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In order to consider the influence of liquid phase and soil anisotropy, the soil around the pile is considered a transversely isotropic
saturated porous medium, and a horizontal dynamic model of transversely isotropic saturated soil-pile is established. Based on
Beor’s saturated porous medium theory and the constitutive equation of transversely isotropic media, the horizontal dynamic
control equation of transversely isotropic saturated soil is obtained without considering the vertical displacement. The
horizontal vibration of transversely isotropic soil layers was solved using the potential function and separation of the variable
method, and the horizontal and radial displacements of the solid soil skeleton of transversely isotropic saturated soil were
obtained. The horizontal force of transversely isotropic saturated soil on a single pile was also obtained. On this basis, the
horizontal dynamic equation of a single pile in transversely isotropic saturated soil was established, and the horizontal
vibration of the pile foundation was solved using the initial parameter method, and the horizontal dynamic impedance of a
single pile in transversely isotropic saturated soil is obtained. The influence of soil anisotropy parameter, liquid-solid coupling
coefficient, diameter-length ratio, and modulus ratio on the horizontal dynamic impedance of a single pile in transversely
isotropic saturated soil was analyzed through numerical examples. The analysis results show that the anisotropy parameters δ1,
diameter-length ratio r0/H, and modulus ratio Ep/C66 have a significant impact on the horizontal dynamic impedance of pile
foundation in transversely isotropic saturated soil, and the influence of anisotropy on the horizontal vibration of pile
foundation should not be ignored. The influence of the liquid-solid coupling coefficient on the horizontal dynamic impedance
factor is related to frequency to a certain extent.

1. Introduction

Since the study of pile foundation vibration is critical to the
safety and stability of pile foundation and whole building
structure, the study of pile foundation dynamic characteris-
tics has not stopped since the 1960s. Due to the significant
influence of the properties of the soil around the pile on
the dynamic interaction between the pile and soil, studying
the dynamic characteristics of pile foundations under vari-
ous complex geological conditions has significant engineer-
ing application value. Novak et al. [1, 2], Nogami and
Novak [3], Koo et al. [4], Ding et al. [5], Wu et al. [6], Luan
et al. [7], Zhao et al. [8], Meng et al. [9] and others have
conducted systematic theoretical research on the vibration

of pile foundations in single-phase homogeneous elastic
and viscoelastic soil. For coastal areas and river basins, the
soil is usually saturated soil, and the influence of liquid
phase needs to be considered. Therefore, Maeso et al. [10],
Zhou and Wang [11], Zheng et al. [12], Cui et al. [13],
and Wang and Ai [14] studied the dynamic problem of pile
foundations in saturated soil. It should be noted that the
current research on the dynamic interaction between satu-
rated soil and pile is mostly based on Biot’s saturated porous
medium theory. Although Biot saturated porous medium
theory has been successfully applied to many engineering
fields, the research shows that its theoretical model has
some defects [15]. Beor’s saturated porous medium theory
uses the concepts of continuum mixture axiom and volume
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fraction, and several microscopic properties of porous
medium can be directly described by macroscopic proper-
ties, avoiding the complicated formula of hybrid mixture
theory. Without additional assumptions, some effects such
as dynamic, material, and geometric nonlinearity can be
easily reflected in its mathematical model. Therefore, Beor’s
saturated porous medium theory is used to describe the
mechanical properties of the soil around the pile, and the
pile-saturated soil dynamic interaction model is more rea-
sonable and accurate. In addition, in the process of soil
deposition, the orientation and directionality of the arrange-
ment of flat medium particles lead to the difference in the
properties (elastic modulus, shear modulus, and Poisson’s
ratio) of the soil in the vertical and horizontal directions,
and the soil shows various characteristics. Usually, the verti-
cal modulus of soil is smaller than the horizontal modulus,
resulting in the horizontal modulus exhibiting isotropic
characteristics. At this point, treating the soil as a trans-
versely isotropic medium is more in line with engineering
practice. Due to the complexity of the mathematical solu-
tion, it is difficult to obtain analytical expression for the
dynamic interaction between transversely isotropic soil
and pile. Therefore, the current research on the vibration
of pile foundations in transversely isotropic soil mainly
focuses on torsional vibration. For example, Zheng et al.
[16] studied the torsional vibration of pipe pile in trans-
versely isotropic saturated soil based on Biot’s porous
medium theory, and the influence of anisotropy of internal
and external soil on the torsional dynamic response of pipe
pile was discussed. Chen et al. [17] studied the dynamic
response of pile in transversely isotropic saturated soil
under transient torsional load by means of the Laplace
transform. Ma et al. [18] studied the torsional vibration of
pile foundations in transversely isotropic saturated soil con-
sidering construction disturbances. In terms of vertical and
horizontal vibrations of pile foundations in transversely
isotropic soil, Li and Ai [19] proposed a finite element-
boundary element coupling method to study the dynamic
response of end-bearing pile groups in layered transversely
isotropic media under transient horizontal loads. Based on

