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This paper is mainly concerned with the existence of mild solutions and exact controllability for a class of fractional semilinear system
of order q ∈ ð1, 2Þ with instantaneous and noninstantaneous impulses. First, combining the Kuratowski measure of noncompactness
and the Mönch fixed point theorem, we investigated the existence result for the considered system. It is remarkable that our
assumptions for impulses and the nonlinear term are weaker than the Lipschitz conditions. Next, on this basis, the exact
controllability for the considered system is determined. In the end, an example is provided to support the main findings.

1. Introduction

Quite a number of evolutionary processes are characterized by
sudden state changes at some certain points in time. The dura-
tion of these disturbances is negligible compared to the entire
evolutionary process. Thus, if we assume that these perturba-
tions occur over relatively short periods of time, the evolution-
ary processes can be described in the form of pulses, even
impulsive differential equations (IDEs for short). It is well
known that many agricultural, biological, and medical models
are designed according to impulsive influences, such as the
control of infectious diseases and changes in human hormone
levels under the influence of external factors. Therefore, IDEs
can be seen as the accurate description of some specific prob-
lems in the real world (see [1, 2] and references therein).

On the other hand, the dynamics of some evolutionary
processes, such as intravenous drugs, periodic fishing, and
criteria for pest management, cannot be described by instan-
taneous impulsive systems. In order to solve these kinds of
problems, Hernández and O’Regan [3] introduced the con-
cept of noninstantaneous impulses, which begin at a fixed
point and remain active for a finite period of time. In recent
years, many scholars have made studies on these two types
of IDEs in depth. For instance, Liu and O’Regan [4] investi-

gated the functional differential equations with instanta-
neous impulse by applying the measure of noncompactness
and the Mönch fixed point theorem. Chen et al. [5] used
noncompact semigroup to deal with the semilinear evolution
equations with noninstantaneous impulses.

Also, every aspect of a dynamical system cannot be cov-
ered under instantaneous impulse and noninstantaneous
impulse separately. In other words, it is inevitable to con-
sider these two types of impulse factors in a system to find
out how they affect the system together. For instance, Meraj
and Pandey [6] investigated a class of instantaneous and
noninstantaneous impulsive systems by Sadovskii’s fixed
point theorem. Tian and Zhang [7] studied the existence of
solutions for second-order differential equations with these
two kinds of impulses by variational method.

In addition, it is widely known that many scholars have
already paid considerable attention to the controllability of
systems. Shukla et al. [8] studied on approximate controllabil-
ity of semilinear control systems with impulses. Li et al. [9]
studied the persistence of delayed cooperative models: impul-
sive control method. Liu et al. [10] investigated the control
design for output tracking of delayed Boolean control net-
works. Xu et al. [11] dealt with robust set stabilization of
Boolean control networks with impulses. Zhao et al. [12]
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studied the controllability for a class of semilinear fractional
evolution systems by resolvent operators. One of the effective
ways to solve this kind of problems is transforming them into
fixed point problems by some proper operators in a function
space. For example, the Mönch fixed point theorem was used
to deal with the controllability of differential equations by Liu
and O’Regan [4]. ρ-Set contractive fixed point theorem was
applied to investigate the controllability for a type of nonin-
stantaneous impulsive systems by Meraj and Pandey [6].

Compared with the classical integer derivatives, the frac-
tional derivatives of order 0 < q < 1 defined by integration
have the characteristics of nonlocal and memory properties.
Thus, they are widely used in many fields. For example, Ge
and Jhuang [13] dealt with chaos, control, and synchroniza-
tion of a class of fractional system. Cheng and Yuan [14]
investigated the stability for the equilibria of a kind of equation
with fractional diffusion. Jia and Wang [15] studied a fast
finite volume method for a type of fractional equations. Zhao
[16] dealt with the controllability of a type of impulsive
fractional nonlinear evolution equations. Meanwhile, many
scholars have structured relevant models to study several
kinds of fractional semilinear systems. For example, Shukla
and Patel [17] studied controllability for fractional semilinear
delay control systems. Karapinar et al. [18] got the continuity
of the fractional derivative of the time-fractional semilinear
pseudoparabolic systems. KavithaWilliams et al. [19] analysed
the approximate controllability of the Atangana-Baleanu frac-
tional semilinear control systems. On this basis, many scholars
have found that fractional systems of order q ∈ ð1, 2Þ can
describe more complex problems in real life and have con-
ducted in-depth research on them. Salem and Abdullah [20]
got controllability for generalized fractional differential equa-
tions. Muslim and Kumar [21] investigated the exact control-
lability of a control system governed by the fractional
differential equation of order α ∈ ð1, 2�. Shukla et al. [22] dealt
with the existence and approximate controllability for the frac-
tional semilinear impulsive control system of order r ∈ ð1, 2Þ.
Niazi et al. [23] studied controllability for fuzzy fractional evo-
lution equations. Iqbal et al. [24] investigated the existence and
uniqueness of mild solutions for fractional controlled fuzzy
evolution equations. The most common way to solve this kind
of problem is using fixed point theorem and cosine family.

Inspired by the discussion above, we consider the exact
controllability for the fractional semilinear systemwith instan-
taneous and noninstantaneous impulses as follows:

cDqx tð Þ = Ax tð Þ + Bu tð Þ + f t, x tð Þð Þ,
t ∈ ∪j

i=0 di, ci+1ð Þ ⊂ T , t ≠ cki+ki ,

x tð Þ =Gi t, x c−ið Þð Þ, t ∈ ∪j
i=1 ci, dið Þ,

x 0ð Þ = x0,
x′ 0ð Þ = x1,

Δx cki+ki

� �
= Iki+ki x cki+k

−

i

� �� �
,

Δx′ cki+ki

� �
= gIki +ki x cki+k

−

i

� �� �
,

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ð1Þ

where i = 0, 1,⋯, j, T = ½0, b�, b > 0 is a constant. And k = 1,
2,⋯, ðki+1 − kiÞ, k0 = 0. cDq is the Caputo fractional derivative
of q ∈ ð1, 2Þ. We suppose that A : DðAÞ ⊂X⟶X is the
infinitesimal generator of a strongly continuous q-order cosine

family ðCqðtÞÞt≥0, where X is a Banach space, and 0 = c0 = d0

< c10 < c20 <⋯ < ck10 < c1 < d1 < ck1+11 < ck1+21 <⋯ < ck21 < c2 <
⋯ < dj < c

kj+1
j < c

kj+2
j <⋯ < c

kj+1
j < cj+1 = b. The state variable

xð·Þ ∈X. uð·Þ ∈ L2ðT , Y Þ is the control variable, where Y is
another Banach space. B : Y ⟶X is a bounded linear oper-
ator. The function f : T ×X⟶X is a function satisfying
some hypotheses. Gi : ðci, di� ×X⟶X and Gi′ : ðci, di� ×X

⟶X are noninstantaneous impulses, and Ii : X⟶X andeIi : X⟶X represent instantaneous impulses. The jump of
the state x at time t is ΔxðtÞ = xðt+Þ − xðt−Þ. In this paper,
we used the Mönch fixed point theorem to get the existence
of the solution without using the Lipschitz conditions.

