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This paper is mainly concerned with the existence of mild solutions and exact controllability for a class of fractional semilinear system
of order g € (1, 2) with instantaneous and noninstantaneous impulses. First, combining the Kuratowski measure of noncompactness
and the Moénch fixed point theorem, we investigated the existence result for the considered system. It is remarkable that our
assumptions for impulses and the nonlinear term are weaker than the Lipschitz conditions. Next, on this basis, the exact
controllability for the considered system is determined. In the end, an example is provided to support the main findings.

1. Introduction

Quite a number of evolutionary processes are characterized by
sudden state changes at some certain points in time. The dura-
tion of these disturbances is negligible compared to the entire
evolutionary process. Thus, if we assume that these perturba-
tions occur over relatively short periods of time, the evolution-
ary processes can be described in the form of pulses, even
impulsive differential equations (IDEs for short). It is well
known that many agricultural, biological, and medical models
are designed according to impulsive influences, such as the
control of infectious diseases and changes in human hormone
levels under the influence of external factors. Therefore, IDEs
can be seen as the accurate description of some specific prob-
lems in the real world (see [1, 2] and references therein).

On the other hand, the dynamics of some evolutionary
processes, such as intravenous drugs, periodic fishing, and
criteria for pest management, cannot be described by instan-
taneous impulsive systems. In order to solve these kinds of
problems, Hernandez and O’Regan [3] introduced the con-
cept of noninstantaneous impulses, which begin at a fixed
point and remain active for a finite period of time. In recent
years, many scholars have made studies on these two types
of IDEs in depth. For instance, Liu and O’Regan [4] investi-

gated the functional differential equations with instanta-
neous impulse by applying the measure of noncompactness
and the Monch fixed point theorem. Chen et al. [5] used
noncompact semigroup to deal with the semilinear evolution
equations with noninstantaneous impulses.

Also, every aspect of a dynamical system cannot be cov-
ered under instantaneous impulse and noninstantaneous
impulse separately. In other words, it is inevitable to con-
sider these two types of impulse factors in a system to find
out how they affect the system together. For instance, Meraj
and Pandey [6] investigated a class of instantaneous and
noninstantaneous impulsive systems by Sadovskii’s fixed
point theorem. Tian and Zhang [7] studied the existence of
solutions for second-order differential equations with these
two kinds of impulses by variational method.

In addition, it is widely known that many scholars have
already paid considerable attention to the controllability of
systems. Shukla et al. [8] studied on approximate controllabil-
ity of semilinear control systems with impulses. Li et al. [9]
studied the persistence of delayed cooperative models: impul-
sive control method. Liu et al. [10] investigated the control
design for output tracking of delayed Boolean control net-
works. Xu et al. [11] dealt with robust set stabilization of
Boolean control networks with impulses. Zhao et al. [12]
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studied the controllability for a class of semilinear fractional
evolution systems by resolvent operators. One of the effective
ways to solve this kind of problems is transforming them into
fixed point problems by some proper operators in a function
space. For example, the Monch fixed point theorem was used
to deal with the controllability of differential equations by Liu
and O’Regan [4]. p-Set contractive fixed point theorem was
applied to investigate the controllability for a type of nonin-
stantaneous impulsive systems by Meraj and Pandey [6].

Compared with the classical integer derivatives, the frac-
tional derivatives of order 0 < g <1 defined by integration
have the characteristics of nonlocal and memory properties.
Thus, they are widely used in many fields. For example, Ge
and Jhuang [13] dealt with chaos, control, and synchroniza-
tion of a class of fractional system. Cheng and Yuan [14]
investigated the stability for the equilibria of a kind of equation
with fractional diffusion. Jia and Wang [15] studied a fast
finite volume method for a type of fractional equations. Zhao
[16] dealt with the controllability of a type of impulsive
fractional nonlinear evolution equations. Meanwhile, many
scholars have structured relevant models to study several
kinds of fractional semilinear systems. For example, Shukla
and Patel [17] studied controllability for fractional semilinear
delay control systems. Karapinar et al. [18] got the continuity
of the fractional derivative of the time-fractional semilinear
pseudoparabolic systems. Kavitha Williams et al. [19] analysed
the approximate controllability of the Atangana-Baleanu frac-
tional semilinear control systems. On this basis, many scholars
have found that fractional systems of order g€ (1,2) can
describe more complex problems in real life and have con-
ducted in-depth research on them. Salem and Abdullah [20]
got controllability for generalized fractional differential equa-
tions. Muslim and Kumar [21] investigated the exact control-
lability of a control system governed by the fractional
differential equation of order « € (1, 2]. Shukla et al. [22] dealt
with the existence and approximate controllability for the frac-
tional semilinear impulsive control system of order r € (1, 2).
Niazi et al. [23] studied controllability for fuzzy fractional evo-
lution equations. Igbal et al. [24] investigated the existence and
uniqueness of mild solutions for fractional controlled fuzzy
evolution equations. The most common way to solve this kind
of problem is using fixed point theorem and cosine family.