Boer’s porous medium theory, Zhang et al. [20] gave a
simplified analytical expression for the vertical dynamic
impedance of pile groups in layered transversely isotropic
saturated viscoelastic soil. Yan and Liu [21] gave the analyt-
ical solution expression of soil horizontal damping factor
and horizontal dynamic impedance of a single pile in trans-
versely isotropic soil by considering the influence of soil
anisotropy and three-dimensional wave effect. Liu and Yan
[22] regarded the soil around the pile as a single-phase
transversely isotropic medium, studied the lateral vibration
of pile groups in transversely isotropic soil using Novak’s
plane model, and obtained the analytical solution of the
problem. In this paper, based on Boer’s porous medium the-
ory, the horizontal vibration of a single pile in transversely
isotropic saturated soil is studied by means of mathematical
physics, and the analytical expression of the horizontal
dynamic impedance at the pile top will be obtained and will
explore the influence of relevant parameters on the horizon-
tal vibration of pile foundations.

2. Dynamic Control Equations of Transversely
Isotropic Saturated Soil

The horizontal dynamic problem of a single pile in trans-
versely isotropic saturated soil as shown in Figure 1 will be
investigated, the radius of the pile is r0, the pile length of
the pile is H, Ep is the elastic modulus of the pile, and ρp is

the density of the pile. A horizontal harmonic load P t =
P0e

iωt acts on the pile top, where P0 is the amplitude of the
load, ω is the harmonic load frequency, and i is the virtual
unit. In order to consider the influence of the liquid phase
and anisotropy of soil around the pile, the soil around the
pile is regarded as transversely isotropic saturated porous
medium. Here, Boer’s saturated porous medium theory
and the constitutive equation of transversely isotropic elastic
media proposed by Ding et al. [23] are used to build the
motion equations of transversely isotropic saturated porous
medium and the pile-soil dynamic interaction model. When
ignoring the mass exchange and energy exchange between
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Figure 1: Horizontal dynamic model of transversely isotropic saturated soil-pile.
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liquid and solid phases, according to Boer’s saturated porous
medium theory, it can be known that the momentum equa-
tion of fluid solid mixture, pore fluid momentum equation,
and volume fraction equation of saturated soil around the
pile is [24, 25]

div σS + ρS bS − uS + p̂S = 0,

div σF + ρF bF − uF + p̂F = 0,

div nSuS + nFuF = 0

1

In the formula, σS and σF , respectively, represent the
macroscopic stress tensors of the solid soil skeleton and
the liquid phase, uS and uS represent the velocity and accel-
eration of the solid soil skeleton, uF and uF represent the
velocity and acceleration of the liquid phase, ρS and ρF rep-
resent the volume density of the solid soil skeleton and the
liquid phase, bS and bF represent the volume force per unit
mass of the solid phase and liquid phase, and p̂S and p̂F rep-
resent the effective interaction force between the solid soil
skeleton and the liquid phase and meet the requirement p̂S

+ p̂F = 0. Considering the incompressible condition, using
the volume fraction theory, in the relationship between the
stress tensors σS and σF and the interaction force pS, pF

can be obtained as [26]

