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Deep learning with specific network topologies has been successfully applied in many fields. However, what is primarily called into
question by people is its lack of theoretical foundation investigations, especially for structured neural networks. This paper
theoretically studies the multichannel deep convolutional neural networks equipped with the downsampling operator, which is
frequently used in applications. The results show that the proposed networks have outstanding approximation and
generalization ability of functions from ridge class and Sobolev space. Not only does it answer an open and crucial question of
why multichannel deep convolutional neural networks are universal in learning theory, but it also reveals the convergence rates.

1. Introduction

Deep learning [1] has made remarkable achievements in
many fields. Essentially, it is based on structured neural net-
works similar to the biological nervous system to extract
data features for realizing specific learning goals. In these
structured neural networks, a particularly important one
called deep convolutional neural networks (DCNNs) has
achieved state-of-the-art performance in many domains
[2–4]. Normally, multichannel convolution is used, and the
resulting multichannel deep convolutional neural networks
(MDCNNs) have also achieved excellent performances in
classification [5, 6], natural language processing [7], biolog-
ical [8–10], and many other domains [11–13].

However, compared with the successful applications of
MDCNNs, the theoretical basis is incomplete, which is the
main reason why it is widely criticized. In this paper, we
present some approximation theories of functions for down-
sampled MDCNNs where the downsampling operator plays
the role of pooling, which reduces the width of deep neural
networks. Before giving the main results of downsampled
MDCNNs, we first briefly look back at the basic concepts
of fully connected neural networks (FNNs) and DCNNs.

An FNN with input vector x ∈ℝd and L hidden layers of
neurons fhðjÞ : ℝd ⟶ℝdjg with widths dj ∈ℕ+ is defined
iteratively by

h jð Þ xð Þ = σ W jð Þh j−1ð Þ xð Þ − b jð Þ
� �

, j = 1, 2,⋯, L, ð1Þ

where σ : ℝ⟶ℝ is an univariate activation function act-
ing componentwise on vectors, WðjÞ ∈ℝd j×dj−1 is a weight
matrix, bðjÞ ∈ℝd j is a bias vector in layer j, and hð0ÞðxÞ = x
with the width d0 = d. Now, the form of (1) used to approx-
imate functions is

〠
dL

i=1
ci h Lð Þ xð Þ
� �

i
∈ span h Lð Þ xð Þ

� �
i

n odL

i=1
=def F W jð Þ, b jð Þ, 1 ≤ j ≤ L

n o
:

ð2Þ

Note that if L = 1, the FNNs defined by (1) degenerate
into the well-known classical shallow neural networks. The
most important part of (2) to learning functions is the free
parameters of weights and bias. It is easy to find that the
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form (2) involves free parameters of weights ∑L
i=1didi−1 and

bias ∑L
i=1di to be trained, leading to huge computational

complexity when di is large.
For DCNNs, we use the definition from [14]. Let d, dj,

and L be the positive integers. The convolution of w ∈ℝK

and x ∈ℝd is mathematically defined as w ∗ x ∈ℝd+K−1,
where ðw ∗ xÞi =∑d

j=1wi−j+1xj, i ∈ ½d + K − 1� (½d + K − 1�
denotes the set f1, 2,⋯,d + K − 1g) which can be equiva-
lently rewritten as

w ∗ x = Twx, ð3Þ

where Tw ∈ℝðd+K−1Þ×d is a Toeplitz-type matrix given by

Tw =

w1 0 0 0 ⋯ ⋯ 0
w2 w1 0 0 ⋯ ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

wK wK−1 ⋯ w1 0 ⋯ 0
0 wK ⋯ w2 w1 ⋯ 0
⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 wK ⋯ ⋯ w1

0 ⋯ 0 ⋯ wK ⋯ w2

⋮ ⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 0 0 0 0 0 wK

2666666666666666666666664

3777777777777777777777775

∈ℝ d+K−1ð Þ×d:

ð4Þ

With the above notations, a DCNN with input vector

x ∈ℝd and L hidden layers of neurons fhðjÞ : ℝd ⟶ℝdjgLj=0
is defined iteratively by

h jð Þ xð Þ = σ T w jð Þð Þh j−1ð Þ xð Þ − b jð Þ
� �

, j = 1, 2,⋯, L, ð5Þ

where σ : ℝ⟶ℝ is an univariate activation function as
before, wðjÞ ∈ℝK denotes a filter supported on ½K�, and bðjÞ ∈
ℝdj is a bias vector in layer j, hð0ÞðxÞ = x. The form of (5) to
learning functions is

〠
dL

i=1
ci h Lð Þ xð Þ
� �

i
∈ span h Lð Þ xð Þ

� �
i

n odL

i=1

=def C w jð Þ, b jð Þ, 1 ≤ j ≤ L
n o

:

ð6Þ

Compared with FNNs, DCNNs defined by (5) involve a

sparse matrix Twð jÞ
in the j-th layer, each row of which has no

more than K nonzero elements. The number of weights and
biases is KL and∑L

i=1di, respectively, which is a large reduction
of parameters.

However, this kind of DCNNs results in width increas-
ing; that is, for input signal x ∈ℝd , we have Twx ∈ℝd+K−1

which is rarely used in practice. To improve this unusual

structure, downsampling also known as pooling operators
is applied in the DCNNs to reduce width formally [15, 16].
The key role of downsampling is reducing the dimension
of features and retaining effective information. To describe
it mathematically, we adopt a general version given below.

Definition 1 (downsampling [15]). Let x ∈ℝd , a downsam-
pling set S ⊂ ½d�, be an index set. DS is called a downsampling
operator indexed by S if DSðxÞ = xS, where xS denotes the
vector indexed by S.

Factually, except for downsampling, in real applications,
multiple filters are usually utilized in each layer of DCNNs
to obtain multichannel outputs. Each output is made up of
channel combinations that provide the flexibility needed to
avoid variance issues and loss of information [17], and dif-
ferent channels will play the role of extracting multiple fea-
tures of the input data [16]. Specifically, as pointed out in
[18], convolution from the current layer to the next in the
multichannel case is often organized as follows: inputs of
each input channel first convolute with all related filters to
compose the convoluted inputs, and then the convoluted
outputs are composed of linear combinations of the convo-
luted inputs, and finally, an activation function (usually
ReLU) is acted on each convoluted outputs componentwise.
Along with this fact in mind, the key to the MDCNNs con-
sidered in this paper is multichannel convolution which is
mathematically defined as follows.