Inspired by the discussion above, we consider the exact
controllability for the fractional semilinear system with instan-
taneous and noninstantaneous impulses as follows:

chx(t) = Ax(t) + Bu(t) + f(t, x(t)),
teULy(dycy) CTot # cf"+k,

(t) = Gi(t,x(;)), t € UL, (c;r dy),

s 1)
'(0)=x,,

ki+k k;+k ki+k™
(47) =1 ()

1 ktk k; +k ki+k™
(87) =1 (=)

=

=

=

E B
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where i=0,1,-++,7, T=[0,b],b>0 is a constant. And k=1,
2, -, (kiyy — k;), ky = 0. D7 is the Caputo fractional derivative
of g€ (1,2). We suppose that A : D(A) c X — X is the
infinitesimal generator of a strongly continuous g-order cosine

family (Cq(t))»o, where X is a Banach space, and 0 = ¢, = d,,

1 B ky ki+1 ki+2
<< < <o <d; < <

k+1 k.+2 k:
<dj<e) < < <cM

; ;" <¢jy1 = b. The state variable
x(-) €X. u(-) € L*(T,Y) is the control variable, where Y is
another Banach space. B : Y — X is a bounded linear oper-
ator. The function f: T x X — X is a function satisfying
some hypotheses. G; : (¢, d;] x X — X and G : (c;, d;] x X
— X are noninstantaneous impulses, and I; : X — X and

k
<< <<

I, : X — X represent instantaneous impulses. The jump of
the state x at time ¢ is Ax(t) =x(t*) — x(¢"). In this paper,
we used the Monch fixed point theorem to get the existence
of the solution without using the Lipschitz conditions.

As far as we know, no one has done research on such
class of systems yet. Kumar and Abdal studied (1) in the
form of classical integer derivatives in [25]. Muslim and
Kumar [21] dealt with (1) without instantaneous impulses.
Shukla et al. [22] investigated (1) without noninstantaneous
impulses. This article has the following distinctive features.
Firstly, compared with [25], (1) is in the form of fractional
derivatives of order 1 < g < 2. Secondly, the nonlinear term
and the two types of impulses here are no longer required
to satisfy the Lipschitz conditions which are stronger than
the assumptions used in this paper. Thirdly, compared with
[21, 22], we consider both types of impulses at the same
time. To sum up, the research results of this paper will be
able to more accurately describe and solve some complex
phenomena and problems in related fields. And the results
are general, which fill the gap of previous studies of frac-
tional system of order 1 < g < 2 with instantaneous and non-
instantaneous impulses.

The structure of this article is as follows. In Section 2, we
first list fundamental concepts and lemmas. In Section 3, the
existence of mild solutions and exact controllability for (1)
are discussed by applying the Monch fixed point theorem
and cosine family. At last, in Section 4, two reasonable
examples are worked out to support the main findings.

2. Preliminaries

In this part, a set of piecewise continuous functions is pre-
sented first. Next, define a mild solution of (1). Some related
definitions and lemmas are listed on the side.

Assume that X is a Banach space with the norm ||-||.