σS = −nSpI + σSE,
σF = −nFpI,
p̂F = p grad nF + p̂LE,
p̂LE = −Sv uF − uF ,

2

where σSE is the effective stress tensor of the solid soil skele-
ton, p̂LE is the additional quantity, p is the effective pore
water pressure of the incompressible fluid in saturated soil,
Sv is the coupling coefficient describing the coupling effect
between the solid phase and liquid phase, and nS and nF

are the volume fraction and satisfy nS + nF = 1.
In order to consider the anisotropy of saturated soil

around the pile, the constitutive equation of transversely iso-
tropic elastic medium proposed by Ding et al. [23] is used
here to describe the stress and strain relationship of the solid
skeleton of saturated soil around the pile, that is

σSE
rr = C11ε

S
rr + C12ε

S
θθ + C13ε

S
zz,

σSE
θθ = C12ε

S
rr + C11ε

S
θθ + C13ε

S
zz,

σSE
zz = C13ε

S
rr + C13ε

S
θθ + C33ε

S
zz,

σSEθz = C44ε
S
θz , σSErz = C44ε

S
rz , σSE

rθ = C66ε
S
rθ,

3

where σSErr , σ
SE
θθ , σ

SE
zz , σ

SE
θz , σ

SE
rz , and σSErθ are, respectively, the

radial, circumferential, vertical, and shear effective stresses

of the solid skeleton of transversely isotropic saturated soil;
εSrr , ε

S
θθ, ε

S
zz , ε

S
θz , ε

S
rz , and εSrθ are, respectively, the radial

strain, circumferential strain, vertical strain, and shear
strain of the solid skeleton of transversely isotropic satu-
rated soil; C11, C12, C13, C33, C44, and C66 are the elastic
constants of transversely isotropic saturated soil and meet
C66 = 1/2 C11 − C12 =Gh, and Gh and Gv are, respectively,
the shear modulus on the horizontal plane and vertical
plane.

The strain-displacement relationship of transversely iso-
tropic saturated soil is

εSrr =
∂uSr
∂r

,

εSθθ =
1
r
∂uSθ
∂θ

+ uSr
r
,

εSzz =
∂uSz
∂z

,

εSrz =
∂uSr
∂z

+ ∂uSz
∂r

,

εSrθ =
1
r
∂uSr
∂θ

+ ∂uSθ
∂r

−
uSθ
r
,

εSθz =
∂uSz
r∂θ

+ ∂uSθ
∂z

4

In which uSr , u
S
z , and uSθ are the radial, vertical, and cir-

cumferential displacements of the solid skeleton of trans-
versely isotropic saturated soil. Ignoring the volumetric
force (bS = bF = 0), the motion control equation of trans-
versely isotropic saturated soil represented by displacement
can be obtained from Eq. (1) to Eq. (4) as follows:

C11
∂2

∂r2
+ 1
r
∂
∂r

−
1
r2

+ C11 − C12
2r2

∂2

∂θ2
+ C44

∂2

∂z2
uSr

+ C11 − C66
r

∂2

∂r∂θ
−
C11 + C66

r2
∂
∂θ

uSθ + C13 + C44
∂2uSz
∂r∂z

− nS
∂p
∂r

− ρS
∂2uSr
∂t2

− ρF ∂
2uF

r

∂t2
= 0,

5

C11 − C12
2

∂2

∂r2
+ 1
r
∂
∂r

−
1
r2

+ C11
r2

∂2

∂θ2
+ C44

∂2

∂z2
uSθ

+ C11 − C66
r

∂2

∂r∂θ
+ C11 + C66

r2
∂
∂θ

uSr + C13 + C44
1
r
∂2uSz
∂θ∂z

− nS
∂p
r∂θ

− ρS
∂2uSθ
∂t2

− ρF ∂
2uF

θ

∂t2
= 0,

6
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C44
∂2

∂r2
+ 1
r
∂
∂r

+ 1
r2

∂2

∂θ2
+ C33

∂2

∂z2
uSz

+ C13 + C44
∂2

∂r∂z
+ 1
r
∂
∂z

uSr + C13 + C44
∂2uSθ
r∂θ∂z

− nS
∂p
∂z

− ρS
∂2uSz
∂t2

− ρF ∂
2uF

z

∂t2
= 0,

7

nF ∂p
∂r

+ ρF ∂
2uF

r

∂t2
+ Sv

∂uF
r

∂t
−
∂uSr
∂t

= 0, 8

nF 1
r
∂p
∂θ

+ ρF ∂
2uF

θ

∂t2
+ Sv

∂uF
θ

∂t
−
∂uSθ
∂t

= 0, 9

∂
∂r

1
r
∂
∂r

r nS
∂uSr
∂t

+ nF ∂uF
r

∂t
+ 1
r
∂
∂θ

nS
∂uSr
∂t

+ nF ∂uF
r

∂t

+ ∂2

∂z2
nS

∂uSr
∂t

+ nF ∂uF
r

∂t
= 0,

10

where uF
r , u

F
z , and uF

θ are the radial, vertical, and circum-
ferential displacements of the liquid phase of transversely
isotropic saturated soil. Eq. (5)–Eq. (10) are the motion con-
trol equations of transversely isotropic saturated soil repre-
sented by displacement.

3. Solution to Horizontal Vibration of
Transversely Isotropic Saturated Soil

Here, we only study the horizontal vibration problem of pile
foundation in transversely isotropic saturated soil under the
action of the horizontal harmonic load P t = P0e

iωt at the
pile top (as shown in Figure 1). We ignored the influence
of vertical displacement and only considered radial and cir-
cumferential displacements, and radial and circumferential
displacements are independent of coordinate z. At this
point, Eqs. (5), (6), and (10) are simplified as follows:

C11
∂2

∂r2
+ 1
r
∂
∂r

−
1
r2

+ C66
r2

∂2

∂θ2
uSr

+ C11 − C66
r

∂2

∂r∂θ
−
C11 + C66

r2
∂
∂θ

uSθ

− nS
∂p
∂r

− ρS
∂2uSr
∂t2

− ρF ∂
2uF

r

∂t2
= 0,

11

C66
∂2

∂r2
+ 1
r
∂
∂r

−
1
r2

+ C11
r2

∂2

∂θ2
uSθ

+ C11 − C66
r

∂2

∂r∂θ
+ C11 + C66

r2
∂
∂θ

uSr

− nS
∂p
r∂θ

− ρS
∂2uSθ
∂t2

− ρF ∂
2uF

θ

∂t2
= 0,

12

1
r
∂
∂r

r nS
∂uSr
∂t

+ nF ∂uF
r

∂t
+ 1
r
∂
∂θ

nS
∂uSr
∂t

+ nF ∂uF
r

∂t
= 0

13

Eqs. (8), (9), and (11) to (13) are the horizontal vibra-
tion control equations for transversely isotropic saturated
soil.

The whole systemmakes a steady simple harmonic vibra-
tion under the action of horizontal harmonic load P t = P0
eiωt at the pile top. Considering the harmonic nature of the
problem, the form of each parameter is f = f eiωt and is
substituted into the horizontal movement control equations
of transversely isotropic saturated soil (Eq. (8), Eq. (9), and
Eqs. (11)–(13)), and dimensionless quantities r = r/H, z = r/
H, uSr = uSr /H, uSθ = uSθ/H, uF

r = uF
r /H, uF

θ = uF
θ /H, ω =Hω/v,

p = p/v2ρS, sv =HSv/vρS, ρ = ρS/ρF , and v = C66/ρS are
introduced, uSr and uSθ are the amplitudes of radial and cir-
cumferential displacement of the solid phase skeleton of the
transversely isotropic saturated soil, and uF

r and uF
θ are the

amplitudes of radial and circumferential displacement of
the liquid phase fluid of the transversely isotropic saturated
soil; v = C66/ρS is the vertical shear wave velocity of soil.
By performing dimensionless operations on the horizontal
movement control equations of transversely isotropic satu-
rated soil (Eq. (8), Eq. (9), and Eq. (11)–Eq. (13)), it can be
obtained that