Definition 2 (multichannel convolution). Let C, C′, and
K ∈ℕ+ be input channel size, output channel size, and
filter size, respectively. Filters W = ðW n,j,iÞn∈½K�,j∈½C ′�,i∈½C�
are defined as a three order tensor. Let X ∈ℝd×C be
the input data with C channels and the output of chan-
nel j ∈ ½C′� named Y :,j without bias, and activation func-
tion is defined as the sum of convoluted input data, i.e.,

Y:,j Xð Þ =〠
i

TW :, j,iX:,i ∈ℝ
d+K−1, ð7Þ

where the Toeplitz-type matrix TW :, j,i is defined as (3).
Further, let B = ½b1, b2,⋯,bC ′ � ∈ℝðd+K−1Þ×C′ be a bias
matrix and σ be the activation function; the multichan-
nel convolution ConvσW ,B : ℝd×C ⟶ℝðd+K−1Þ×C′ is given
by

ConvσW ,B Xð Þ = σ Y − Bð Þ = σ Y:,1 − b1,Y:,2 − b2,⋯,Y:,C ′ − bC ′
Â ÃÀ Á

:

ð8Þ

The whole multichannel convolution structure is
shown in Figure 1.

Remark 3. Here, we remark that Definition 2 implies that
there are C × C′ filters in total, and each filter has the same
size K . For convenience, we assume that the input data have
the same size d for all channels such that the corresponding
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outputs also have the same size d + K − 1. If C = C′ = 1,
equation (7) degenerates into equation (3).

The multichannel convolution from the current layer to
the next provides the main ingredient of MDCNNs. Com-
bined with the downsampling operator given by Definition
1, MDCNNs with downsampling are given below.

Definition 4 (MDCNNs with downsampling). Let CðlÞ, KðlÞ

∈ℕ+ be the channel size and filter size in layer lð1 ≤ l ≤ LÞ,
the set A = fl1, l2,⋯,lng ⊂ ½L� satisfying 1 ≤ l1 < l2 <⋯ < ln
≤ L is used to introduce the downsamplings, and Alj

⊂
½dj�ð1 ≤ j ≤ nÞ is the downsampling sets. A MDCNN with

downsampling operators DAj
s and input data X ∈ℝd×C

having widths fdigLi=0 is defined iteratively by d0 = d
and for j = 2, 3,⋯, n

di =
di−1 + K ið Þ − 1, if l j−1 < l < l j

card Aj

À Á
, if i = l j or i = l j−1

(
ð9Þ

is a sequence of function vectors

fhðiÞðXÞ: ℝd×C ⟶ℝdi×CðiÞgLi=1 defined iteratively by

h ið Þ Xð Þ =
Convσ

W ið Þ ,B ið Þ h i−1ð Þ Xð Þ
� �

, if l j−1 < i < l j,

DAi
∘ Convσ

W ið Þ,B ið Þ h i−1ð Þ Xð Þ
� �

, if i = l j:

8><>:
ð10Þ

Here, all channels in the same layer have equal size,
the downsampling operators DAj

s act on each channel of

the layer l j, card ðAjÞ denotes the cardinal number of Aj,

and the tensor W ðiÞ denotes filters between layers i and
i − 1. Finally, the form of MDCNNs used to approximate
functions is

〠
C Lð Þ

i=1
〠
dL

j=1
cj,i h Lð Þ Xð Þ
� �

j,i
, ð11Þ

where cj,i ∈ℝ are coefficients. The structure of MDCNNs
is shown in Figure 2.

Remark 5. The form (11) indicates that the objective form
has three important ingredients fW ðiÞ, BðiÞ, CðiÞg corre-
sponding to filters, bias, and channel size. From another per-
spective, it belongs to

span h Lð Þ Xð Þ
� �

j,i

� �C Lð Þ ,dL

i=1,j=1
=def M W ið Þ, B ið Þ, C ið Þ, 1 ≤ i ≤ L

n o
:

ð12Þ

If all layers have only one channel, MDCNNs will degen-
erate into DCNNs. We say that the MDCNNs with down-
sampling have uniform filter lengths if all channels in
every layer have the same size. Under this circumstance,
we call the MDCNNs with downsampling uniform. All
MDCNNs with downsampling considered in our main
results are uniform.

However, the existing theoretical studies cannot be
applied to MDCNNs. For example, Zhou [14, 15, 19] only
considers single-channel DCNNs whose widths are increas-
ing to depth. The multichannel convolution was also used in
a recent network Butterfly-Net [20, 21], which is based on
butterfly algorithm. However, the multichannel convolution
is only part of its network structure, and the structure of our
MDCNNs relying on multichannel convolution solely is dif-
ferent from that of Butterfly-Net. Moreover, they study the
approximation of Fourier representation of input data,
which is also different with ours. To investigate the approx-
imation ability of MDCNNs, we study its behavior on ridge
functions and functions from Sobolev space HrðℝdÞ.
MDCNNs considered in this paper have finite width d, finite
filter size K + 1ð<dÞ, and finite channels in each layer. In
addition, the activation function is the popular rectified lin-
ear unit (ReLU) defined as a univariate function given by σ
ðuÞ = ðuÞ+ = max f0, ug, u ∈ℝ, which is often utilized to
guarantee the nonlinear properties of the neural networks.
As pointed out by [19, 22], linear combinations of ReLU
units can express the objective functions with arbitrary

Convolution Bias

Bias

Bias

Convolution

Convolution

Input data with C
channels

Output data with C ’
channels

∑

∑

Y:,1

Y:,2

Y:,C’

∑

Figure 1: Illustration of multichannel convolution.
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accuracy. Hence, the main proof techniques of our theorems
are constructing the structured MDCNNs to obtain the
ReLU approximations of the objective functions. In addi-
tion, we emphasize the benefit of multiple channels: different
channels from some fixed layers can extract transformed
data features from the previous layer. Concretely, we utilize
channels to store the ReLU units, obtain new ReLU units,
and deposit initial data. In this way, our proposed MDCNNs
can achieve better results in approximating functions than
the structure from DCNNs and FNNs. In summary, we
make the following contributions to the approximation the-
ory of MDCNNs:

(i) To construct MDCNNs by introducing the multi-
channel convolution so that different channels are
used to extract different data features. To introduce
the downsampling operator into the MDCNNs so
that the width-increasing nature can be avoided
from layer to layer

(ii) To present a theorem for approximating ridge func-
tions by MDCNNs of the form gðξ · xÞ with ξ ∈ℝd

and g : ℝ⟶ℝ which demonstrates that for this
widely used simple but important function family,
MDCNNs have better approximation abilities than
FNNs and DCNNs

(iii) To prove a theorem for approximating functions in
Sobolev space HrðℝdÞ which shows the universality
of MDCNNs and the benefit of depth. In addition, it
also reveals better approximation performances
than FNNs and DCNNs

The structure of this article is organized as follows: in
Section 2, we present the main results for approximating
functions from ridge class and Sobolev space and further
compare them with some related work. Proofs of our main
results are given in Section 3. Finally, we summarize the
research of this paper in Section 4.