Define PC(T;X) ={x: T —> X|x is continuous at f #

cfi+k, t# ¢, and x(cf’)rk? ), x(cfi+k+ ), x(c;,,)> x(ct,,) exist, with
x(cfﬁk ) :x(cf'Jrk) and x(c;,;) =x(c;y), fori=0,1,---,j, k=

1,2, (k;;; — k;)}. Obviously, PC(T ; X) is a Banach space
with the norm ||x|| pc = sup,r||x(t)||.

Definition 1 (see [22]). If x(t) € C([0,b];X), then the
Riemann-Liouville integral of fractional order g > 0 is given by
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Jix(t) = % Jo(t —5)Tx(s)ds, (2)

where C([0, b];X) is the place of all continuous functions
x(t): [0, 0] — X.

Definition 2 (see [22]). The Riemann-Liouville fractional

derivative of x(t) € C([0, b] ; X) of order q € (1, 2) is given by
q 2 12—q 1 dz ' 1-g

Dix(t)=D"]*x(t) = mﬁjo(t —s) Ix(s)ds. (3)

Definition 3 (see [22]). The Caputo fractional derivative of
order g € (1,2) is given by

“Dix(t) =] ID’x(t) = F(zl— 9) J S L‘litzx

Consider fractional differential system as follows:
°Dix(t) = Ax(1), x(0) =, (0) =0, (5)

where g€ (1,2), A : D(A) ¢ X — Xis a closed and densely
operator defined in X, and D(A) illustrates the domain of A.
By taking the Riemann-Liouville fractional integral order g
on both sides of (5),

1 t
— | (t-s)T"Ax(s)ds. (6)
g 9745
Definition 4 (see [22]). A family (C,(t)) _, < L(X),q € (1,2]
is called the solution operator (or a strongly continuous
g-order fractional cosine family) for (5) and A is called the
infinitesimal generator of C,(t) if the following conditions
hold:

x(t)=y+

(i) C,(t) is strongly continuous and C,(0) = I, where I
denote the identity operator. And there exist con-
stants M, >0, M >0, and w >0 such that ||C,(t)]|

<Me“<M
(ii) C,(t)D(A) c D(A) and AC,(t)n=C,(t)An for all

neD(A),t=0
where i=1,2,:-,].

0

j
x(t) =9 x(t) = Gi(t, x(c; ), t € _ (cp di)s

1

(iii) C,(t)y is the solution of x(t) :1//+(1/F(q))fg
(t —s)T" Ax(s)ds for all y € D(A)

Definition 5 (see [22]). The fractional sine family Sq(t):

[0,00) — L(X) associated with C,(t) is defined by

t

S,(1) :J C,(s)ds, t>0. (7)

0

Definition 6 (see [22]). The fractional Riemann-Liouville fam-
ily P, (t): [0,00) — L(X) associated with C,(t) is defined by

P (t)=]17'Cy(t). (8)
Thus, for ¢t € [0, b, according to Definition 1,

1Po ()| = 7€y 1)
:‘ru—w*

o I'(g-1)
M t 2
< mjo(t—s)q dt (9)

Cq(s)ds

Lemma 7 (see [21]). The mild solution of the following frac-
tional semilinear system of order 1< q < 2 with noninstanta-
neous impulses

Dix(t) = Ax(t) + Bu(t) + (£, x(t)), t € UL_o(dpr i1))s
x(t) = G(t,x())), t € UL (¢, d],
x' (1) = Gi(tx(c;), t € UL (¢ ),

Cy(t)xg + Sy(t)x; + J P, (t = s)[Bu(s) + f (s, x(s))]ds, t € [0, ¢ ],

x(0) = x,,

x'(0)=x,
(10)

is be given by
(11)

t

ot = ) (Gildy x(6)) + 8,0~ ) (Gl (61 ))) || Pyt )[Bu(s) + (5 x(9)Jds £ € [ 5],

d

i



Lemma 8 (see [22]). The mild solution of the following frac-
tional semilinear system of order 1 < q < 2 with instantaneous
impulses

‘Dix(t) =Ax(t) + Bu(t) + f(t,x(t)), t € T,

Ax(c;) =1i(x(c;)),i=0, 1, -+,

Ax'(6) =1 (x(¢;)), 1= 0, 1, -+, j, (12)
x(0) = x,,

x'(0)=x,

Journal of Applied Mathematics
is be given by
ot
x(t) = Cq(t)xo +S (t)x1 +J P (t —5)[Bu(s) + f (s, x(s))]ds
0
+ Y Cy(t-t) + Y S, (t-t,)

0<¢;<t 0<¢;<t

(c;)steT.