δ1
∂2

∂r2
+ 1
r
∂
∂r

−
1
r2

+ 1
r2

∂2

∂θ2
uSr

+ δ1 − 1
r

∂2

∂r∂θ
−
δ1 + 1
r2

∂
∂θ

uSθ − nS
∂p
∂r

+ ω2uSr −
ω2

ρ
uF
r = 0,

14

∂2

∂r2
+ 1
r
∂
∂r

−
1
r2

+ δ1
r2

∂2

∂θ2
uSθ

+ δ1 − 1
r

∂2

∂r∂θ
+ δ1 + 1

r2
∂
∂θ

uSr − nS
∂p
r∂θ

+ ρSω2uSθ +
ω2

ρ
uF
θ = 0,

15

nF ∂p
∂r

−
ω2

ρ
uF
r + iωsv uF

r − uSr = 0, 16

nF 1
r
∂p
∂θ

−
ω2

ρ
uF
θ + iωsv uF

θ − uSθ = 0, 17

1
r
∂
∂r

r nSuSr + nFuF
r + 1

r
∂
∂θ

nSuSr + nFuF
r = 0 18

In which, δ1 = C11/C66 is the anisotropic parameter
that reflects the degree of anisotropy of the saturated soil.

To solve the horizontal vibration of transversely isotropic
saturated soil layers, Eq. (14)–Eq. (18) need to be decoupled,
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and the following potential function is introduced for this
purpose:

uSr =
∂φS

∂r
+ 1
r
∂ψS

∂θ
,

uSθ =
1
r
∂φS

∂θ
−
∂ψS

∂r
,

19

uF
r =

∂φF

∂r
+ 1
r
∂ψF

∂θ
,

uF
θ =

1
r
∂φF

∂θ
−
∂ψF

∂r

20

Here, φS, ψS and φF , ψF are the amplitude of the displace-
ment potentials of the solid and liquid phases, respectively.

By decoupling, it can be obtained that

δ16∇
2φS − nSp − ω2φS −

ω2

ρ
φF = 0, 21

∇2ψS − ω2ψS −
ω2

ρ
ψF = 0, 22

nFp + a1φ
F − iωsvφ

S = 0, 23

a1ψ
F − iωsvψ

S = 0, 24

nS∇2φS + nF∇2φF = 0 25

In which, ∇2 = ∂2/∂r2 + 1/r ∂/∂r + 1/r2 ∂2/∂θ2
and a1 = iωsv − ω2/ρ . From Eq. (22) and Eq. (24), it can
be concluded that

∇2 − q2 ψS = 0 26

In which, q2 = ω2 + iω3sv/ρa1 . Using the method of
separating variables to solve Bessel’s Eq. (26) while consider-
ing that the displacement of saturated soil at infinity is zero,
it can be obtained that

ψS = A1K1 qr sin θ, 27

ψF = iωsv
a1

A1K1 qr sin θ, 28

where A1 is the undetermined coefficient. From Eqs. (21),
(23), and (25), it can be concluded that

∇2 ∇2φS − s2∇2φS = 0 29

In which a2 = − ω2nF + iωsvn
S/nFδ16 a3 = a1ρn

S − nF

ω2/ρnFδ16 , s2 = nSa3/nF − a2.
Similarly, using the separation of variable method to

solve Bessel’s equation (29) and considering that the dis-
placement of saturated soil at infinity is zero, it can be
obtained that

∇2φS = A2K1 sr cos θ, 30

where A2 is the undetermined coefficient. By solving Eq. (30)
and considering that the displacement of saturated soil at
infinity is zero, it can be obtained that

φS = K1 sr
s2

A2 +
A3
r

cos θ, 31

where A3 is the undetermined coefficient; A1, A2, and A3 can
be determined by boundary conditions. Further consider-
ation of Eqs. (21), (22), and (31) yields

φF = −
1
a3

K1 sr A2 cos θ −
a2
a3

A3
r

+ K1 sr
s2

A2 cos θ, 32

p = a1
nFa3

K1 sr A2 cos θ +
a1a2 + ia3ωsv

nFa3

K1 sr
s2

A2 +
A3
r

cos θ

33

From Eqs. (19), (20), (27), (28), (31), and (32), it can be
obtained that the radial and circumferential horizontal
dynamic displacements of the solid skeleton of transversely
isotropic saturated soil are

