indicate that the estimates, for both filters, converge after about 100 iterations.
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there are not many outliers in the estimates. All these show
that the EnKBF-Metropolis-Hastings algorithm is robust.

In the next section, we apply the concepts on dual esti-
mation to stochastic hyperbolic PDEs, which, in this case,
are the advection and the wave equations.

8. Simultaneous Estimation of the State and
Spatially Varying Parameters

The dual filter (see Section 4.2 for details) can be adapted to
allow for estimating both the state and spatially varying

True parameter values
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Figure 4: (a) Boxplot for the 21 velocity parameters for the EnKBF run for 1000 time steps with 1000Metropolis-Hastings cycles. A burn-in
of 500 parameter draws is discarded. The stochastic advection equation model is used with the following settings: L = 2π, 100 grid points,
δt = 0:01, M = 1000 particles, μ = 0:001, and localization radius of 10 grid points. (b) A plot of the root mean square error for the 21
hyperparameter estimates obtained using EnKBF and KBF. The plot indicates that the performance of EnKBF matches that of KBF in
this setting.
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parameters, contemporaneously. The idea here is to
replace the parameters in the dual filter with hyperpara-
meters of the varying parameters to be approximated.
The hyperparameters are then updated simultaneously

and in parallel, with the state at each iteration, where
one filter estimates the state and the other filter updates
the hyperparameters—with each filter making use of the
outcome of the other. To illustrate this argument, we turn
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Figure 5: Plots for velocity parameters for the first three parameters in λ obtained using KBF and EnKBF and run for 1000 time steps and
1000 Metropolis-Hastings cycles. The number of particles used for EnKBF is M = 1000, the time step size used in both filters is dt = 0:01,
μ = 0:001, and 100 grid points are used. The plots indicate that the estimates, for both filters, converge after about 100 iterations.
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to the advection and wave equation described in Examples
1 and 2, respectively, and use the KBF-EnKBF dual fil-
ter—in which the state is propagated and updated by
means of the KBF whilst the hyperparameters are updated

using EnKBF—and ENKBF dual filter—where both the
state and the hyperparameters are propagated and updated
using two EnKBFs running in parallel. The spatially vary-
ing velocity is as shown in Section 6.
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Figure 6: (a) Boxplot for velocity parameters for the EnKBF run for 1000 time steps and 1000Metropolis-Hastings cycles. A burn-in of 500
parameter draws is discarded. The stochastic wave equation model is used with the following settings: L = 2π, 100 grid points, δt = 0:01,
M = 1000 particles, μ = 0:001, and localization radius of 10 grid points. (b) A plot of the root mean square error for the parameter
estimates obtained using EnKBF and KBF. The plot indicates that the performance of EnKBF matches that of KBF in this setting.
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In the KBF-EnKBF dual filter, we update, for every jth

parameter particle λj
t ∈ fλj

tg
L
j=1, the state estimate, ûj

t , using
the KBF; that is,

dûj
t = F tð Þûj

tdt + PtH
T tð ÞR−1 tð Þ dyt −H tð Þûj

tdt
� �

, ð47aÞ

dPt = F tð ÞPtdt + PtF
T tð Þdt +G tð ÞGT tð Þdt

− PtH
T tð ÞR−1 tð ÞH tð ÞPtdt:

ð47bÞ

The parameters are updated using the EnKBF; that is,
each parameter hypothesis, λj

t , is updated using

dλj
t =DL

t H tð ÞR−1 tð Þ dyt − 0:5 H tð Þx̂ jt +H tð Þx̂t
� �

dt
� �

; t0 ≤ t,

ð48Þ

where

bλ t =
1
L
〠
L

j=1
λj
t ; t0 ≤ t, ð49aÞ

DL
t =

1
L − 1〠

L

i=1
λj
t − bλ t

� �
ûj
t − ût

� �T
; t0 ≤ t, ð49bÞ

where

ûj
t =

1
M

〠
M

i=1
ui,jt , ð49cÞ

ût =
1
L
〠
L

i=1
ûj
t: ð49dÞ

Algorithm 4 gives a summary of the KBF-EnKBF dual
filter.

The EnKBF dual filter consists of an update of M parti-

cles of the state, ui,jt ∈ fui,jt g
M,L
i,j=1, for every parameter particle,

λj
t ∈ fλj

tg
L
j=1, using the EnKBF; that is,

dui,jt = F tð Þui,jt dt +G tð Þdβi,j
t

+ PM
t H

T tð ÞR−1 tð Þ dyt + R1/2 tð Þηi,jt −H tð Þui,jt dt
� �

,

ð50Þ

Require: uj
t0
, λj

t0
, wj

t0
= ð1/LÞ ∀j ∈ f1, 2,⋯, Lg, Pt0

, and δy½t0,tT �.

Ensure: û½t0,tN �,
bλ ½t0,tN �.

1: for n = 1 to N , δt > 0 do
2: for j = 1 to L do

3: Update ûj
tn
using Equations (47a) and (47b)

4: Update parameters λj
tn
using (48)

5: end for

6: Compute bλ tn
= 1/L∑L

j=1λ
j
tn

7: Compute ûtn = 1/L∑L
i=1û

j
tn

8: end for

Algorithm 4: KBF-EnKBF dual filter.

Require: ui,jt0 , λ
j
t0
, wj

t0
= ð1/LÞ ∀i ∈ f1, 2,⋯,Mg j ∈ f1, 2,⋯, Lg, Pt0

, and δy½t0,tT �.

Ensure: û½t0,tN �,
bλ ½t0,tN �.