(13)

According to the above two lemmas, similar to [25], the
mild solution of (1) can be defined as follows.

Definition 9. For given u(-) € L*(T;Y), x(-, x¢, x;, u): T —>
X is called a mild solution of (1), if x € PC(T ; X) and satisfies

Cy(t)xg +Sy(t)xy + .[:)Pq(t —5)[Bu(s) + f(s, x(s))]ds + Z (oA (t - cé)lé (x(cgi)) + z S (t - cﬁ)fﬁ(x(cﬁ)), tel0, ¢,

k
o<ch<t

x(t) =4 Gi(t,x(c;)), t € (¢ dj],

Cylt = d)(Gi(dx(c)))) + Syt = di) (Gl (7)) ) +[; Pyt =s)Bu(s) +f(s.()lds+ Y C Q=AY I () )+

Definition 10 (see [21]). System (1) is said to be exactly con-
trollable on T if, for every x,,, x; € X, and arbitrary final state
x? € X, there exists a control u € L*(T,Y) such that the mild

solution of (1) satisfies x(b) = x”.

Now, we introduce a result of the Kuratowski measure of
noncompactness 2 defined on bounded subsets of the
Banach space X. For more detailed information, please see
[5, 26-28] and references therein.

Lemma 11 (see [4]). Suppose X is a Banach space. Let D be a
countable set of strongly measurable function x: T — X
such that there exists a p € L[T, R*] with ||x(¢)|| < u(t) a.e
teT for all x € D. Then, 2 (D(t)) € L[], R*] and

.%”({JTx(t)dt : xeD}) sszl’(D(t))dt, (15)

where 2 (-) denotes the Hausdor{f noncompactness measure,

= [0,b].

Theorem 12 (see [4]). Suppose X is a Banach space. Let D be
a closed and convex subset of X and u € D. Assume that the
continuous operator A : D — D has the following property:
Cc D countable and C c co({u} UA(C)) imply C is rela-
tively compact. Then, A has a fixed point in D.

0<ch<t

Z Sq (t - cf"+k) If‘;k (x(cf“k )), te(dscy)

K+l ki+k
d<di™ et di<c; <t

(14)

3. Existence of Solutions and
Exact Controllability

In this part, we discuss the existence of mild solutions of (1)
and exact controllability. To this end, we list the following
assumptions in the first place.

Hl. f: 7 xX— X is continuous. There exist a(¢)
€ L*[T,R*] and b(t) € L'[T,R*] such that

If(tx)|| <a(t)||x| +b(t),Vxe X, teT. (16)

And there exists &(t) € L'[F, R*] such that

Z(f(t, D)) <§(t)L (D), (17)

for arbitrary bounded set D c X.
H2. G, : T; x X — X are derivable and G; : T, x X —
X are continuous, T; = (¢;, d;], i=1,2, -+, j. There exist g;(t),

hi(t), g,(t), hi(2), %i( ), and %, (t) € L'[T, R*] such that

1Gi(6: )| < gi(£) 11| + hi(2),

' _ _ (18)
|Gi(t: %) || < g;(t) |1x[| + Bi(®),
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for Vt € T; and Vx € X, in L*(T,Y)/Ker". In addition, there exists a positive con-
stant K such that

X (G,(t, D)) < #;(t)Z (D), )

(19

Z(G{(t.0)) <%, ()2 (D), <K, (23)