2. Main Results

Complicated functions can often be approximated by simple
families [23], such as polynomials, splines, wavelets, radial
basis functions, and ridge functions. Specifically, many
approximation results are based on the combination of ridge
functions [24, 25]. Our first main result of downsampled
MDCNNs shows its good performance of approximation
ability for ridge class. After that, we further provide the
approximation ability of MDCNNs of functions from Sobo-
lev’s space. The two approximations constitute our main
results. The main techniques of our proofs are constructing
the approximations of objective functions by linear combi-
nations of ReLU units at first and then specifying the net-
works’ parameters such that the constructed MDCNNs’
outputs match the linear approximations of ReLU units.

2.1. Approximation on Ridge Function. Mathematically,
ridge functions are any multivariate real-valued function
f : Ω⟶ℝðΩ ⊂ℝdÞ of the form

f xð Þ = g ξ · xð Þ, x ∈Ω, ð13Þ

induced by an unknown eigenvector ξ ∈ℝd and an
unknown univariate external function g : ℝ⟶ℝ. Fur-
ther, let Kα be the class of univariate Lipschitz-α functions
defined in ½−1, 1� with constant Cα <∞ð0 < α ≤ 1Þ; that is,
for any x, y ∈ ½−1, 1�,

g xð Þ − g yð Þj j ≤ Cα x − yj jα: ð14Þ

Our first result shows the approximation ability of
MDCNNs for ridge functions with the external function
g ∈ Kα and x ∈ Bd , where Bd = fx ∈ℝd : kxk2 ≤ 1g repre-
sents the unit ball. Denote k f kΩ =max

x∈Ω
j f ðxÞj. Throughout

this paper, we will use fU,P g to represent the number of
computation units (widths or hidden units [15]) and free

Multichannel

convolution

C channels C(1) channels C(2) channels

Multichannel convolution Forward

and downsampling

Figure 2: Illustration of MDCNNs with downsampling: the input data has C channels; then, the multichannel convolution is acted on the
input data with Cð1Þ × C filters, and the output of the first layer contains Cð1Þ channels; next, the multichannel convolution is acted on the
outputs of the first layer with Cð2Þ × Cð1Þ

filters following by a downsampling operator, and the output of the second layer contains Cð2Þ

channels; and so on.
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parameters, where computation units can be calculated by
counting the hidden units of MDCNNs.

Theorem 6. Let ξ ∈ Bd , K + 1ðK ∈ ½d − 1�Þ be the uniform fil-
ter size, L0 = dd/Ke (d·e is the ceil function), andm, T ∈ℕ+. If
g ∈ Kα, then there exists a downsampled MDCNN with at
most 3 channels in each layer, the width of each channel is
no more than d, and L = L0 + T + 2 layers satisfy

〠
3

j=1
cj h Lð Þ xð Þ
� �

j
− g ξ · xð Þ




−1,1½ �d
≤
2Cα2

α

Tα , ð15Þ

where cj ∈ℝ. The number of computation units is U = 3L +
2ðL0 − 1Þd − 3L0, and free parameters are P = 3ðL − L0Þ + d.

Remark 7. The constructed MDCNNs have finite channels,
finite width, and finite filter sizes, and the convergence
rate denoted by (15) is not only dimension-free but also
reveals the benefit of depth. Given arbitrary approxima-
tion accuracy ε ∈ ð0, 1Þ, Theorem 6 shows that we need
at least T ≥ 2ð2Cα/εÞ1/α. Taking T = d2ð2Cα/εÞ1/αe, it needs
L = d2ð2Cα/εÞ1/αe + dd/Ke + 2 layers, computation units U =
3d2ð2Cα/εÞ1/αe + 2ðdd/Ke − 1Þd + 6, and free parameters
P = 3d2ð2Cα/εÞ1/αe + d + 6 to get (15).

Remark 8. A concrete example is as follows: let ξ ∈ B5, d = 5,
K = 3, L0 = 2, gðxÞ = sin ðxÞ satisfying gðxÞ belong to
Lipschitz-1 class. By Theorem 6, we can construct an
MDCNN with at most 3 channels, and the width of each
channel is no more than 5, and L = T + 4 layers such that

〠
3

j=1
cj h Lð Þ xð Þ
� �

j
− sin ξ · xð Þ




−1,1½ �5
≤

4
T
: ð16Þ

2.2. Approximation on Function from Sobolev Space. How do
MDCNNs behave for smooth functions? Our second theo-
rem shows that functions in Sobolev space of order r can
be well approximated by a downsampled MDCNN with at
most 4 channels.

Theorem 9. Let K + 1ðK ∈ ½d − 1�Þ be the uniform filter size,
L0 = dd/Ke, G ∈HrðℝdÞ, and Ω ⊂ ½−1, 1�d . If L ≥ 3ðL0 + 1Þ,
then, for any f =GjΩ and an integer r > 2 + ðd/2Þ, there exists
a downsampled MDCNN with finite width and at most 4
channels such that

f xð Þ − h Lð Þ xð Þ
 

Ω
≤ C Gk k ln Lð Þ1/2

L1/2+1/d
, ð17Þ

where C > 0 is an universal constant and kGk denotes the

Sobolev norm of G ∈HrðℝdÞ given by kGk =
kð1 + jwj2Þr/2FðGÞðwÞkL2 withFðGÞ being the Fourier trans-
form of G. The number of computation units is U ≤ 4Ld, free
parameters are P ≤ ððd + 2Þ/ðL0 + 1ÞÞL + 5.

Remark 10. In fact, Theorem 9 demonstrates the universality
of MDCNNs; that is, for any compact subset Ω ⊂ℝd , any
function in CðΩÞ can be approximated by MDCNNs to an
arbitrary accuracy when the depth L is large enough. The
reason is that the set HrðΩÞ is dense in CðΩÞ when we con-
sider the Sobolev spaces that can be embedded into the space
of continuous functions on Ω. Moreover, the proof of this
theorem shows that our constructed MDCNNs have at most
4 channels in each layer and the width of each layer equals d.
Given arbitrary ε ∈ ð0, 1Þ, we requires at least L ≥ ðCkGkÞ2/ε2.
Taking L =max f3ðL0 + 1Þ, dðCkGkÞ2/ε2eg, we have L =
dðCkGkÞ2/ε2e for small ε. Thus, the number of compu-
tation units is U ≤ 4ddðCkGkÞ2/ε2e, and free parameters
are P ≤ KdðCkGkÞ2/ε2e + 5.