As far as we know, no one has done research on such
class of systems yet. Kumar and Abdal studied (1) in the
form of classical integer derivatives in [25]. Muslim and
Kumar [21] dealt with (1) without instantaneous impulses.
Shukla et al. [22] investigated (1) without noninstantaneous
impulses. This article has the following distinctive features.
Firstly, compared with [25], (1) is in the form of fractional
derivatives of order 1 < q < 2. Secondly, the nonlinear term
and the two types of impulses here are no longer required
to satisfy the Lipschitz conditions which are stronger than
the assumptions used in this paper. Thirdly, compared with
[21, 22], we consider both types of impulses at the same
time. To sum up, the research results of this paper will be
able to more accurately describe and solve some complex
phenomena and problems in related fields. And the results
are general, which fill the gap of previous studies of frac-
tional system of order 1 < q < 2 with instantaneous and non-
instantaneous impulses.

The structure of this article is as follows. In Section 2, we
first list fundamental concepts and lemmas. In Section 3, the
existence of mild solutions and exact controllability for (1)
are discussed by applying the Mönch fixed point theorem
and cosine family. At last, in Section 4, two reasonable
examples are worked out to support the main findings.

2. Preliminaries

In this part, a set of piecewise continuous functions is pre-
sented first. Next, define a mild solution of (1). Some related
definitions and lemmas are listed on the side.

Assume that X is a Banach space with the norm k·k.
Define PCðT ;XÞ = fx : T ⟶Xjx is continuous at t ≠

cki+ki , t ≠ ci+1, and xðcki+k
−

i Þ, xðcki+k+i Þ, xðc−i+1Þ, xðc+i+1Þ exist, with
xðcki+k−i Þ = xðcki+ki Þ and xðc−i+1Þ = xðci+1Þ, for i = 0, 1,⋯, j, k =
1, 2,⋯, ðki+1 − kiÞg. Obviously, PCðT ;XÞ is a Banach space
with the norm kxkPC = supt∈TkxðtÞk.

Definition 1 (see [22]). If xðtÞ ∈ Cð½0, b� ;XÞ, then the
Riemann-Liouville integral of fractional order q > 0 is given by
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Jqx tð Þ = 1
Γ qð Þ

ðt
0
t − sð Þq−1x sð Þds, ð2Þ

where Cð½0, b� ;XÞ is the place of all continuous functions
xðtÞ: ½0, b�⟶X.

Definition 2 (see [22]). The Riemann-Liouville fractional
derivative of xðtÞ ∈ Cð½0, b� ;XÞ of order q ∈ ð1, 2Þ is given by

Dq
t x tð Þ =D2 J2−qx tð Þ = 1

Γ 2 − rð Þ
d2

dt2

ðt
0
t − sð Þ1−qx sð Þds: ð3Þ

Definition 3 (see [22]). The Caputo fractional derivative of
order q ∈ ð1, 2Þ is given by

cDq
t x tð Þ = J2−qD2x tð Þ = 1

Γ 2 − qð Þ
ðt
0
t − sð Þ1−q d2

dt2
x tð Þ

" #
ds:

ð4Þ

Consider fractional differential system as follows:

CD
q
t x tð Þ = Ax tð Þ, x 0ð Þ = ψ, x′ 0ð Þ = 0, ð5Þ

where q ∈ ð1, 2Þ, A : DðAÞ ⊂X⟶X is a closed and densely
operator defined in X, and DðAÞ illustrates the domain of A.
By taking the Riemann-Liouville fractional integral order q
on both sides of (5),

x tð Þ = ψ + 1
Γ qð Þ

ðt
0
t − sð Þq−1Ax sð Þds: ð6Þ

Definition 4 (see [22]). A family ðCqðtÞÞt≥0 ⊂ LðXÞ, q ∈ ð1, 2�
is called the solution operator (or a strongly continuous
q-order fractional cosine family) for (5) and A is called the
infinitesimal generator of CqðtÞ if the following conditions
hold:

(i) CqðtÞ is strongly continuous and Cqð0Þ = I, where I
denote the identity operator. And there exist con-
stants M1 > 0, M > 0, and ω ≥ 0 such that kCqðtÞk
≤M1e

−ωt ≤M

(ii) CqðtÞDðAÞ ⊂DðAÞ and ACqðtÞη = CqðtÞAη for all
η ∈DðAÞ, t ≥ 0

(iii) CqðtÞψ is the solution of xðtÞ = ψ + ð1/ΓðqÞÞÐ t0
ðt − sÞq−1AxðsÞds for all ψ ∈DðAÞ

Definition 5 (see [22]). The fractional sine family SqðtÞ:
½0,∞Þ⟶ LðXÞ associated with CqðtÞ is defined by

Sq tð Þ =
ðt
0
Cq sð Þds, t ≥ 0: ð7Þ

Definition 6 (see [22]). The fractional Riemann-Liouville fam-
ily PqðtÞ: ½0,∞Þ⟶ LðXÞ associated with CqðtÞ is defined by

Pq tð Þ = Jq−1Cq tð Þ: ð8Þ

Thus, for t ∈ ½0, b�, according to Definition 1,

Pq tð Þ  = Jq−1Cq tð Þ 
=
ðt
0

t − sð Þq−2
Γ q − 1ð Þ Cq sð Þds

 
≤

M
Γ q − 1ð Þ

ðt
0
t − sð Þq−2dt

≤
M
Γ qð Þ − t − sð Þq−1Â Ãt

0

≤
M
Γ qð Þ b

q−1 ≕MP:

ð9Þ

Lemma 7 (see [21]). The mild solution of the following frac-
tional semilinear system of order 1 < q < 2 with noninstanta-
neous impulses

cDqx tð Þ = Ax tð Þ + Bu tð Þ + f t, x tð Þð Þ, t ∈ ∪j
i=0 di, ci+1ð Þ,

x tð Þ =Gi t, x c−ið Þð Þ, t ∈ ∪j
i=1 ci, dið �,

x′ tð Þ =Gi′ t, x c−ið Þð Þ, t ∈ ∪j
i=1 ci, dið �,

x 0ð Þ = x0,
x′ 0ð Þ = x1

8>>>>>>>>><>>>>>>>>>:
ð10Þ

is be given by
where i = 1, 2,⋯, j.

x tð Þ =

Cq tð Þx0 + Sq tð Þx1 +
ðt
0
Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds, t ∈ 0, c1½ �,

x tð Þ =Gi t, x c−ið Þð Þ, t ∈
[j
i=1

ci, dið �,

Cq t − dið Þ Gi di, x c−ið Þð Þð Þ + Sq t − dið Þ Gi′ di, x c−ið Þð Þ
� �

+
ðt
di

Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds, t ∈ di, ci+1½ �,

8>>>>>>>>>><>>>>>>>>>>:
ð11Þ
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Lemma 8 (see [22]). The mild solution of the following frac-
tional semilinear system of order 1 < q < 2 with instantaneous
impulses

cDqx tð Þ = Ax tð Þ + Bu tð Þ + f t, x tð Þð Þ, t ∈ T ,
Δx cið Þ = Ii x cið Þð Þ, i = 0, 1,⋯, j,

Δx′ cið Þ = eIi x cið Þð Þ, i = 0, 1,⋯, j,
x 0ð Þ = x0,
x′ 0ð Þ = x1

8>>>>>>>><>>>>>>>>:
ð12Þ

is be given by

x tð Þ = Cq tð Þx0 + Sq tð Þx1 +
ðt
0
Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds

+ 〠
0<ci<t

Cq t − tið ÞIi x cið Þð Þ + 〠
0<ci<t

Sq t − tið ÞeIi x cið Þð Þ, t ∈ T:

ð13Þ

According to the above two lemmas, similar to [25], the
mild solution of (1) can be defined as follows.