()

and 7(t) € L'[T, R*] such that

for any bounded D ¢ X and Vt € T.
Kok ok +k

H3. IV, I;' : X — X are continuous for i=0,1, -,
jok=1,2,---, (ky,; —k;), and there exist positive constants e o N\l e T (24)
—— 2 - W) D)(t)) <n()X(D),teT, (24
J:_c[+k’ ‘7;(" * %fi+k’ %f +k m,, and 7, such that <( d, (D)( )> n(t)X (D)
’ If‘%(x) H < Jf.‘f”‘HxH +m, for any bounded set D ¢ X.
(20) For convenience, denote
Ik (x H s.)’f"Jrk x| +m;,
H ) e+ m F1=11a0) 2o
for all x € X, F,=|a(") HLZ[[d,.,cM],R*]’
!%-(Il'(iJrk(D)) S%gi+k%(D) Fy= Hb(')HLl[[O,cl],R*]’
ok ot (21) Fo = 118C) i 01007
i+ i+
Sl"(li (D)) <K X (D), g= sup g;(1), (25)
te(cpd =12,

for any bounded D ¢ X. 9= sup  g;(1),
H4. The linear operator W' : L*(T,Y) — X defined te(cod))i=1.2,+-,j
by h= sup k1),

te(cod))i=1,2,++,j

Cit1 T
W= [ Py - 9Bu(9ds =012, ), (22 h= sup ).
te(cpdii=1,2+,

has a bounded invertible operator (W* 1)_1. It takes values We define the control as follows:

u(t, x4, x1,x) =

where i=1, -, j, for x%, x%1 € X, t € T, and x € PC(T, X). Lemma 13. Assume that H1-H4 hold. Then, for xi, x%1 € X,
Now, we show that the control operator u(t, x, x%1,-)is  the set {u(t, x): x € By} is bounded on T, where By ={x € P
bounded. For convenience, denote u(t, x, x%1, x) as u(t,x).  C(T;X): ||x]| <6}



Proof. Notice that by H1-H4,
(e, )l = || (We) ™ [ = Cylen)xo = Sy(en)x,
—Jcl (€1 = 9)f (s, x(s))ds - z C(
0 0<ck<e
3;%@%mow»wu

0
<K [IIX“I 1+ Mlxol| + M [lx, ]| + M, F,8(c,) 2

-9)ie(4)

+ T+ Z M(]’56+m0)

0<ck<c
+ Z Mc, <}58+fn\6)} =y,
0<ck<e
(27)
for t € (0, ¢,].
Similarly,
c, -1 c -
Jute ) = [ (w5) [ = €6 = )G x(e)
=561 =) (Gl (60)) = | "y = (5 )

-3 e ()
R R

kivk
di<c/ <,y

< K{ch'*' | +M(gd +h)+M(ci,, —d;) (g6 + fl)

+ M, T80y, —d) P+ Fyr Y (Jk ks 4 m, )

)

kivk
di<c;’ <y

M(d;y = ;) (J?’:k(s + ;77,)} =i Uy,
(28)
for t e (di’ Ci+1]’ where i=1, ’]
Now, we try to prove the existence of mild solutions and

exact controllability for (1).
For convenience, we denote

M* =402 B| (J J.Clq(t)i(s)dtds> +2M,|B|M
0Jo

¢ ky ky ko
: <J r](t)dt) Y HE+MY He+Mc, Y K
0

k=1 k=1 k=1
Cy ko €1
+ 2MP||B||M(J n(t)dt) > H+ sz(j E,(t)dt),
0 k=1 0
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M* = sup [MF(t) + MGy = )7, (1) + 2M, | B|M

t€(d;ciy)
~ (Jd n(t)%,-mdt) £ 2, |B|M (¢, -,

dwq(t)%i (t)dt) +4M12,HB||M

i

Jn (DE(s )dtds) +2M,|[B|M

d; Jd

|

)

[

[Lra) 5
[Feow) ok

i1k

Z ™%+ 2M, | B|M
l

Hl k
k +k

&) +M

(
{
{
{
(

ki
'S (-t ]

i=1

H" = sup #,(t),
te(cpdy)

Y MSe | (1+K),

k
0<cy<ey

Py = [Mpgl(cl)ller Y MIh+

0<ck<c

| S

i —d)"?

Py= {Mg +M(ciyy — d;)g + My F(c

Y MY Mjk+k(d,-+1—ci)](1+K).

kivk ki+k
di<ci <, di<c;™
i

i<G <Cis1

(29)

O

Theorem 14. Assume that HI-H4 hold. Then, (1) is exactly
controllable on T provided that

M*+M*™ +H" <1,
P,e(0,1),
P;€(0,1),
g€ (0,1),

(30)

where i=1,2,---,].