Both of the two main results reveal the benefit of depth in
terms of approximations of functions from ridge class and
Sobolev space, which indicate thatMDCNNs can approximate
the two types of functions to arbitrary accuracy if the depth
L⟶∞. Moreover, the constructed MDCNNs have finite
channels, finite width, and finite filter sizes, wich is more close
to real-world scenes compared with [14, 15, 19].

2.3. Comparison and Discussion. Most studies on the
approximation theory of neural networks focus on two
aspects: the first is obtained in the late 1980s about univer-
sality [26–28] meaning that any continuous functions can
be approximated by (2) to arbitrary accuracy; in other
words, the space FfWðjÞ, bðjÞ, 1 ≤ j ≤ lg is dense in the
objective function space; the second is obtained about conver-
gence rates of functions [24, 25, 29–31] in the view of neurons,
parameters, or depth. For fairness, in this part, we aim to com-
pare our main results with other theoretical investigations of
networks existing in the literature under approximation error
ε ∈ ð0, 1Þ. Specifically, we shall do our comparisons in terms of
width dL, filter size K, depth L, the number of computation
units U, and free parameters P .

Let Rn denote the set of combination of ridge functions
with cardinal number no larger than n; it had been proven
in [24] that any function from the Sobolev space Wr,d

p in
the space Lq with 2 ≤ q ≤ p ≤∞ behaves asymptotically of

the order n−r/ðd−1Þ by FNNs. The superiority of Theorem 6
over [24] is the dimension-free property of the convergence
rate given by (15) which demonstrates the good perfor-
mance of MDCNNs in approximating ridge functions.

Besides, let DAðxÞ =DmðxÞ = ðximÞbd/mc
i=1 (b·c is the floor func-

tion), where m ≤ d is a scaling parameter. Paper [15] con-
structed a DCNN with filter size 4N + 6 in the last layer
and finite depth dððd − 1Þ/ðk − 2ÞÞ + 1e. It obtained a con-
vergence rate of Oð1/NαÞ for ridge functions with external
function g ∈ Kα, where one needs computation units at most
3dðd − 1Þ/K − 1 + 2ð2Cα/εÞ1/α + 8 and free parameters at
most 2ð2Cα/εÞ1/α + 8d. However, the filter size is often no
larger than the input dimension in practice, meaning that
this structure is not frequently used. By comparison, even
though our Remark 7 indicates that the computation units
and free parameters of MDCNNs constructed from Theorem
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6 have the same order of [15], it is easy to find that our con-
structed network may be closer to real-world applications, and
the convergence rate from (15) reveals the benefit of depth.

Let f ∈Wr
∞ð½0, 1�dÞ, based on Taylor expansion; paper

[32] had shown that one needs ReLU neural networks with
length at most cðd, rÞðln 1/ε + 1Þ and free parameters along
with computation units at most cðd, rÞε−d/rðln 1/ε + 1Þ to
ensure the approximation accuracy ε. As a comparison,
Remark 10 states that our MDCNNs only need L = d
ðCkGkÞ2/ε2e layers which are dimension-free, the number
of computation units is U ≤ 4ddðCkGkÞ2/ε2e, and free
parameters are P ≤ KdðCkGkÞ2/ε2e + 5 to get the approxi-
mation accuracy ε. Our Theorem 9 has huge advantages over
[32] since the discussions from [14, 15] indicate that cðd, rÞ
has a 2d factor which may be very large when the input
dimension d is large. In addition, paper [14] had considered
the DCNNs without downsampling operators, and it leads to
the networks’ widths being linearly increasing. In such a sit-
uation, the number of computation units and free parame-
ters of the DCNNs with L = dðCkGkÞ2/ε2e is
Ld + ðLðL − 1Þ/2ÞðK − 1Þ = Oðð1/ε4Þ + ðd/ε2ÞÞ and ð5K + 3Þ
L + 2d − 2K + 1 = Oðð1/ε2Þ + dÞ, respectively. Compared
with that work, the MDCNNs from Theorem 9 have finite
width, and the computation units are at most U ≤ 4dd
ðCkGkÞ2/ε2e = Oðd/ε2Þ, and free parameters are at most
P ≤ KdðCkGkÞ2/ε2e + 5 = Oð1/ε2Þ which demonstrates bet-
ter performances to [14].

3. Proofs of Main Results

There are two kinds of downsampling operators DA1
and

DA2
acting on each layer in our constructed MDCNNs to

ensure the finite width property, where A1 = ½K + 1 : K + d�
and A2 = ½1 : d� (½a : b� denotes all integers belong to ½a, b�).
Thereby, for any x ∈ℝd and w ∈ℝK+1, we can write the
downsampled convolution as DA1

∘ ðw ∗ xÞ = Tw
1 x and DA2

∘ ðw ∗ xÞ = Tw
2 x, where Tw

1 and Tw
2 ∈ℝd×d are square matri-

ces consisting of rows from Tw given by

Tw
1 =

wK+1 wK ⋯ w1 ⋯ 0

0 wK+1 ⋯ w2 ⋯ 0

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 0 wK+1 ⋯ w1

⋮ ⋮ ⋱ ⋱ ⋱ ⋮

0 0 0 0 0 wK+1

266666666666664

377777777777775
,

Tw
2 =

w1 0 0 ⋯ ⋯ 0

w2 w1 0 ⋯ ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ 0

wK+1 ⋯ w2 w1 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋱ ⋮

0 ⋯ wK+1 ⋯ w2 w1

266666666666664

377777777777775
:

ð18Þ

That is, convolution of w and x with downsampling
operators DA1

and DA2
is equivalent to special matrix-

vector multiplication. Furthermore, the two kinds of convo-
lution have the property that for input signal x ∈ℝd , we have
Tw
1 x ∈ℝd and Tw

2 x ∈ℝd ; i.e., the input data and output data
are equal widths.

We first introduce some lemmas in Subsection 3.1 that
will be used later to prove our main results. Detailed proofs
of our main results will be shown in Subsection 3.2.

3.1. Auxiliary Lemmas

Lemma 11. Let α ∈ℝd , x ∈ ½−1, 1�d , t ∈ℝ, K + 1ðK ∈ ½d − 1�Þ
be the uniform filter size, Aα =∑d

i=1jαij, the constant B ≥ 1 is
an arbitrary upper bound of max

1≤i≤d
jxij, and L0 = dd/Ke. Then,

there exists an MDCNN with 3 channels having downsam-
pling set ½L0� and

W lð Þ ∈

ℝ K+1ð Þ×3×1, if l = 1,
ℝ K+1ð Þ×3×3, if l = 2,⋯, L0 − 1,
ℝ K+1ð Þ×2×3, if l = L0,

8>><>>: ð19Þ

such that hðL0ÞðxÞ ∈ℝd×2 with ðhðL0ÞðxÞÞ1,1 = α · x + AαB

and ðhðL0ÞðxÞÞ:,2 = ðxi + BÞdi=1. Moreover, max
1≤l≤L0

kW ðlÞk∞ =
max f1, kαk∞g, computation units U = 3L0d − d, and free
parameters P = d + 3.