1: for n = 1 to N , δt > 0 do
2: for j = 1 to L do
3: for i = 1 to M do

4: Calculate ui,jtn using (50)
5: end for

6: Update ûj
tn
using Equation (49c)

7: Update parameters λj
tn
using (48)

8: end for

9: Compute bλ tn
= 1/L∑L

j=1λ
j
tn

10: Compute ûtn = 1/L∑L
i=1û

j
tn

11: end for

Algorithm 5: EnKBF dual filter.
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where fηi,jt , t0 ≤ tg and fβi,j
t , t0 ≤ tg are standard Brownian

motion vector processes. The parameters are updated using

the EnKBF given by (48). The summary of the EnKBF dual

filter is given in Algorithm 5.

Figures 7(a) and 7(b) show the results for the first two
parameters in (39) when the dual filters are applied to the
advection equation.

Evidently, from Figure 7, the performance of the EnKBF
and KBF-EnKBF dual filters almost matches. Both filters
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Figure 7: (a, b) are plots for velocity parameters for the first two parameters in λ obtained using KBF-EnKBF and EnKBF dual filters,
applied to the advection equation, both run for 1000 time steps. The number of particles, for the state and hyperparameters, used in
EnKBF is M = 1000 and L = 1000; the time step size used in both filters is dt = 0:01. μ = 0:001 and 100 grid points are used. Compared to
the results obtained using the Metropolis-Hastings algorithm (Section 7), the dual filters register a better performance, at least in this example.

16 Journal of Applied Mathematics



converge to the true estimate after a few iterations (about
100 in Figure 7(a)). This is another testament to the fact that
EnKBF attains optimal estimates at high ensemble values.
Moreover, both the EnKBF and KBF-EnKBF parameter
estimates are not much spread as compared to the previ-
ous case where Metropolis-Hastings was used. This is

more evident in the following results for the 21 hyperpara-
meters estimated.

In the following panels are plotted the root mean
square errors for parameter estimates for both the EnKBF
and KBF-EnKBF dual filters and the boxplots showing
the dispersion of parameter estimates resulting from the
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Figure 8: (a, b) are, respectively, the boxplots showing the distribution of hyperparameter estimates of the EnKBF dual filter, applied to the
advection equation, after a burn-in of 500 iterations and the plots of the root mean square error for the hyperparameter estimates obtained
using KBF-EnKBF and EnKBF (with different ensemble sizes) dual filters.
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use of the EnKBF dual filter applied to the advection
equation.

That the boxplots of EnKBF dual filter parameter esti-
mates have short whiskers (see Figure 8(a)) and few outliers
and that the estimates match the true parameter values indi-
cate that the EnKBF dual filter is robust in this setting. The

EnKBF dual filter registers a slight variation in RMSE from
the KBF-EnKBF dual filter. This indicates that the EnKBF,
in this setting, performs optimally.

We now repeat the same procedure but with the wave
equation described in Section 5.2 in place of the advection
equation. The following panels show the results. The results
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Figure 9: (a, b) are plots for velocity parameters for the first two parameters in λ obtained using KBF-EnKBF and EnKBF dual filters,
applied to the wave equation (Example 2), with both filters run for 1000 time steps. The number of particles, for the state and
hyperparameters, used in the EnKBF filter is M = 1000; the time step size used in both filters is dt = 0:01. μ = 0:001 and 100 grid points
are used. Compared to the results obtained using the Metropolis-Hastings algorithm (Section 7), the dual filters register a dismal
performance, at least in this example.
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shown in Figure 9 are indicative of a dismal performance
of the two dual filters—KBF-EnKBF and EnKBF dual fil-
ters—when applied to the wave equation as compared to
the results obtained when the dual filters are applied to
the advection equation (see Figure 7). We note that the
wave equation is partially observed; that is, onlyuis
observed in the discretised wave equation, (33), whereas
the advection equation is fully observed. Furthermore,
the number of unknowns in the state-parameter system
of the wave equation is 300 whilst that in the advection
equation is 200. These account for the dismal performance

of the KBF-EnKBF and EnKBF dual filters when applied
to the wave equation.

In Figure 10 are plotted the root mean square errors for
parameter estimates for both the EnKBF and KBF and the
boxplots showing the dispersion of parameter estimates
resulting from the use of EnKBF.

9. Conclusions

We have considered a special case of parameter estimation
where the parameter to be estimated is spatially varying.
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Figure 10: (a, b) are, respectively, the boxplots showing the distribution of the 21 hyperparameter estimates of the EnKBF dual filter after a
burn-in of 500 iterations and plots of the root mean square error for the hyperparameter estimates obtained using KBF-EnKBF and EnKBF
(with different ensemble sizes) dual filters, applied to the wave equation (Example 2).
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Such a case arises, for example, in the velocity of a wave trav-
elling through an inhomogeneous media. We proposed and
studied two approaches: the use of filter likelihood and the
Metropolis-Hastings procedure and joint estimation of state
and parameters. The parameter is expressed as a Fourier
series with constant coefficients. The coefficients are approx-
imated and then substituted back to the Fourier series to
obtain an approximation of the velocity. The Kalman-Bucy
filter and the ensemble Kalman-Bucy filter are used. The
filter likelihood with the Metropolis-Hastings procedure reg-
isters a better performance compared to the joint estimation
procedure in both advection and wave equations. From the
foregoing, Metropolis-Hastings with the filter evidence per-
forms well in estimation of parameters compared to the dual
filters—especially when the number of unknowns is large.
This is indicative of the robustness of the Metropolis-
Hastings algorithm in searching, and remaining in, the high
probability region of the state-space.
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