Definition 9. For given uð·Þ ∈ L2ðT ; Y Þ, xð·, x0, x1, uÞ: T ⟶
X is called a mild solution of (1), if x ∈ PCðT ;XÞ and satisfies

Definition 10 (see [21]). System (1) is said to be exactly con-
trollable on T if, for every x0, x1 ∈X, and arbitrary final state
xb ∈X, there exists a control u ∈ L2ðT , Y Þ such that the mild
solution of (1) satisfies xðbÞ = xb.

Now, we introduce a result of the Kuratowski measure of
noncompactness X defined on bounded subsets of the
Banach space X. For more detailed information, please see
[5, 26–28] and references therein.

Lemma 11 (see [4]). Suppose X is a Banach space. Let D be a
countable set of strongly measurable function x : T ⟶X

such that there exists a μ ∈ L½T , R+� with kxðtÞk ≤ μðtÞ a.e.
t ∈ T for all x ∈D. Then, XðDðtÞÞ ∈ L½J , R+� and

X

ð
T
x tð Þdt : x ∈D

� �� �
≤ 2
ð
T
X D tð Þð Þdt, ð15Þ

where Xð·Þ denotes the Hausdorff noncompactness measure,
T = ½0, b�.

Theorem 12 (see [4]). Suppose X is a Banach space. Let D be
a closed and convex subset of X and u ∈D. Assume that the
continuous operator A : D⟶D has the following property:
C ⊂D countable and C ⊂ �coðfug ∪ AðCÞÞ imply C is rela-
tively compact. Then, A has a fixed point in D.

3. Existence of Solutions and
Exact Controllability

In this part, we discuss the existence of mild solutions of (1)
and exact controllability. To this end, we list the following
assumptions in the first place.

H1. f : T ×X⟶X is continuous. There exist aðtÞ
∈ L2½T , R+� and bðtÞ ∈ L1½T , R+� such that

f t, xð Þk k ≤ a tð Þ xk k + b tð Þ,∀x ∈X, t ∈ T: ð16Þ

And there exists ξðtÞ ∈ L1½T , R+� such that

X f t,Dð Þð Þ ≤ ξ tð ÞX Dð Þ, ð17Þ

for arbitrary bounded set D ⊂X.
H2. Gi : Ti ×X⟶X are derivable and Gi′ : Ti ×X⟶

X are continuous, Ti = ðci, di�, i = 1, 2,⋯, j. There exist giðtÞ,
hiðtÞ, �giðtÞ, �hiðtÞ, H iðtÞ, and gH i ðtÞ ∈ L1½T , R+� such that

Gi t, xð Þk k ≤ gi tð Þ xk k + hi tð Þ,
Gi′ t, xð Þ  ≤ �gi tð Þ xk k + �hi tð Þ,

ð18Þ

x tð Þ =

Cq tð Þx0 + Sq tð Þx1 +
ðt
0
Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds + 〠

0<ck0<t
Cq t − ck0
� �

Ik0 x ck
−

0

� �� �
+ 〠

0<ck0<t
Sq t − ck0
� �eIk0 x ck

−

0

� �� �
, t ∈ 0, c1½ �,

Gi t, x c−ið Þð Þ, t ∈ ci, dið �,

Cq t − dið Þ Gi di, x c−ið Þð Þð Þ + Sq t − dið Þ Gi′ di, x c−ið Þð Þ
� �

+
ðt
di

Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds + 〠
di<c

ki+k
i <t

Cq t − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �
+ 〠

di<c
ki+k
i <t

Sq t − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� �
, t ∈ di, ci+1ð �:

8>>>>>>>><>>>>>>>>:
ð14Þ

4 Journal of Applied Mathematics



for ∀t ∈ Ti and ∀x ∈X,

X Gi t,Dð Þð Þ ≤H i tð ÞX Dð Þ,
X Gi′ t,Dð Þ
� �

≤ gH i tð ÞX Dð Þ,
ð19Þ

for any bounded D ⊂X and ∀t ∈ Ti.

H3. Iki+ki , gIki +ki : X⟶X are continuous for i = 0, 1,⋯,
j, k = 1, 2,⋯, ðki+1 − kiÞ, and there exist positive constants

I
ki+k
i ,

g
I

ki +k
i , Kki+k

i ,
g

K
ki +k
i , mi, and fmi such that

Iki+ki xð Þ
  ≤I

ki+k
i xk k +mi,

gIi ki +k xð Þ
  ≤ g

I
ki +k
i xk k +fmi ,

ð20Þ

for all x ∈X,

X Iki+ki Dð Þ
� �

≤K
ki+k
i X Dð Þ,

X
g
Iki +ki Dð Þ
� �

≤ g
K

ki +k
i X Dð Þ,

ð21Þ

for any bounded D ⊂X.
H4. The linear operator Wci+1

di
: L2ðT , Y Þ⟶X defined

by

Wci+1
di

u =
ðci+1
di

Pq ci+1 − sð ÞBu sð Þds, i = 0, 1, 2,⋯, j, ð22Þ

has a bounded invertible operator ðWci+1
di

Þ−1. It takes values

in L2ðT , Y Þ/Kerci+1di
. In addition, there exists a positive con-

stant K such that

Wci+1
di

� �−1  ≤ K , ð23Þ

and ηðtÞ ∈ L1½T , R+� such that

X Wci+1
di

� �−1
Dð Þ tð Þ

� �
≤ η tð ÞX Dð Þ, t ∈ T , ð24Þ

for any bounded set D ⊂X.
For convenience, denote

F1 = a ·ð Þk kL2 0,c1½ �,R+½ �,

F2 = a ·ð Þk kL2 di ,ci+1½ �,R+½ �,

F3 = b ·ð Þk kL1 0,c1½ �,R+½ �,

F4 = b ·ð Þk kL1 di ,ci+1½ �,R+½ �,

g = sup
t∈ ci ,dið �,i=1,2,⋯,j

gi tð Þ,

�g = sup
t∈ ci ,dið �,i=1,2,⋯,j

�gi tð Þ,

h = sup
t∈ ci ,dið �,i=1,2,⋯,j

hi tð Þ,

�h = sup
t∈ ci ,dið �,i=1,2,⋯,j

�hi tð Þ:

ð25Þ

We define the control as follows:

where i = 1,⋯, j, for xc1 , xci+1 ∈X, t ∈ T , and x ∈ PCðT ,XÞ.
Now, we show that the control operator uðt, xc1 , xci+1 , ·Þ is

bounded. For convenience, denote uðt, xc1 , xci+1 , xÞ as uðt, xÞ.