Remark 12. The proof procedure of this lemma suggests that
by changing the bias in layer L0 to be bðL0Þ = ½ð2AαB + t +
∑d

i=K+1αiÞ1d+K , 0� ⊗ 1K+d ( ⊗ denotes the Kronecker prod-

uct), we have ðhðL0ÞðxÞÞ1,1 = σðα · x − tÞ. Besides, it is not dif-
ficult to get that, if we abandon the last channel of each layer;
i.e., the channel used to store the input data x is deleted in
the process of its proof; after L0 layers of convolution, we
have hðL0ÞðxÞ = α · x + B (here, in layer L0, we choose the
downsampling set ½K + 1 : K + d�), and max

1≤l≤L0
kwðlÞk∞ =max

f1, kαk∞g, the computation units are 2L0d − d, and the free
parameters P = d + 3.

Remark 13. The proof of this lemma tells us that our con-
structed MDCNN has three characteristics: first, only 3
channels are used in all layers; second, all channels have
the same width d; at last, it has finite layers L0. It can be seen
from these characteristics that MDCNNs have great superi-
ority in the view of computation units and free parameters.

Proof. Our MDCNN contains 3 channels in layer l
ð1 ≤ l ≤ L0 − 1Þ, the first channel is used to get the target out-
put, the second channel to shift the input data by K units,
and the third channel to store the input data; the last layer con-
tains 2 channels. By using convolution computation through
L0 layers, we get the desired result. We first construct filters

and bias in the first layer, choosing W
ð1Þ
:,1,1 =
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½0, αK , αK−1,⋯,α1�T ∈ℝK+1, W
ð1Þ
:,2,1 = ½1, 0,⋯,0�T ∈ℝK+1,

W
ð1Þ
:,3,1 = ½0,⋯,0, 1�T ∈ℝK+1, and bð1Þ = ½−AαB,−B,−B� ⊗ 1d+K ,

where 1d+K denotes the vector in ℝd+K whose entries equal
to 1; we have

Convσ
W 1ð Þ ,b 1ð Þ xð Þ =

AαB x1 + B B

αKx1 + AαB x2 + B B

⋮ ⋮ ⋮

〠
K

i=1
αixi + AαB xK+1 + B x1 + B

⋮ ⋮  

α1xd + AαB B xd + B

266666666666666664

377777777777777775
∈ℝ K+dð Þ×3:

ð20Þ

By taking the downsampling set A1 = ½K + 1 : K + d�, we
get

h 1ð Þ xð Þ =DA1
∘ Convσ

W 1ð Þ ,b 1ð Þ xð Þ

=

〠
K

i=1
αixi + AαB xK+1 + B x1 + B

⋮ ⋮ ⋮

α1xd + AαB B xd + B

2666664

3777775 ∈ℝd×3:

ð21Þ

It is noteworthy that, for j ∈ ½3�, ðhð1ÞðxÞÞ:,j = σðTW
ð1Þ
:, j,1

1 hð0Þ

ðxÞ−DA1
ðbð1Þ:,j ÞÞ with T

W
ð1Þ
:, j,1

1 having the form of (18). For

2 ≤ l ≤ L0 − 1, W ðlÞ
:,j,: ∈ℝ

ðK+1Þ×3 has the following form:

W
lð Þ
:,1,: =

0 0 0
0 αlK 0
⋮ ⋮ ⋮

0 α l−1ð ÞK+2 0
1 α l−1ð ÞK+1 0

2666666664

3777777775
,

W
lð Þ
:,2,: =

0 1 0
0 0 0
⋮ ⋮ ⋮

0 0 0

2666664

3777775,

W
lð Þ
:,3,: =

0 0 0
⋮ ⋮ ⋮

0 0 0
0 0 1

2666664

3777775,

ð22Þ

and bð2Þ = ½−AαB, 0, 0� ⊗ 1d+K , for 3 ≤ l ≤ L0 − 1, bðlÞ =
½0, 0, 0� ⊗ 1d+K . By choosing the downsampling set A1,
we have

h lð Þ xð Þ =DA1
∘ Convσ

W lð Þ ,b lð Þ xð Þ

=

〠
lK

i=1
αixi + 2AαB + B 〠

lK

i=K+1
αi xlK+1 + B x1 + B

⋮ ⋮ ⋮

α1xd + 〠
l−1

i=1
αiK+1B B xd + B

2666666664

3777777775
∈ℝd×3:

ð23Þ

Similarly, for j ∈ ½3�, ðhðlÞðxÞÞ:,j = σð∑3
i=1T

W
ðlÞ
:, j,i

1

ðhðl−1ÞðxÞÞ:,i−DA1
ðbðlÞ:,j ÞÞ with T

W
ðlÞ
:, j,i

1 having the form of
(18). For l = L0, by choosing

W
L0ð Þ
:,1,: =

0 0 0
⋮ ⋮ ⋮

0 0 0
0 αd 0
⋮ ⋮ ⋮

1 α L0−1ð ÞK+1 0

2666666666664

3777777777775
∈ℝ K+1ð Þ×3,

W
lð Þ
:,2,: =

0 0 0
0 ⋮ 0
0 0 0
0 0 1

2666664

3777775 ∈ℝ K+1ð Þ×3,

ð24Þ

bðL0Þ = ½ðAαB +∑d
i=K+1αiÞ1d+K , 0� ⊗ 1K+d, and the down-

sampling set A1, we have

h L0ð Þ xð Þ =DA1
∘ Convσ

W L0ð Þ ,b L0ð Þ xð Þ

=

α · x + AαB x1 + B

⋮ ⋮

α1xd + 〠
L0−1

i=1
αiK+1B xd + B

2666664

3777775 ∈ℝd×2:
ð25Þ

In the same way, for j ∈ ½2�, ðhðL0ÞðxÞÞ:,j = σð∑3
i=1T

W
ðL0Þ
:, j,i

1

ðhðL0−1ÞðxÞÞ:,i −DA2
∘bðL0Þ:,j Þ with T

W
ðL0Þ
:, j,i

1 having the form of
(18). In the representation of (18), we can easily find that out-
puts of the whole constructed convolutional network in each
channel have equal width d. Thus, the computation units of
the network are ð3L0 − 1Þd, and free parameters P = d + 3.
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Our next goal is aimed at giving the convergence rates
of functions coming from the Lipschitz-αð0 < α ≤ 1Þ class.
Before that, we introduce one more lemma inspired
from [33, 34].