uSr =
K1 qr

r
A1 −

K1 sr
s2r

A2 −
K0 sr

s
A2 −

A3
r2

cos θ,

34

uSθ =
K1 qr

r
A1 + qK0 qr A1 −

K1 sr
s2r

A2 −
A3
r2

sin θ

35

4. Solution to Horizontal Vibration of a Single
Pile in Transversely Isotropic Saturated Soil

In order to solve the horizontal vibration of pile founda-
tions in transversely isotropic saturated soil, the horizontal
dynamic interaction between pile and soil is equivalent to
spring and damper distributed around the pile; that is, the
horizontal dynamic interaction between pile and soil is
described using the Winkler spring-damper model. In order
to determine the stiffness and damping coefficients of the
Winkler spring-damper model, assuming that the dimen-
sionless horizontal displacement of the pile body is 1, the
stiffness and damping coefficients are determined by solving
the horizontal force of the soil around the pile on the pile
body. Assuming that the dimensionless horizontal displace-
ment of the pile body is 1 and the pile-soil contact surface is
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impermeable, the following boundary conditions can be
obtained:

ur r0, θ = 1,

θ = 0,

uθ r0, θ = −1,

θ = π

2 ,

∂p
∂r r=r0

= 0

36

In which, r0 = r0/H, r0 and H are the pile radius and pile
length, respectively.

r0 a1s
2 + a1a2 + ia3ωsv sr0K0 sr0 + K1 sr0 A2

+ a1a2 + ia3ωsv s2A3 = 0,

−
A3
r20

−
K1 sr0
s2r0

A2 −
K0 sr0

s
A2 +

K1 qr0
r0

A1 = 1,

−
A3
r20

−
K1 sr0
s2r0

A2 +
K1 qr0

r0
A1 + qK0 qr0 A1 = −1

37

In the equations, A1, A2, and A3 are the undetermined
coefficients, which can be determined from Eq. (14)–Eq.
(18).

A1 =
2a6s2r20

a6a9 − a7a8
,

A2 = −
2a7s2r20

a6a9 − aa7a8
,

A3 =
a4
a5

2a7s2r20
a6a9 − aa7a8

,

38

where a4 = r0 a1s
2 + a1a2 + ia3ωsv sr0K0 sr0 + K1 sr0 ,

a5 = a1a2 + ia3ωsv s2, a6 = 2a4/a5 s2 − 2r0K1 sr0 − sr20K0
sr0 , a7 = 2s2r0K1 qr0 + qs2r20K0 qr0 , a8 = −sr20K0 sr0 ,
and a9 = −qs2r20K0 qr0 .

The dimensionless radial and shear stresses of the solid
skeleton of transversely isotropic saturated soil can be deter-
mined from Eqs. (3), (4), (34), and (35).

σSE
rr = δ2 − δ1

2K1 qr
r2

+ 1
r
qK0 qr A1 cos θ

+ δ1 − δ2
2K1 sr
s2r2

+ 1
sr
K0 sr + δ16K1 sr A2 cos θ

+ δ1 − δ2
2
r3
A3 cos θ,

39

σSErθ = −
4K1 qr

r2
+ 2
r
qK0 qr + q2K1 qr A1 sin θ

+ 4K1 sr
s2r2

+ 2
sr
K0 sr A2 sin θ + 4A3

r3
sin θ

40

In the equation, δ2 = C12/C66 . According to the radial
stress (Eq. (39)) and shear stress (Eq. (39)) of the solid skel-
eton of the saturated soil, the dimensionless force per unit
thickness of the soil layer on the pile body can be obtained,
that is

Fx =
2π

0
p − σSErr cos θ + σSErθ sin θ

r=r0
r0dθ

= πr0 P + b1A1 + b2A2 + b3A3 = πf x

41

In the formula, the real and imaginary parts of Fx are the
stiffness and damping coefficients of the Winkler spring-
damper model, and

b1 =
2 δ1 − δ2 − 4 − r20q

2

r20
K1 qr0 + δ1 − δ2 − 2

r0
qK0 qr0 ,

b2 =
2 δ2 − δ1 + 4 − δ1s

2r20
s2r20

K1 sr0 + δ2 − δ1 + 2
sr0

K0 sr0 ,

b3 =
4 + 2 δ2 − δ1

r30
,

P = a1
nFa3

K1 sr0 A2 +
a1a2 + ia3ωsv

nFa3

K1 sr0
s2

A2 +
A3
r0

42

Taking the micro element of the pile body as the research
object, while considering the force (equation (41)) of the soil
around the pile on the pile body, the dimensionless horizon-
tal vibration equation of the pile foundation in transversely
isotropic saturated soil can be obtained as follows:

d4up z

dz4
+ 4λ4up z = 0, 43

where up z is the dimensionless horizontal displacement

amplitude of the pile foundation and λ4 = ρf x − ρpr
2
0ω

2/ρEp

r40, ρp = ρp/ρF ,, Ep = Ep/C66, Ep, and ρp are the elastic modu-
lus and density of the pile, respectively.