Lemma 13. Assume that H1-H4 hold. Then, for xc1 , xci+1 ∈X,
the set fuðt, xÞ: x ∈ Bδg is bounded on T , where Bδ = fx ∈ P
CðT ;XÞ: kxk ≤ δg.

u t, xc1 , xci+1 , xð Þ =

Wc1
0

À Á−1 xc1 − Cq bð Þx0 − Sq xc1ð Þx1 −
ðc1
0
Pq xc1 − sð Þf s, x sð Þð Þds − 〠

0<ck0<c1

Cq xc1 − ck0
� �

Ik0 x ck
−

0

� �� �
− 〠

0<ck0<c1

Sq xc1 − ck0
� �eIk0 x ck

−

0

� �� �24 35 tð Þ, t ∈ 0, c1½ �,

Wci+1
di

� �−1
xci+1 − Cq xci+1 − dið Þ Gi di, x c−ið Þð Þð Þ − Sq xci+1 − dið Þ Gi′ di, x c−ið Þð Þ

� �
−
ðci+1
di

Pq b − sð Þf s, x sð Þð Þds − 〠
di<c

ki+k
i <ci+1

Cq xci+1 − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �
− 〠

di<c
ki+k
i <ci+1

Sq xci+1 − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� �24 35 tð Þ, t ∈ di, ci+1ð �,

8>>>>>>><>>>>>>>:
ð26Þ
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Proof. Notice that by H1-H4,

u t, xð Þk k = Wc1
0

À Á−1 xc1 − Cq c1ð Þx0 − Sq c1ð Þx1
Â

−
ðc1
0
Pq c1 − sð Þf s, x sð Þð Þds − 〠

0<ck0<c1

Cq c1 − ck0
� �

Ik0 x ck
−

0

� �� �
− 〠

0<ck0<c1

Sq c1 − ck0
� �eIk0 x ck

−

0

� �� �i
tð Þ


≤ K xc1k k +M x0k k +Mc1 x1k k +MpF1δ c1ð Þ1/2
�
+F3 + 〠

0<ck0<c1

M I k
0δ +m0

� �
+ 〠

0<ck0<c1

Mc1
f
I k

0δ +fm0
� ��

≕ u1,

ð27Þ

for t ∈ ð0, c1�:
Similarly,

u t, xð Þk k = Wci+1
di

� �−1
xci+1 − Cq ci+1 − dið Þ Gi di−1, x c−ið Þð Þð Þ
�

− Sq ci+1 − dið Þ Gi′ di, x c−ið Þð Þ
� �

−
ðci+1
di

Pq ci+1 − sð Þf s, x sð Þð Þds

− 〠
di<c

ki+k
i <ci+1

Cq ci+1 − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �

− 〠
di<c

ki+k
i <ci+1

Sq ci+1 − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� ��
tð Þ


≤ K xci+1k k +M gδ + hð Þ +M ci+1 − dið Þ �gδ + �h
À Á�

+MpF2δ ci+1 − dið Þ1/2 +F4 + 〠
di<c

ki+k
i <ci+1

M I
ki+k
i δ +mi

� �
+ 〠

di<c
ki+k
i <ci+1

M di+1 − cið Þ g
I

ki +k
i δ +fmi

� ��
≕ u2,

ð28Þ

for t ∈ ðdi, ci+1�, where i = 1,⋯, j.
Now, we try to prove the existence of mild solutions and

exact controllability for (1).
For convenience, we denote

M∗ = 4M2
p Bk k

ðc1
0

ðc1
0
η tð Þξ sð Þdtds

� �
+ 2Mp Bk kM

Á
ðc1
0
η tð Þdt

� �
〠
k1

k=1
Kk

0 +M〠
k1

k=1
Kk

0 +Mc1 〠
k1

k=1

f
Kk

0

+ 2Mp Bk kM
ðc1
0
η tð Þdt

� �
〠
k1

k=1

f
Kk

0 + 2Mp

ðc1
0
ξ tð Þdt

� �
,

M∗∗ = sup
t∈ di ,ci+1ð �

MH i tð Þ +M ci+1 − dið ÞfH i tð Þ + 2Mp Bk kM
h

Á
ð
d
ci+1
i

η tð ÞH i tð Þdt
 !

+ 2Mp Bk kM ci+1 − dið Þ

Á
ð
d
ci+1
i

η tð ÞfH i tð Þdt
 !

+ 4M2
p Bk kM

Á
ðci+1
di

ðci+1
di

η tð Þξ sð Þdtds
 !

+ 2Mp Bk kM

Á
ðci+1
di

η tð Þdt
 !

〠
ki+1−ki

i=1
K

ki+k
i + 2Mp Bk kM

Á
ðci+1
di

η tð Þdt
 !

〠
ki+1−ki

i=1
ci+1 − dið Þ gKki +k

i + 2Mp

Á
ðci+1
di

ξ tð Þdt
 !

+M 〠
ki+1−ki

i=1
K

ki+k
i

+M 〠
ki+1−ki

i=1
ci+1 − dið Þ gKki +k

i

#
,

H∗ = sup
t∈ ci,dið �

H i tð Þ,

P0 ≕ MpF1 c1ð Þ1/2 + 〠
0<ck0<c1

MI k
0 + 〠

0<ck0<c1

MfI k
0c1

24 35 1 + Kð Þ,

Pi ≕ Mg +M ci+1 − dið Þ�g +MpF2 ci+1 − dið Þ1/2
h
+ 〠

di<c
ki+k
i <ci+1

MI
ki+k
i + 〠

di<c
ki+k
i <ci+1

M
g
I

ki +k
i di+1 − cið Þ

i
1 + Kð Þ:

ð29Þ

Theorem 14. Assume that H1-H4 hold. Then, (1) is exactly
controllable on T provided that

M∗+M∗∗ +H∗ < 1,
P0 ∈ 0, 1ð Þ,
Pi ∈ 0, 1ð Þ,
g ∈ 0, 1ð Þ,

ð30Þ

where i = 1, 2,⋯, j.

Proof. In order to get the existence, define operator Y on
PCðT ,XÞ as follows:

Yxð Þ tð Þ =
Cq tð Þx0 + Sq tð Þx1 +

ðt
0
Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds + 〠

0<ck0<t
Cq t − ck0
� �

Ik0 x ck
−

0

� �� �
+ 〠

0<ck0<t
Sq t − ck0
� �eIk0 x ck

−

0

� �� �
, t ∈ 0, c1½ �, Gi t, x c−ið Þð Þ, t ∈ ci, dið �,

Cq t − dið Þ Gi di, x c−ið Þð Þð Þ + Sq t − dið Þ Gi′ di, x c−ið Þð Þ
� �

+
ðt
di

Pq t − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds + 〠
di<c

ki+k
i <t

Cq t − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �
+ 〠

di<c
ki+k
i <t

Sq t − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� �
, t ∈ di, ci+1ð �,

8>>>>><>>>>>:
ð31Þ
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where i = 1, 2,⋯, j and uðtÞ is defined as (26).
Obviously, the existence of fixed points of Y is equivalent

to the existence of mild solutions of (1).
The proof will be divided into the following three steps:
Step 1: show that there exists a constant δ > 0 such that

YðBδÞ ⊂ Bδ.
Choose δ satisfying

δ ≥ max
i=1,2,⋯j

Q0
1 − P0

, Qi

1 − Pi
, h
1 − g

� �
, ð32Þ

where

Q0 =M x0k k +Mc1 x1k k + c1Mp Bk kK
Á xc1k k +M x0k k +Mc1 x1k k +F3 +Mm0 +Mc1fm0½ �
+F3 +Mm0 +Mc1fm0,