Lemma 14. Let g ∈ Kα and m, T ∈ℕ+; there exists a piece-
wise linear function eg1ðxÞ with breakpoints
f−1 + ð2r/mÞgmr=0 such that

eg1 − gk k −1,1½ � ≤
2Cα2

α

Tα , ð26Þ

where

eg1 xð Þ = 〠
T−1

j=0
wjσ x −

2j
T

+ 1
� �

+ g −1ð Þ: ð27Þ

Remark 15. There are two differences between Lemma 14
and [33, 34]; on the one hand, Lemma 7.3 of [34] gives a
similar result of this lemma, but it does not give the concrete
expression of g used to approximate functions; on the other
hand, [33] gives a concrete ReLU expression of functions
used to approximate functions, but it is only for functions
coming from the Lipschitz-1 class. Besides, both [33, 34]
are acquired under the assumption that input data x ∈ ½0, 1�.

Proof. Our proof will be divided into two parts. Firstly, we
shall give an upper bound for kg − eg1k½−1,1� based on mod-

ulus of continuity of g. By Lemma 6 of [19], let ½t2, tN−1� =
½−1, 1�, N = T + 3, and ti = −1 + 2ði − 2Þ/T , i = 1, 2,⋯,N ;
the piecewise linear function eg1 used to approximate func-
tions in ½t2, tN−1� = ½−1, 1� has the form eg1ðxÞ =∑N−1

j=2 gðt jÞδj
ðxÞ, where δj is a univariate function with j ∈ f2, 3,⋯,N − 1g
given by δjðxÞ = T/2ðσðx − t j−1Þ − 2σðx − t jÞ + σðx − t j+1ÞÞ.
By reordering, let

h2 xð Þ =
w0σ x − t2ð Þ + g −1ð Þ, x ∈ t2, t3½ �
0, otherwise,

(
, ð28Þ

and for 3 ≤ j ≤ T + 1,

hj xð Þ =wj−2σ x − t j
À Á

, x ∈ t j, t j+1
Â Ã

0, otherwise, ð29Þ

where w0 = T/2ðgðt3Þ − gðt2ÞÞ and wj = T/2ðgðt j+3Þ − 2g
ðt j+2Þ + gðt j+1ÞÞð1 ≤ j ≤ T − 1Þ, we have

eg1 xð Þ = 〠
T−1

j=0
hj+2 xð Þ = 〠

T−1

j=0
wjσ x − t j+2

À Á
+ g −1ð Þ: ð30Þ

Then, by Lemma 6 of [19], for any g ∈ Kα, we
have

g − eg1k k −1,1½ � ≤
2Cα2α
Tα , ð31Þ

which gives (26).

Equation (27) indicates that any function g ∈ Kα can be
excellently approximated by the linear combinations of
ReLU units. Thereby, the forms of linear combinations by
ReLU units inspire us to construct MDCNNs with down-
sampling to approximate functions. Our next lemma pro-
vides specific skills on how to embed (27) into
downsampled MDCNNs.

Lemma 16. Let g ∈ Kα, x ∈ ½−1, 1�, and m, T ∈ℕ+; there
exists a downsampled MDCNN having L = T + 2ðL ≥ 3Þ
layers all of which have only 3 channels, such that

〠
3

j=1
cj h Lð Þ xð Þ
� �

j
− g xð Þ




−1,1½ �
≤
2Cα2

α

Tα , ð32Þ

with cj ∈ℝ, ðj ∈ ½3�Þ. The computation units are U = 3T + 6,
and the free parameters are weights kWk0 = 3T + 4, bias
kbk0 = 2T + 3, and P = 3T + 3.

Proof. The main techniques are embedding the ReLU
expression from Lemma 14 into some specific MDCNNs.
Different channels will play the role of storing input data,
shifting input data, and storing σ units.

Choosing T = L − 2, we have L = T + 2 ≥ 3. For the first

layer, W ð1Þ ∈ℝ1×3×1 with W
ð1Þ
1,:,1 = ½1, 1, 0�, Bð1Þ = ½−1,−1, 0�,

we have Convσ
W ð1Þ ,Bð1Þ ðxÞ = ½x + 1, σðx + 1Þ, 0�.

For 2 ≤ l ≤ T + 1, W ðlÞ ∈ℝ1×3×3,

W
lð Þ
1:,: =

1 1 0
0 0 wl−2

0 0 0

2664
3775,

B lð Þ = 0, 2 l − 1ð Þ
T

,−Bl−1

� �
,

ð33Þ

where B1 = 2jw0j, Bl = 2jwl−1j, and Ml =∑l
i=1Bi. In this

matrix, columns represent filters for different output
channels and filters in different rows are corresponding
to the corresponding input channels with the index of
rows and columns corresponding to the index of chan-
nels. Then, Convσ

W ðlÞ ,BðlÞ ðxÞ = ½x + 1, σðx − ð2ðl − 1Þ/TÞ + 1Þ,
∑l−2

t=0wtσðx − ð2t/TÞ + 1Þ +Ml−1�. By induction, we have

Convσ
W T+1ð Þ ,B T+1ð Þ xð Þ = x + 1, 0, 〠

T−1

t=0
wtσ x −

2t
T

+ 1
� �

+MT

" #
:

ð34Þ

Here, when l = T + 1, we change the bias of the second
output channel to be 1 such that it has zero output.
The third element contains the linear ReLU units fromeg1ðxÞ.

For l = L = T + 2, W ðLÞ ∈ℝ1×3×3 with all elements equal
to zero except for top left and bottom right which is 1,
and BðLÞ = ½0,−1, 0�, we get Convσ

W ðLÞ ,BðLÞ ðxÞ = ½x + 1, 1,∑T−1
t=0
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wtσðx − ð2t/TÞ + 1Þ +MT �. Choosing c1 = 0, c2 = −ðMT − g
ð−1ÞÞ, and c3 = 1, we have

〠
3

j=1
cj h Lð Þ xð Þ
� �

j
= 〠

T−1

t=0
wtσ x −

2t
T

+ 1
� �

+ g −1ð Þ = eg1 xð Þ:

ð35Þ

Thus, by (26), we have

〠
3

j=1
cj h Lð Þ xð Þ
� �

j
− g xð Þ




−1,1½ �
≤
2Cα2α
Tα , ð36Þ

with computation units 3T + 6 and free parameters P = 3
T + 3.

3.2. Proofs of Main Theorems

Proof of Theorem 6. Since ξ ∈ Bd , x ∈ ½−1, 1�d , we have ξ ·
x ∈ ½−1, 1�. By Remark 12, if we take an upper bound B =
h = 1, then there exists an MDCNN with at most 2 chan-
nels such that hðL0ÞðxÞ = ξ · x + 1. By changing Bð1Þ to be
zero in the proof of Lemma 16, we have Convσ

W ð1Þ ,Bð1Þ ðxÞ =
½ξ · x + 1, σðξ · x + 1Þ, 0�. In the sequel, with L replaced by
L − L0 in Lemma 16, we get the desired results.