The displacement, rotation angle, shear force, and bend-
ing moment at the top of the pile are U0, θ0, Q0, and M0,
respectively, using the initial parameter method [27], and
the horizontal displacement of the pile body can be obtained
from equation (43) as
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up z = −U0F1 λz + θ0
λ
F2 λz −

M0
π/4 Epλ

2r40
F3 λz

−
Q0

π/4 Epλ
3r40

F4 λz
44

In the formula, F1, F2, F3, and F4 are the Krylov func-
tions, F1 λz = chλz cos λz, F2 λz = 1/2 chz sin λz + shz
cos λz , F3 λz = 1/2 shλz sin λz, and F4 λz = 1/4 chλz
sin λz − shλz cos λz .

Taking an end-bearing pile as an example, due to the
fixed bottom of the pile, the displacement and rotation angle
at the pile bottom are both zero, and there are the following
boundary conditions:

up z
z=1 = 0,

dup z

dz z=1
= 0
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Figure 2: Influence of anisotropic parameter δ1 on horizontal dynamic impedance of a single pile in transversely isotropic saturated soil.
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According to equations (44) and (45), the shear force at
the top of the pile is

Q0 =
π

4 Epr
4
0

λ3 F1 λ F2 λ + 4F3 λ F4 λ

F2
3 λ − F2 λ F4 λ

U0

−
λ2 F2

2 λ − F1 λ F3 λ

F2
3 λ − F2 λ F4 λ

φ0

46

Considering the definition of the horizontal dynamic
impedance at the pile top, the required horizontal shear
force is the horizontal dynamic impedance at the pile top
for generating unit horizontal displacement when constrain-
ing the rotation angle at the pile top. Therefore, the horizon-
tal dynamic impedance of the pile foundation in transversely
isotropic saturated soil can be obtained as
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Figure 3: Influence of liquid-solid coupling coefficient sv on horizontal dynamic impedance of a single pile in transversely isotropic
saturated soil.
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Khh =
Q0
U0

= π

4 Epr
4
0
λ3 F1 λ F2 λ + 4F3 λ F4 λ

F2
3 λ − F2 λ F4 λ

= f1 + iωf2

47

Here, Khh is the horizontal dynamic impedance at the
pile top, f1 is the horizontal dynamic impedance stiffness
factor of the pile in transversely isotropic saturated soil,
and f2 is the horizontal dynamic impedance damping factor.

5. Numerical Examples and Discussions

Figures 2–5 show the curves of the horizontal dynamic
impedance stiffness factor f1 and the horizontal dynamic
impedance factor f2 of the pile in transversely isotropic sat-
urated soil varying with dimensionless frequency. The values
of the relevant parameters without explanation are nS = 0 67,
nF = 0 33, r0/H = 1/20, Ep/C66 = 1000, sv = 0 05, ρ = 2 0, ρp =
5, δ1 = 6, and δ2 = 4.
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Figure 4: Influence of diameter-length ratio r0/H on horizontal dynamic impedance of a single pile in transversely isotropic saturated soil.
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Overall, as the frequency increases, the horizontal
dynamic impedance stiffness factor gradually increases, while
the horizontal dynamic impedance factor rapidly decreases at
low frequencies and gradually stabilizes. The influence of
anisotropic parameter δ1 of transversely isotropic saturated
soil on the horizontal vibration of a single pile is shown in
Figure 2. The influence of anisotropic parameters δ1 on the
horizontal dynamic impedance of pile in transversely isotro-
pic saturated soil is significant, whether it is the horizontal