Qi =Mh +M ci+1 − dið Þ�h + ci+1 − dið ÞMp Bk kK

Á xci+1k k +Mh +M ci+1 − dið Þ�h +F4 + 〠
di<c

ki+k
i <ci+1

Mmi + 〠
di<c

ki+k
i <ci+1

M di+1 − cið Þfmi

24 35
+F4 + 〠

di<c
ki+k
i <ci+1

M di+1 − cið Þfmi + 〠
di<c

ki+k
i <ci+1

Mmi:

ð33Þ

It is time to claim that YðBδÞ ⊂ Bδ.
By H1-H4 and (32), one can get that for x ∈ Bδ,

Yxð Þ tð Þk k ≤M x0k k +Mc1 x1k k + c1Mp Bk ku1
+MpF1δ c1ð Þ1/2 +F3 + 〠

0<ck0<c1

M I k
0δ +m0

� �
+ 〠

0<ck0<c1

Mc1
f
I k

0δ +fm0
� �

≤Q0 + P0δ ≤ δ,

ð34Þ

for t ∈ ½0, c1�.
So, kðYxÞðtÞk ≤Q0 + P0δ ≤ δ for t ∈ ½0, c1�.
Similarly,

Yxð Þ tð Þk k ≤ gδ + h ≤ δ, ð35Þ

for t ∈ ðci, di�, where i = 1, 2,⋯, j.
Therefore, kðYxÞðtÞk ≤ δ for t ∈ ½ci, di�.
In addition,

Yxð Þ tð Þk k ≤M gδ + hð Þ +M ci+1 − dið Þ �gδ + �h
À Á

+ ci+1 − dið ÞMp Bk ku2 +MpF2δ ci+1 − dið Þ1/2

+F4 + 〠
di<c

ki+k
i <ci+1

M I
ki+k
i δ +mi

� �
+ 〠

di<c
ki+k
i <ci+1

M di+1 − cið Þ g
I

ki +k
i δ +fmi

� �
≤Qi + Piδ ≤ δ,

ð36Þ

for t ∈ ðdi, ci+1�, i = 1, 2,⋯, j.

Thus, kðYxÞðtÞk ≤Qi + Piδ ≤ δ for t ∈ ðdi, ci+1�.
Combining (34)-(36), one can obtain that kðYxÞðtÞk ≤ δ

for t ∈T . That is, YðBδÞ ⊂ Bδ.
Step 2: claim that Y is continuous on Bδ:
We first show that the control uðt, xÞ is continuous with

respect to x on Bδ. Assume that fxng∞n=1 is a sequence satis-
fying xn ⟶ x as n⟶∞ on Bδ. Then,

u t, xnð Þ − u t, xð Þk k ≤ KMp

ðc1
0

f s, xn sð Þð Þ − f s, x sð Þð Þk kds

+ 〠
0<ck0<c1

M Ik0 xn ck
−

0

� �� �
− Ik0 x ck

−

0

� �� � 
+ 〠

0<ck0<c1

Mc1
eIk0 xn ck

−

0

� �� �
− eIk0 x ck

−

0

� �� � ,
ð37Þ

for t ∈ ½0, c1�.

u t, xnð Þ − u t, xð Þk k ≤M Gi di, xn c−ið Þð ÞÞ −Gi di, x c−ið Þð Þk k
+M ci+1 − dið Þ Gi′ di, xn c−ið Þð Þ −Gi′ di, x c−ið Þð Þ 
+Mp

ðci+1
di

f s, xn sð Þð Þ − f s, x sð Þð Þk kds

+ 〠
di<c

ki+k
i <ci+1

M Iki+ki xn cki+k
−

i

� �� �
− Iki+ki x cki+k

−

i

� �� � 
+ 〠

di<c
ki+k
i <ci+1

M ci+1 − dið Þ g
Iki +ki xn cki+k

−

i

� �� �
− gIki +ki x cki+k

−

i

� �� � ,
ð38Þ

for t ∈ ½di, ci+1�, where i = 1, 2,⋯, j.
(37) and (38) together with H1-H3 imply

u t, xnð Þ − u t, xð Þk k⟶ 0, as n⟶∞, ð39Þ

for arbitrary t ∈ T .
So, control function uðt, xÞ is continuous with respect to

x on Bδ.
Next, we prove that Y is continuous on Bδ. Assume that

fxng∞n=1 is a sequence on Bδ such that xn ⟶ x as n⟶∞.
Notice that for t ∈ ½0, c1�,

Yxnð Þ tð Þ − Yxð Þ tð Þk k ≤Mp Bk k
ðc1
0

u s, xn sð Þð Þ − u s, x sð Þð Þk kds

+Mp

ðc1
0

f s, xn sð Þð Þ − f s, x sð Þð Þk kds

+ 〠
0<ck0<t

M Ik0 xn ck
−

0

� �� �
− Ik0 x ck

−

0

� �� �


+ 〠
0<ck0<t

Mc1keIk0 xn ck
−

0

� �� �
− eIk0 x ck

−

0

� �� �
k⟶ 0, as n⟶∞:

ð40Þ
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For t ∈ ðci, di�,

Yxnð Þ tð Þ − Yxð Þ tð Þk k = Gi t, xn c−ið Þð Þ −Gi t, x c−ið Þð Þk k⟶ 0, as n⟶∞:

ð41Þ

For t ∈ ðdi, ci+1�,

Yxnð Þ tð Þ − Yxð Þ tð Þk k ≤M Gi di, x c−ið Þð Þ − Gi di, xn c−ið Þð Þk k
+M ci+1 − dið Þ fGi di, xn c−ið Þð Þ −fGi di, x c−ið Þð Þ

 
+Mp Bk k

ðci+1
di

u s, xn sð Þð Þ − u s, x sð Þð Þk kds

+Mp

ðci+1
di

f s, xn sð Þð Þ − f s, x sð Þð Þk kds

+ 〠
di<c

ki+k
i <t

M Iki+ki xn cki+k
−

i

� �� �
− Iki+ki x cki+k

−

i

� �� � 
+ 〠

di<c
ki+k
i <t

M ci+1 − dið Þ g
Iki +ki xn cki+k

−

i

� �� �
− gIki +ki x cki+k

−

i

� �� � :
ð42Þ

Combining (40)-(42), we get that Y is continuous on Bδ.
Step 3: show that D is relatively compact if

D ⊂ �co u0f g ∪ Y Dð Þð Þ, ð43Þ

and D ⊂ Bδ is countable, where u0 ∈ Bδ.
Without losing generality, let D = f�xng∞n=1. We prove that

fY�xng∞n=1 is equicontinuous on ½0, c1�, ðci, di�, and ðdi, ci+1�,
i = 1,⋯, j. In this case, assuming it is true, �coðfu0g ∪ YðDÞÞ
would also be equicontinuous on the above intervals.