Proof of Theorem 9. Let m ∈ℝ+; the approximation of f is
based on f mðxÞ from [22] having the following form:

f m xð Þ = b0 + α 0ð Þ · x + v
m
〠
m

k=1
bkσ α kð Þ · x − tk

� �
, ð37Þ

with bk ∈ ½−1, 1�, kαðkÞk1 = 1, 0 ≤ tk ≤ 1, b0 = f ð0Þ, αð0Þ = ∇f
ð0Þ, v ≤ 2vf ,2, and vf ,2 =

Ð
ℝdkwk21jFð f ÞðwÞjdw <∞. By

Theorem 2 of [22], we have

sup
x∈ −1,1½ �d

f xð Þ − f m xð Þj j ≤ cvf ,2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d + ln m

p
m−1/2−1/d , ð38Þ

for some universal constant c > 0. We will embed f mðxÞ
into a downsampled MDCNN with at most 4 channels
to get the target approximation. The core of our main
method is using different channels to store a variety of
data features. Next, we will prove the theorem by induc-
tion. For the first L0 layers, by Lemma 11, there exists a
downsampled MDCNN with 3 channels having L0 layers
such that hðL0ÞðxÞ ∈ℝd×2 with ðhðL0ÞðxÞÞ1,1 = σðαð1Þ · x − t1Þ
and ðhðL0ÞðxÞÞ:,2 = ðxi + BÞdi=1ðB ≥max

1≤i≤d
jxijÞ, where the coeffi-

cient vector α in Lemma 11 is replaced by αð1Þ. Moreover,
the first output channel stores the linear rectifier units,
and the second channel stores the input data at layer L0.

For l = L0 + 1, by choosing

W
lð Þ
:,1,: =

v
m
b1 0

0 0
⋮ ⋮

0 0

26666664

37777775 ∈ℝ K+1ð Þ×2,

W
lð Þ
:,2,: =

0 1
0 0
⋮ ⋮

0 0

2666664

3777775 ∈ℝ K+1ð Þ×2,

ð39Þ

and BðlÞ = ½−B1, 0� ⊗ 1d+K , where Bk =∑k
i=1jðv/mÞbijðB∑d

j=1j
αðiÞj j + jtijÞð1 ≤ k ≤mÞ, and the downsampling set A2, we

have hðlÞðxÞ ∈ℝd×2 with ðhðlÞðxÞÞ1,1 = v/mb1σðαð1Þ · x − t1Þ
+ B1 and ðhðlÞðxÞÞ:,2 = ðxi + BÞdi=1.

Next, the MDCNN we constructed will contain at most 4
channels: the first channel is used to store linear combina-
tions of linear rectification units, the second channel is used
to store the next linear rectification unit, the third channel is
used to shift the input data by K steps, and the fourth chan-
nel is used to store raw input information. Suppose for l =
kðL0 + 1Þ, hðlÞðxÞ ∈ℝd×2 with ðhðlÞðxÞÞ1,1 =∑k

i=1v/mbiσðαðiÞ ·
x − tiÞ + Bk and ðhðlÞðxÞÞ:,2 = ðxi + BÞdi=1; then, for l = kðL0 +
1Þ + 1, we choose W ðlÞ ∈ℝðK+1Þ×4×2 given by

W
lð Þ
:,1,: =

0 0
⋮ ⋮

0 0
1 0

2666664

3777775,

W
lð Þ
:,2,: =

0 0
0 α

k+1ð Þ
K

⋮ ⋮

0 α
k+1ð Þ
1

2666664

3777775,

W
lð Þ
:,3,: =

0 1
0 0
⋮ ⋮

0 0

2666664

3777775,

W
lð Þ
:,4,: =

0 0
⋮ ⋮

0 0
0 1

2666664

3777775:

ð40Þ

Here, the column label of each matrix represents the
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input channel index, and the column vectors represent the
corresponding filters. Further, by choosing BðlÞ = ½0,−2
Bmax, 0, 0� ⊗ 1d+K with Bmax = max

1≤i≤m
∑d

j=1jαðiÞj jB and the

downsampling set A1, we have hðlÞðxÞ ∈ℝd×4 with

ðhðlÞðxÞÞ1,1 = v/m∑k
i=1biσðαðiÞ · x − t1Þ + Bk, ðhðlÞðxÞÞ1,2 =∑K

i=1
αðk+1Þi xi + B∑K

i=1α
ðk+1Þ
i + 2Bmax, ðhðlÞðxÞÞ1:d−K ,3 = ðxi + BÞdi=K+1,

ðhðlÞðxÞÞd−K+1:d,3 = 0K , and ðhðlÞðxÞÞ:,4 = ðxi + BÞdi=1.
For l = kðL0 + 1Þ + sð2 ≤ s ≤ L0 − 1Þ, W ðlÞ ∈ℝðK+1Þ×4×4

and W
ðlÞ
:,1,:,W

ðlÞ
:,2,:,W

ðlÞ
:,3,:,W

ðlÞ
:,4,: are given in turn by

0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

1 0 0 0

26666664

37777775,
0 0 0 0

0 0 α
k+1ð Þ
sK 0

⋮ ⋮ ⋮ ⋮

0 1 α
k+1ð Þ
s−1ð ÞK+1 0

266666664

377777775
,

0 0 1 0

0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

26666664

37777775,
0 0 0 0

⋮ ⋮ ⋮ ⋮

0 0 0 0

0 0 0 1

26666664

37777775:
ð41Þ

By choosing bðlÞ = ½0, 0, 0, 0� ⊗ 1d+K and the downsam-
pling set A1, we have hðlÞðxÞ ∈ℝd×4 with ðhðlÞðxÞÞ1,1 = v/m
∑k

i=1biσðαðiÞ · x − t1Þ + Bk, ðhðlÞðxÞÞ1,2 =∑Ks
i=1α

ðk+1Þ
i xi + B∑Ks

i=1
αðk+1Þi + 2Bmax, ðhðlÞðxÞÞ1:d−Ks,3 = ðxi + BÞdi=Ks+1,
ðhðlÞðxÞÞd−Ks+1:d,3 = 0Ks, and ðhðlÞðxÞÞ:,4 = ðxi + BÞdi=1.