Proof. In order to get the existence, define operator Y on
PC(T, X) as follows:

C,(t)xg +S,(t)x; + tP (t = s)[Bu(s) + f (s, x(s))]ds + C,(t- KNV IE(x Slt- & Ik ,te[0,¢p], Gi(t, x(c;))s t € (cip di)s
q 1 N Z Z

0<£ <t

(Yx)(t) =

0<£ <t

Cq(t—d,)(G,(d,,x(cj)))+Sq(t—d,-)(Gf(d,-,x(c{))) +r P,(t = $)[Bu(s) + f (s, x(s))}ds + Z C (t ck*k)fk'*k(x(cf'*“)) + Z S (t ck*k)zk'*k(x(cf»*k’)),ze(d,,c,ﬂ],
d;

kit Ki+!
di<c; ket di<c™ ket

(31)



Journal of Applied Mathematics

where i=1,2,---,j and u(t) is defined as (26).

Obviously, the existence of fixed points of Y is equivalent
to the existence of mild solutions of (1).

The proof will be divided into the following three steps:

Step I: show that there exists a constant § > 0 such that
Y(Bs) C Bs.

Choose § satisfying

Q Q‘ h
8> max 0 —, , (32)
i=12,j|1-=Py 1-P,  1—g
where
Qy = M[xo|| + Me, ||, || + e, M, || B|IK
[l )+ Mo | + Mey ||, || + F5 + Mimg + Mey ]
+ F5 + Mmy + Mcymy,
Qi =Mh+M(c;,y —dp)h+ (civ1 — )M, ||B||K
|+ MR+ M(cyy —di)h+ Fy+ z Mm+ Y M(dy, - c)m;
d<c ket d<rf”k<c‘+,
+F,+ z M(d;y, —c;)m; + z Mm;.
Kki+k itk
di<c " <eyy di<c' <y
(33)

It is time to claim that Y(By) C B;.
By H1-H4 and (32), one can get that for x € By,

[(Y) ()] < M| || + Mey [, || + €M, || By
+M,F () P+ Fyr Y M(J§8+m0)
0<c§<c1
+ z Mcl(fl(§8+r70) <Q,+P,6<9,
0<ck<c,
(34)
for t € [0, ¢,].

So, ||(Yx)(t)]| £ Qy + Pyd <6 for t € [0, ¢;].
Similarly,

[[(Yx)(t)|| < g6 +h<é, (35)

for t € (¢;, d;), where i=1,2, -+, j.
Therefore, ||(Yx)(t)|| <& for t € [¢;, d].
In addition,

[(Yx)(t)]| < M(gd +h) + M(ci,, —d;) (g0 +h)
+ (Coor — )M, || Bl + M, F,0(c
+F+ Z (fk+k8+m)

ki+k
di<c;’<ciy

ks |~
+ Z M(di+1_ci)<ji 5+mi>
di<clv{i+k<ci+1

<Q;+P6<é,

_ di)llz

i+1

(36)

forte(d,c,,],i=1,2,-,].

Thus, ||(Yx)(t)|| < Q; + P,6 <8 for t € (d;, ¢;yy ).

Combining (34)-(36), one can obtain that ||(Yx)(#)|| <&
for t € 7. That is, Y(Bs) C By.

Step 2: claim that Y is continuous on Bg.

We first show that the control u(t, x) is continuous with
respect to x on Bs. Assume that {x, }_ is a sequence satis-
tying x,, — x as n — 00 on B;. Then,

||u<t,xn>_u<t,x)||gmj (5 2,(9) ~ (s
+ ZM!!Ik( (4))-1(x(eh))]
+ z Mc, Io(x (’5)) Ik(x(cg ))

k
0<ep<ey

x(s))|ds

>

(37)
for t € [0, ¢,].

Hu(t’ xn) -
+M(Ci+1 -

u(t, x)|| < M|Gy(d;, x,(c;))) = Gi(di x(c)) |
d,)[|Gi(d;, x,(c7)) = Gi(dy x(c7) |

+ ijc‘” (5 50(5)) (5 x(5)) s

+d X MHIM< (7)) -1 ()|

i<L‘ <Ciy
i

Y e () =2 (o)) |
() ()
(38)
for t € [d;, c;,,], where i=1,2, -, ].
(37) and (38) together with H1-H3 imply
||lu(t, x,,) — u(t, x)|| — 0,as n — o0, (39)

for arbitrary t € T.