We notice that for each x ∈D and t1, t2 ∈ ½0, c1�,

Yxð Þ t1ð Þ − Yxð Þ t2ð Þk k ≤ Cq t1ð Þ − Cq t2ð Þ  x0k k + Sq t1ð Þ − Sq t2ð Þ  x1k k

+
ðt1
0
Pq t1 − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds −

ðt2
0
Pq t2 − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds

 
+ 〠

0<ck0<t1

Cq t1 − ck0
� �

Ik0 x ck
−

0

� �� �
− 〠

0<ck0<t2

Cq t2 − ck0
� �

Ik0 x ck
−

0

� �� �


+ 〠
0<ck0<t1

Sq t1 − ck0
� �eIk0 x ck

−

0

� �� �
− 〠

0<ck0<t2

Sq t2 − ck0
� �eIk0 x ck

−

0

� �� �


≕ L1 + L2 + L3 + L4 + L5:

ð44Þ

Obviously, L1 ⟶ 0 and L2 ⟶ 0 as ðt2 − t1Þ⟶ 0.
And

L3 ≤
ðt2
t1

Pq t1 − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds



+
ðt2
0
Pq t1 − sð Þ − Pq t2 − sð ÞÂ Ã

Bu sð Þ + f s, x sð Þð Þ½ �ds
 ,

L4 ≤ 〠
t2<ck0<t1

Cq t1 − ck0
� �

Ik0 x ck
−

0

� �� �


+ 〠
0<ck0<t2

Cq t1 − ck0
� �

− Cq t2 − ck0
� �h i

Ik0 x ck
−

0

� �� �
,

L5 ≤ 〠
t2<ck0<t1

Sq t1 − ck0
� �eIk0 x ck

−

0

� �� �


+ 〠
0<ck0<t2

Sq t1 − ck0
� �

− Sq t2 − ck0
� �h ieIk0 x ck

−

0

� �� �
:
ð45Þ

Through calculation, we conclude Li ⟶ 0 for i = 3, 4, 5,
as ðt2 − t1Þ⟶ 0. Thus, kðYxÞðt1Þ − ðYxÞðt2Þk⟶ 0 as
ðt2 − t1Þ⟶ 0.

Next, for each x ∈D and t1, t2 ∈ ðci, di�,

Yxð Þ t1ð Þ − Yxð Þ t2ð Þk k = Gi t1, x c−ið Þð −Gi t2, x c−ið Þðk k⟶ 0, as t2 − t1ð Þ⟶ 0:

ð46Þ

That is, YðDÞ is equicontinuous on ðci, di�.
In the end, for each x ∈D and t1, t2 ∈ ðdi, ci+1�,

Yxð Þ t1ð Þ − Yxð Þ t2ð Þk k ≤ Cq t1 − dið Þ − Cq t2 − dið Þ 
Á Gi di, x c−ið Þðk k + Sq t1 − dið Þ − Sq t2 − dið Þ  Gi′ di, x c−ið Þð 
+
ðt1
di

Pq t1 − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds


−
ðt2
di

Pq t2 − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds


+ 〠
di<c

ki+k
i <t1

Cq t1 − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �
− 〠

di<c
ki+k
i <t2

Cq t2 − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �
+ 〠

di<c
ki+k
i <t1

Sq t1 − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� �
− 〠

di<c
ki+k
i <t2

Sq t2 − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� �≕ l1 + l2 + l3 + l4 + l5:

ð47Þ
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Similarly, l1 ⟶ 0 and l2 ⟶ 0 as ðt2 − t1Þ⟶ 0.

l3 ≤
ðt2
t1

Pq t1 − sð Þ Bu sð Þ + f s, x sð Þð Þ½ �ds



+
ðt2
di

Pq t1 − sð Þ − Pq t2 − sð ÞÂ Ã
Bu sð Þ + f s, x sð Þð Þ½ �ds


,

l4 ≤ 〠
t2<c

ki+k
i <t1

Cq t1 − cki+ki

� �
Iki+ki x cki+k

−

i

� �� �


+ 〠
di<c

ki+k
i <t2

Cq t1 − cki+ki

� �
− Cq t2 − cki+ki

� �h i
Iki+ki x cki+k

−

i

� �� �
,

l5 ≤ 〠
t2<c

ki+k
i <t1

Sq t1 − cki+ki

� �g
Iki +ki x cki+k

−

i

� �� �


+ 〠
di<c

ki+k
i <t2

Sq t1 − cki+ki

� �
− Sq t2 − cki+ki

� �h ig
Iki +ki x cki+k

−

i

� �� �
:
ð48Þ

By calculation, one can get that li ⟶ 0 for i = 3, 4, 5,
as ðt2 − t1Þ⟶ 0. That is, kðYxÞðt1Þ − ðYxÞðt2Þk⟶ 0 as
ðt2 − t1Þ⟶ 0.

Combining (44)-(48), fYxng∞n=1 is equicontinuous on
½0, c1�, ðci, di�, and ðdi, ci+1�, respectively, where i = 1,⋯, j.

Therefore,

XPC Yxnf g∞n=1
À Á

= sup
1≤i≤j

sup
t∈ 0,c1½ �, ci ,dið � and di ,ci+1ð �

X Yxn tð Þf g∞n=1
À Á

:

ð49Þ

Notice that

xn tð Þ − xm tð Þk k ≤ xn − xmk kPC ,∀t ∈ T , ð50Þ

implies

X xn tð Þf g∞n=1
À Á

≤XPC xnf g∞n=1
À Á

,∀t ∈ T , ð51Þ

where XPC denotes the Kuratowski measure of noncom-
pactness of a bounded set in PCðT ,XÞ.

According to Lemma 11, for t ∈ ½0, c1�,

X Yxnð Þ tð Þf g∞n=1
À Á

≤ 2Mp Bk k
ðc1
0
X u tð Þð Þdt

+ 2Mp

ðc1
0
X f t, xn tð Þð Þf g∞n=1
À Á

dt + 〠
k1

k=1
MX Ik0 xn tð Þð Þ

n o∞

n=1

� �
+ 〠

k1

k=1
Mc1X

eIk0 xn tð Þð Þ
n o∞

n=1

� �
≤ 4M2

p Bk k

Á
ðc1
0

ðc1
0
η tð Þξ sð Þdtds

� �
XPC xnf g∞n=1

À Á
+ 2Mp Bk kM

ðc1
0
η tð Þdt

� �
〠
k1

k=1
Kk

0XPC xnf g∞n=1
À Á

+ 2Mp Bk kM
ðc1
0
η tð Þdt

� �
〠
k1

k=1

f
Kk

0XPC xnf g∞n=1
À Á

+ 2Mp

ðc1
0
ξ tð Þdt

� �
XPC xnf g∞n=1

À Á
+M〠

k1

k=1
Kk

0XPC xnf g∞n=1
À Á

+Mc1 〠
k1

k=1

f
Kk

0XPC xnf g∞n=1
À Á

= 4M2
p Bk k

ðc1
0

ðc1
0
η tð Þξ sð Þdtds

� ��

+ 2Mp Bk kM
ðc1
0
η tð Þdt

� �
〠
k1

k=1
Kk

0 +M〠
k1

k=1
Kk

0 +Mc1 〠
k1

k=1

f
Kk

0

+ 2Mp Bk kM
ðc1
0
η tð Þdt

� �
〠
k1

k=1

f
Kk

0

+ 2Mp

ðc1
0
ξ tð Þdt

� �
�XPC xnf g∞n=1

À Á
=M∗XPC xnf g∞n=1

À Á
:

ð52Þ

For t ∈ ðci, di�,

X Yxnð Þ tð Þf g∞n=1
À Á

≤X Gi t, xn tð Þð Þf g∞n=1
À Á

≤H i tð ÞX xn tð Þf g∞n=1
À Á

≤H∗X xn tð Þf g∞n=1
À Á

:

ð53Þ

For t ∈ ðdi, ci+1�,

X Y�xnð Þ tð Þf g∞n=1
À Á

≤ 2Mp Bk k
ðci+1
di

X u tð Þð Þdt

+ 2Mp

ðci+1
di

X f t, �xn tð Þð Þf g∞n=1
À Á

dt

+ 〠
ki+1−ki

i=1
MX Iki+ki �xn tð Þð Þ

n o∞

n=1

� �
+ 〠

ki+1−ki

i=1
M ci+1 − dið ÞX g

Iki +ki �xn tð Þð Þ
� �∞

n=1

� �
+MX Gi t, �xn tð Þð Þf g∞n=1

À Á
+M ci+1 − dið ÞX Gi′ t, �xn tð Þð Þ

o∞

n=1

� �
≤MH i tð ÞXPC �xnf g∞n=1

À Á
+M ci+1 − dið ÞfH i tð ÞXPC �xnf g∞n=1

À Á

9Journal of Applied Mathematics



+ 2Mp Bk kM
ð
d
ci+1
i

η tð ÞH i tð Þdt
 !

XPC �xnf g∞n=1
À Á

+ 2Mp Bk kM ci+1 − dið Þ
ð
d
ci+1
i

η tð ÞfH i tð Þdt
 !

XPC �xnf g∞n=1
À Á

+ 4M2
p Bk kM

ðci+1
di

ðci+1
di

η tð Þξ sð Þdtds
 !

XPC �xnf g∞n=1
À Á

+ 2Mp Bk kM
ðci+1
di

η tð Þdt
 !

〠
ki+1−ki

i=1
K

ki+k
i XPC �xnf g∞n=1

À Á
+ 2Mp Bk kM

ðci+1
di

η tð Þdt
 !

〠
ki+1−ki

i=1
ci+1 − dið Þ gKki +k

i XPC �xnf g∞n=1
À Á

+ 2Mp

ðci+1
di

ξ tð Þdt
 !

XPC �xnf g∞n=1
À Á

+M 〠
ki+1−ki

i=1
K

ki+k
i XPC �xnf g∞n=1

À Á
+M 〠

ki+1−ki

i=1
ci+1 − dið Þ gKki +k

i XPC �xnf g∞n=1
À Á

= MH i tð Þ +M ci+1 − dið ÞfH i tð Þ
h
+ 2Mp Bk kM

ðci+1
di

η tð ÞH i tð Þdt
 !

+ 2Mp Bk kM ci+1 − dið Þ
ðci+1
di

η tð ÞfH i tð Þdt
 !

+ 4M2
p Bk kM

ðci+1
di

ðci+1
di

η tð Þξ sð Þdtds
 !

+ 2Mp Bk kM
ðci+1
di

η tð Þdt
 !

〠
ki+1−ki

i=1
K

ki+k
i

+ 2Mp Bk kM
ðci+1
di

η tð Þdt
 !

〠
ki+1−ki

i=1
ci+1 − dið Þ gKki +k

i

+ 2Mp

ðci+1
di

ξ tð Þdt
 !

+M 〠
ki+1−ki

i=1
K

ki+k
i

+M 〠
ki+1−ki

i=1
ci+1 − dið Þ gKki +k

i �XPC �xnf g∞n=1
À Á

≤M∗∗XPC �xnf g∞n=1
À Á

: ð54Þ

Combining (52), (53), and (54), one can get that

X Y�xnð Þ tð Þf g∞n=1
À Á

≤ M∗+M∗∗ +H∗ð ÞXPC �xnf g∞n=1
À Á

:

ð55Þ

Furthermore,

XPC �xnf g∞n=1
À Á

≤XPC Y�xnf g∞n=1
À Á

≤ M∗+M∗∗ +H∗ð ÞXPC �xnf g∞n=1
À Á

:
ð56Þ

According to the assumption of Theorem 14, we
conclude that XPCðf�xng∞n=1Þ = 0. Therefore, D = f�xng∞n=1 is
relatively compact. By Theorem 12, it yields that, in Bδ, Y
has at least one fixed point.

To sum up, (1) is exactly controllable on T .

4. Examples

To demonstrate the effectiveness of the obtained results, two
examples are presented in this section.

Example 1.

cD3/2x t, ηð Þ = ∂2

∂η2
x t, ηð Þ + u t, ηð Þ + ε1

e−tx t, ηð Þ
e−t + et

+ ε2

ðt
0
e− s−tð Þx s, ηð Þds,

η ∈ 0, 1ð Þ, t ∈ 0, 15

� �
∪

4
5 , 1
� �

,

x t, ηð Þ = ε3e
− t−1

5ð Þ x − 1/5ð Þ, ηð Þ
1 + x − 1/5ð Þ, ηð Þ , t ∈

1
5 ,

4
5

� �
, η ∈ 0, 1ð Þ,

∂x t, ηð Þ
∂t

= −ε3e
− t−1

5ð Þ x − 1/5ð Þ, ηð Þ
1 + x − 1/5ð Þ, ηð Þ , t ∈

1
5 ,

4
5

� �
, η ∈ 0, 1ð Þ,

x t, 0ð Þ = x t, 1ð Þ = 0,
x 0, ηð Þ = x0 ηð Þ,
∂x 0, ηð Þ

∂t
= x1 ηð Þ,

Δx tð Þ ηð Þjt=1/7 = ε4

ð1/7
0

cos 1
7 − s
� �

x s, ηð Þds, η ∈ 0, 1ð Þ,

Δ
∂x tð Þ ηð Þ

∂t

����
t=1/7

= ε4x
1
7 , η
� �

, η ∈ 0, 1ð Þ,

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:
ð57Þ

where t ∈ T = ½0, 1�.

Conclusion of Example 1. (57) is exactly controllable on T.

Proof. (57) can be seen as a system in the form (1), where

q = 3
2 ,

b = c2 = 1,
c0 = d0 = 0,

c1 =
1
5 ,

d1 =
4
5 ,

c10 = ε4,

f t, x tð Þð Þ = ε1
e−tx t, ηð Þ
e−t + et

+ ε2

ðt
0
e− s−tð Þx s, ηð Þds,

G1 t, xð Þ = ε3e
− t−1/5ð Þ x − 1/5ð Þ, ηð Þ

1 + x − 1/5ð Þ, ηð Þ ,

G1′ t, xð Þ = −ε3e
− t−1/5ð Þ x − 1/5ð Þ, ηð Þ

1 + x − 1/5ð Þ, ηð Þ ,

I10 x
1
7
−� �� �

= ε4

ð1/7
0

cos 1
7 − s
� �

x s, ηð Þds,

eI10 x
1
7
−� �� �

= ε4x
1
7 , η
� �

:

ð58Þ
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Let X = L2ð½0, 1�Þ be equipped with the norm defined by

xk k =
ð1
0
x tð Þj j2dt

� �1/2
, x ∈X: ð59Þ

Define Ax = x′′, and

D Að Þ = x ∈X : x, x′ are absolutely continuous and x′′ ∈X, x 0ð Þ = x 1ð Þ = 0
n o

:

ð60Þ

Thus,

Ax = 〠
∞

n=1
− n2 x, enh ien, x ∈D Að Þ, ð61Þ

where enðηÞ =
ffiffiffiffiffiffiffi
2/π

p
sin ðnηÞ, 0 ≤ η ≤ 1, n = 1, 2,⋯.