dynamic stiffness factor or the horizontal dynamic imped-
ance factor, and the transversely anisotropic parameter δ1
has a significant impact on them, and with the transverse
anisotropy parameter δ1 increases, its impact gradually
decreases. It can be seen that in practical engineering, the
influence of anisotropy on the horizontal vibration of pile
foundations should not be ignored. The influence of the
liquid-solid coupling coefficient sv of transversely isotropic
saturated soil is shown in Figure 3. The influence of the
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Figure 5: Influence of modulus ratio Ep/C66 on horizontal dynamic impedance of a single pile in transversely isotropic saturated soil.
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liquid-solid coupling coefficient sv on the horizontal dynamic
impedance damping factor f2 is greater than that of the hor-
izontal dynamic impedance stiffness factor f1. The larger the
liquid-solid coupling coefficient, the greater the horizontal
dynamic impedance stiffness factor. The effect of the liquid-
solid coupling coefficient on the horizontal dynamic imped-
ance factor is related to frequency. At high frequencies, the
larger the liquid-solid coupling coefficient, the smaller the
horizontal dynamic impedance damping factor, while at
low frequencies, the opposite is true. At high frequencies,
the relative motion between the liquid and solid phases
weakens, resulting in a decrease in damping.

The effect of the diameter-length ratio r0/H of the pile
on the horizontal vibration of the pile foundation in trans-
versely isotropic saturated soil is shown in Figure 4. Like
homogeneous soil, the diameter-length ratio of the pile has
a significant impact on the vibration of the pile foundation.
The smaller the diameter-length ratio of the pile, that is,
the longer the pile, the smaller the stiffness factor and damp-
ing factor of the horizontal dynamic impedance. This is
because the longer the pile, the easier it is to deform, the
greater the displacement at the pile top, and the smaller
the horizontal dynamic impedance at the pile top. At the
same time, it can also be seen that when the pile length is
longer, the impact of the pile length gradually decreases.

Since C66 =Gh, Gh is the shear modulus on the water
plane of transversely isotropic saturated soil, and the modu-
lus ratio Ep/C66 is the ratio of the elastic modulus of the pile
body to the shear modulus on the water plane of transversely
isotropic saturated soil. From Figure 5, it can be seen that the
modulus ratio Ep/C66 has a greater impact on the horizontal
dynamic impedance of a single pile in transversely isotropic
saturated soil, and its impact on the horizontal stiffness
factor is much greater than that of the damping factor. The
larger the modulus ratio Ep/C66, the greater the horizontal
dynamic impedance stiffness factor and damping factor.
Because when the modulus ratio Ep/C66 is larger, the pile
body stiffness is relatively larger, the deformation is smaller,
and the displacement at the pile top is smaller, resulting in
larger dynamic impedance at the pile top.

6. Conclusions

Considering the influence of the anisotropy and the liquid
phase of the soil around the pile, the horizontal vibration
of the transversely isotropic saturated soil layer is solved by
means of mathematical and physics, and the analytical
expression of the horizontal dynamic impedance of a single
pile in transversely isotropic saturated soil is obtained. The
numerical example analyzed the influence of the transversely
isotropic saturated soil anisotropy parameter, liquid-solid
coupling coefficient, etc. on the horizontal vibration of a sin-
gle pile, and the main conclusions are as follows: (1) Aniso-
tropic parameter δ1 of soil has a significant impact on the
horizontal dynamic impedance of a single pile in trans-
versely isotropic saturated soil. In practical engineering, the
influence of soil anisotropy on the horizontal vibration of
pile foundations should not be ignored. (2) The influence

of the liquid-solid coupling coefficient on the horizontal
dynamic impedance damping factor f2 is greater than that
of stiffness factor f1. The influence of the liquid-solid cou-
pling coefficient on the horizontal dynamic impedance fac-
tor is related to frequency to a certain extent. (3) The
diameter-length ratio has a significant impact on the hori-
zontal vibration of pile foundations in transversely isotropic
saturated soil. The longer the pile, the smaller the horizontal
dynamic impedance at the pile top. When the pile length is
longer, the influence of the pile length gradually decreases.
(4) When the stiffness of the pile body is large, the deforma-
tion of the pile body is small, and the horizontal dynamic
impedance at the pile top is large. The modulus ratio Ep/
C66 has a significant impact on the horizontal dynamic
impedance stiffness factor of a single pile in transversely iso-
tropic saturated soil, but its impact on the horizontal
dynamic impedance damping factor is relatively small.
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