So, control function u(t, x) is continuous with respect to
x on Bg.

Next, we prove that Y is continuous on Bg. Assume that
{x,}°2, is a sequence on By such that x,, — x as n — co0.

Notice that for ¢ € [0, ¢;],

|(Yx,)(6) - (Y1) sMpuBuj:nu(s, %,(5)) = (s, x(5)) | ds
MPJ: 15 2,(5)) — (5 x(5)) || ds

+ Y M 1’5<xn(c’6’)> —1'5<x(515>>H

0<ch<t

+ Z Mcl||1~1(§(xn (c’(f)) —I%(x(c’éi))H —0,asn — 00.

O<ch<t

(40)



For t € (¢, d}],

[[(Yox,) (8) = (Yx) (0[] = [|Gi (8 x(c7)) =

G;(t, x(c;))|| — 0,asn — oo.

(41)
For t € (d;, ¢;,1],

[[(Yx,)(t) - (Yx
+M(ciyy — d;)

(1)) MGy (dy X(67) = Gy(do %, ()
G (dx,(67)) = i (dp ()|

+Mp||BIIJ:l||u(S»xn(S))—u(s,x(S))HdS
. MPJC”' 16 x0(6)) ~ £ 5(5)) s
s M (7)) =1 ()
) P ) -6

(42)

+ Z M(c;yy —dy)
d,-<cf.(‘+k<t

Combining (40)-(42), we get that Y is continuous on B;.
Step 3: show that D is relatively compact if

D c éo({uy} U Y(D)), (43)

and D ¢ B® is countable, where u, € B’.

Without losing generality, let D= {x,} . We prove that
{Yx,}2, is equicontinuous on [0,¢], (¢, d;], and (d,, ¢; 1),
i=1,---,j. In this case, assuming it is true, co({u,} U Y(D))
would also be equicontinuous on the above intervals.

We notice that for each x € D and £, ¢, € [0, ¢;],

[[(Yx)(t;) = (Yx) ()] < [|Ca(11) = Cata) || %ol +[[Sg(81) = Sg(2) |11
+ .[Uqu(tl —5)[Bu(s) + (5 x(s))|ds - 'Lz (£ =) [Bu(s) + £(5, x(s))ds
S e anEE) - 3 ofad)ile H

0<ch<t, 0<ck<t,

o X s (n-d)i(x(4)) - X s (e-d)n(x(«)) I

0<ck<t; 0<ck<t,
=L +Ly+Ly+L,+Ls.
(44)

Obviously, L, — 0 and L, — 0 as (¢, —t;) — 0.

And

r P, (t, —5)[Bu

3}

L <

(s) + £ (s x(s)))ds

+

—5)] [Bu(s) + f (s, x(s))]ds

>

JZ [P, (t; —5) =Pyt

0
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L<| Y Cq(t

ty<ck<t,

N RCIC

0<ck<t,

()
-4)-ao-)6(4))|

i)
)=o)

Li<| Y s, (tl

ty<ck<ty

+ Z [Sq (tl

k
0<cp<t,

Through calculation, we conclude L; — 0 for i=3,4,5,
as (t,—t;) — 0. Thus, |(Yx)(t;)— (Yx)(t,)|| —0 as
(t,—t,) —0.