We now introduce the cosine function

C tð Þx = 〠
∞

n=1
cos ntð Þ x, enh ien, t ∈ℝ: ð62Þ

According to the subordinate principle [29], it follows
that A is the infinitesimal generator of a strongly continuous
exponentially bounded fractional cosine family CqðtÞ such
that Cqð0Þ = I and

Cq tð Þ =
ð∞
0
φt,q/2 sð Þds, t > 0, ð63Þ

where φt,q/2ðsÞ = t−q/2ϕq/2ðst−q/2Þ, and

ϕγ τð Þ = 〠
∞

n=0

−τð Þn
n!Γ −γn + 1 − γð Þ , 0 < γ < 1: ð64Þ

The fractional Riemann-Liouville family PqðtÞ: ½0,∞Þ
⟶ LðXÞ associated with CqðtÞ is defined by

Pq tð Þ = Jq−1Cq tð Þ: ð65Þ

Obviously, Wci+1
di

: L2ðT , Y Þ⟶X defined by

Wci+1
di

u =
ðci+1
di

Pq ci+1 − sð ÞBu sð Þds, i = 0, 1, ð66Þ

has a bounded invertible operator ðWci+1
di

Þ−1 taking values in
L2ðT , Y Þ/Kerci+1di

. In addition, there exists a positive constant

K such that

Wci+1
di

� �−1  ≤ K: ð67Þ

Therefore, H4 holds.
According to Definition 4, there exists a constant M > 0

such that kCqðtÞk ≤M. Put xðtÞ = xðt, ηÞ, that is, xðtÞðηÞ =

xðt, ηÞ, t ∈ ½0, 1�, η ∈ ½0, 1�. B : Y ⟶X which is defined as
BuðtÞ = zðt, ηÞ is a bounded linear operator.

Clearly,

f t, x tð Þð Þk k ≤ ε1
e−tx t, ηð Þ
e−t + et

  + ε2

ðt
0
e− s−tð Þx s, ηð Þds

 
≤ ε1 xk k + ε2e

t xk k = ε1 + ε2e
tÀ Á

xk k,
ð68Þ

G1 t, xð Þk k≤ε3 xk k, ð69Þ

G1′ t, xð Þ ≤ε3 xk k, ð70Þ

I10 x ε−4ð Þð Þ  ≤ ε4 xk k, ð71Þ

eI10 x ε−4ð Þð Þ
 ≤ε4 xk k: ð72Þ

Combining (68)-(72), the assumptions H1-H3 hold with

a tð Þ = ε1 + ε2e
t ,

b tð Þ = 0,
g1 tð Þ = �g1 tð Þ = ε3,
h1 tð Þ = �h1 tð Þ = 0,
I 1

0 = ε sin ε4,fI 1
0 = ε,

m0 =fm0 = 0,

Mp =
M

Γ 3/2ð Þ = 2Mffiffiffi
π

p ,

F1 =
ε21
5 + ε1ε2 +

ε22
2

� �
e2/5 − 1
À Á

,

F2 =
ε21
5 + e2 − e8/5

À Á
ε1ε2 + e2 − e8/5

À Á ε22
2 ,

F3 =F4 = 0,
g = �g = ε3,
h = �h = 0:

ð73Þ

Therefore, when ε1, ε2, ε3, and ε4 are sufficiently small,
the conditions P0 ∈ ð0, 1Þ and P1 ∈ ð0, 1Þ in Theorem 14 are
guaranteed. That is, (57) is exactly controllable on ½0, 1�.

Example 2. The design of digital filters has attracted a lot of
attention of a wide range of researchers since the last cen-
tury. A digital filter is a system that can manipulate the sam-
pled digital signal, usually to enhance or reduce some
properties of the signal being processed. Digital filters are
often used in industry because of their significant advantages
of stable input and output, phase linearity, and low coeffi-
cient sensitivity. We introduced filter mode for system (1),
as shown in the attached picture.

11Journal of Applied Mathematics



We present our filter system in Figure 1, which shows
the rough pattern of the digital filter model based on the fil-
ter systems defined in [30–35].

(1) Product modulator 1 gets the input A and Pqðt − sÞ
turns out the output as APqðt − sÞ

(2) Product modulator 2 gets the input f and xðsÞ turns
out the output as f ðs, xðsÞÞ

(3) Product modulator 3 gets the input B and u turns
out the output as Bu

(4) Here, integrators performed the integral of Pqðt − sÞ
½ f ðs, xðsÞÞ + BuðsÞ�, over the period t

In addition,

(i) inputs Pqðt − sÞ and f ðs, xðsÞÞ are combined and
multiplied with an output of integrator over ð0, tÞ

(ii) inputs Pqðt − sÞ and BuðsÞ are combined and multi-
plied with an output of integrator over ð0, tÞ

In the end, move all the outputs from the integrators to
the summer network. Therefore, the output of xðtÞ is made,
which is bounded and exactly controllable.

5. Conclusions

The paper obtained the existence of mild solutions and exact
controllability for a type of fractional semilinear system of

B

u

Integrator

Integrator

Output

Pq (t–s)

Cq (t)

Sq (t)

Cq (t–d1)

Sq (t–d1)

Cq (t–dj)

Sq (t–dj)

G1 (d1,x(c1
–))

G1′ (d1,x(c1
–))

Gj (dj,x(cj
–))

Gj′ (dj,x(cj
–))

Cq (t–c1
k1+k)

Cq (t–cj
kj+k)

Sq (t–c1
k1+k)

Sq (t–cj
kj+k)

I1
k1+k (x(c1

k1+k
–))

Ij
kj+k

 (x(cj
kj+k

–))

Ij
kj+k

 (x(cj
kj+k

–))

I1
k1
+k

 (x(c1
k1+k

–))~

~

x (s)

x0

x1

A

f

∑∑ ∑∑ ∑∑

∑∑

∑∑

∑∑

x (t)

∑∑

∑∑

∑∑

Figure 1: Digital filter model.
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order q ∈ ð1, 2Þ with instantaneous and noninstantaneous
impulses. The existence result is investigated by the
Kuratowski measure of noncompactness and Mönch fixed
point theorem. It is remarkable that we do not use the
Lipschitz conditions, because they are stronger than our
assumptions for nonlinear term and the impulses. On this
basis, the exact controllability for the considered system is
obtained. The conclusions of this paper are important and
general, which fill the gap of previous studies of fractional sys-
tems of q ∈ ð1, 2Þ with instantaneous and noninstantaneous
impulses. In the future, we will study the systems with time
delay and nonlocal conditions and try to investigate the
systems in the form of other fractional derivatives such as
the Hilfer fractional derivatives. They can make the systems
describe more complex phenomena.
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