For l = kðL0 + 1Þ + L0, W ðlÞ ∈ℝðK+1Þ×4×4 with W
ðlÞ
:,1,: =

W
ðl−1Þ
:,1,: , W

ðlÞ
:,3,: =W

ðl−1Þ
:,3,: , W

ðlÞ
:,4,: =W

ðl−1Þ
:,4,: , W

ðlÞ
:,2,2 = ½0,⋯,0, 1�T ,

and W
ðlÞ
:,2,3 = ½0,⋯,0, αðk+1Þd ,⋯,αðL0−1Þk+1�

T
; otherwise, the ele-

ments in W
ðlÞ
:,2: are equal 0; by choosing BðlÞ = ½0, tk+1 + 2

Bmax +∑d
i=1αiB, 0, 0� ⊗ 1d+K and the downsampling set A1,

we have hðlÞðxÞ ∈ℝd×4×4 with ðhðlÞðxÞÞ1,1 = v/m∑k
i=1biσðαðiÞ ·

x − t1Þ + Bk, ðhðlÞðxÞÞ1,2 = σðαðk+1Þ · x − tk+1Þ,ðhðlÞðxÞÞ:,3 = 0d,
and ðhðlÞðxÞÞ:,4 = ðxi + BÞdi=1.

For l = ðk + 1ÞðL0 + 1Þ, W ðlÞ ∈ℝðK+1Þ×2×4, and in the first

channel, W ðlÞ
1,1,1 = 1 and W

ðlÞ
1,1,2 = v/mbk+1, and the elements

are 0 otherwise; in the second channel, W ðlÞ
1,2,4 = 1, and the

elements are 0 otherwise. By choosing BðlÞ = ½−jv/mbi
jðB∑d

j=1jαðk+1Þj j + jtk+1jÞ, 0� ⊗ 1d+K and the downsampling

set A2, we have hðlÞðxÞ ∈ℝd×2×4 with ðhðlÞðxÞÞ1,1 = v/
m∑k+1

i=1 biσðαðiÞ · x − tiÞ + Bk+1 and ðhðlÞðxÞÞ:,2 = ðxi + BÞdi=1.
By induction, for l =mðL0 + 1Þ, we have hðlÞðxÞ ∈ℝd×2,

and ðhðlÞðxÞÞ1,1 = v/m∑m
i=1biσðαðiÞ · x − tiÞ + Bm, ðhðlÞðxÞÞ:,2 =

ðxi + BÞdi=1.

Next, for mðL0 + 1Þ < l ≤mðL0 + 1Þ + L0, we will use the
first channel to store the linear combination of ReLU units,
and there is no need to store the input data. By Lemma 11,
we have for l =mðL0 + 1Þ + L0, hðlÞðxÞ ∈ℝd×2 with
ðhðlÞðxÞÞ1,1 = v/m∑m

i=1biσðαðiÞ · x − tiÞ + Bm and ðhðlÞðxÞÞ1,2 =
αð0Þ · x + B0 where B0 =∑d

i=1jαð0Þj.
For l = ðm + 1ÞðL0 + 1Þ, W ðlÞ ∈ℝðK+1Þ×2 with W

ðlÞ
1,1,1 =

W
ðlÞ
1,1,2 = 1; the elements are 0 otherwise, W ðlÞ

:,2,: = 0ðK+1Þ×2.
By choosing BðlÞ = ½0,−1� ⊗ 1d+K and the downsampling set
A2, we have hðlÞðxÞ ∈ℝd×2 with ðhðlÞðxÞÞ1,1 = v/m∑m

i=1bi
σðαðiÞ · x − tiÞ + Bm + αð0Þ · x + BmaxB and ðhðlÞðxÞÞ1,2 = 1.

Thus, by choosing c1,1 = 1, c1,2 = −ðBm + A0BÞ + b0 and
cj,i = 0 otherwise, we have

〠
2

i=1
〠
d

j=1
cj,i h m+1ð Þ L0+1ð Þð Þ xð Þ
� �

j,i
= f m xð Þ: ð42Þ

At last, by choosing m = bðL/L0 + 1Þ − 1c leading to
ðL0 + 1Þðm + 1Þ ≤ L < ðL0 + 1Þðm + 2Þ, it is inevitable to
appear L > ðL0 + 1Þðm + 1Þ. However, we need not worry
about it since by using the identity map similar to that
in Lemma 16, we can always have

〠
2

i=1
〠
d

j=1
cj,i h Lð Þ xð Þ

� �
j,i
= f m xð Þ: ð43Þ

In addition, through its concrete form of m, we have
ln m ≤ ln L, and since K ∈ ½d − 1�, we further have

1
m
≤

L0 + 1
L − 2 L0 + 1ð Þ ≤

1/K + 2/dð Þd
1 − 2 L0 + 1ð Þ/Lð ÞL

≤
að Þ 1/K + 2/dð Þd

1/3L ≤ 6 d
L
,

ð44Þ

where we use L ≥ 3ðL0 + 1Þ in ðaÞ. Thus, we obtain
m−1/2−1/d ≤ 6ðd/LÞ1/2+1/d . Putting these into (38), we have

sup
x∈ −1,1½ �d

f xð Þ − f m xð Þj j ≤ 6cvf ,2d1+1/d
ln Lð Þ1/2
L1/2+1/d

: ð45Þ

In a similar way of [14], by using the Cauchy-
Buniakowsky-Schwarz inequality, we have

6cvf ,2d1+1/d = 6cd1+1/d
ð
ℝd

wk k21 F fð Þ wð Þj jdw

≤ 6c Gk kd1+1/d
ð
ℝd

wk k21 1 + wk k22
À Á−r/2

dw

≤ 6c Gk k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d6πd/2

Γ d/2ð Þ + 1ð Þ

s
1 + 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2r − d − 4
p

� �
≤ 12cc′ Gk k,

ð46Þ
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where c′ =max
l∈ℕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l6πl/2/Γððl/2Þ + 1Þ

p
is an absolute con-

stant. By taking C = 12cc′, we get the inequality (17).
The computation units are U = ð4dL0 + 2dÞm + dL0 + d ≤ 4L
d and free parameters are P = ðd + 2Þðm − 1Þ + 1 + 2d + 8 =
ðd + 3Þðm + 1Þ + 5 ≤ ððd + 3Þ/ðL0 + 1ÞÞL + 5. This completes
the Proof of Theorem 9.

4. Conclusion and Future Work

This paper studies the approximations of structured
MDCNNs with downsampling. The results show that for
functions from ridge class and Sobolev’s space HrðℝdÞ, our
proposed MDCNNs have better function approximation
performances over other relevant studies, explaining the rea-
son why MDCNNs are successful in applications to some
extent. But, note that our MDCNNs only consider the signal
input and convolution of vectors; therefore, how does the
matrix or higher order of convolution work? Is there some
relationship between MDCNNs and FNNs? How does
MDCNNs behave in terms of their generalization and
expressivity? These are interesting questions we left them
as future work.
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