Next, for each x € D and ¢, ¢, € (¢;, d],

[(Yx)(t1) = (Yx)(22) | = [|Gi(tr> x(ci)) = Gyt x(c7) | = O, a8 (£, = 1) — 0.
(46)
That is, Y(D) is equicontinuous on (c;, d,].
In the end, for each x € D and ¢, t, € (d;, ¢;,1)
I(Y2) (1) = (Yx)(85)[] < [|Cy (8, = ) = Cy (1, = )|
NGy x(c) | + (|84 (t = di) = S, (t, = ) || || Gildi, x(<7) |
31
+ L Pq(t1 —5)[Bu(s) + f (s, x(s))]ds
5}
- qu(t2 —5)[Bu(s) + f (s, x(s))]ds
ki+k\ thi+k ki+k™
+ Z Coltr—a" ) (x( ¢
3 el )
-3 A )
di<diat,
+ Z S tl—cf’+k If"Jrk x cfﬁk?
e, Slamd (@)
= Y sy (t - (o) H—l thtl 4
d<di™et,
(47)
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Similarly, ;, — 0 and [, — 0 as (¢, — t;) — 0.

qu(tl — ) [Bu(s) + f(5 x(s))]ds

[" Byt =9 Byt =9 Buts)+ s 505

Z Cq (tl _ Ci{,+k> Ii.cgrk (x (C;{,Jrk’)) H
et e

> sq<t1-c,-k-*)z:vk(x(c:w))‘

kivk
t<e <ty

3 o) sl )

kivk
di<c' <ty

+

(48)

By calculation, one can get that ; — 0 for i=3,4,5,
as (t, —t;) — 0. That is, ||(Yx)(#;) = (Yx)(t,)|]| — 0 as
(t,—t;) — 0.

Combining (44)-(48), {Yx, } _, is equlcontlnuous on
[0,¢,], (¢;»d;], and (d,, c;,,], respectively, where i=1, -, ].

Therefore,
Lpc({Yx,},2,) = sup sup L ({Yx,(t)},2))-
1<i<jite[0,¢,],(c;d;] and (djsc; 4]
(49)
Notice that
[, (£) = % (]| < [|% = Xl pesVE € T (50)

implies

Z({xa()121) < Loc({x}32) Ve e T, (51)

where &'p denotes the Kuratowski measure of noncom-
pactness of a bounded set in PC(T, X).

According to Lemma 11, for t € [0, ¢;],

(Y5 (0)) sszuBuj:&"(ua))dt

ky

a3 ({1} )

k=1

eaM, [ 2 ({fe 5 0))2)
+ iMCﬂ”({INIS(X
. (J:an(t)f(s)dtd5> Lpc({%}021)

0

()} ) <am|B|

+2MP||B||M<L n(t)dt
. ko
+2Mp||B||M(jO 10dt) Y, L e ()2

+2MP(J:E(t)dt)%PC({xn}n . +M§:% Lpe({%0}21)

ko
+Mc, Z% Lo ({x,} {4M2||BH(
k=1

+2Mp||B||M(L n(t)d );
< 2u ) [ ey

t) Y 7k
+2M, (J ;E(t)dt)mc({xn}z;) =M Tpc({,12,)-

)E(S)dtd5>

k,
0ot M Z%k+MCIZ%k
k=1 k=1

k=1

(52)
For t € (¢, d}],

Z({(Yx,)(0)}52 )<5X({G (6 x,(6) 121)
(O ({xu(D}:2) (53)

<H'Z({x,()};2)-

For t € (d, ¢;,1)»

2 u(r))de

Z({(Y5,)(0)2) SZMPHBHJ

oM J T (L (% ()} )de

S (i)

n=1

i' gz ({1 mm) )
)

(605,001,

+ M(e - )2 (Gilb%,(0)} )
< M%i(t)“chC ({xn}iil)

+ MGy = d) 7 () pe ({7,132)
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To sum up, (1) is exactly controllable on T. O

+2M,,|B|M<Lwn<r>%,-<t>dt> Loc({5,152))
+2M, B M (¢ ~ ) (Lwﬂ(f)%(t)df) Loc({5,)52))

+4M12,|B|M< , L n(t)E(s)dtds)%Pc({xn};’fl)
d;

Cis

+2Mp||BHM

c kiyi=k;
i+1 Kotk
+2MPIBIIM< ﬂ(f)dt) Zl Hi " L pe({%)021)
L ki1 —k;
O EDY
i=1

l’) H.l (z+1 d)%k +k‘%‘PC({xn} )

d;

+2M, (J;H f(l‘)dt> Lpc({%,}221)
ki —k;

+M Y I L e ({7,)2)

i=1
ki —k;

i+1

+M Z (Cip1 — d)%k+kgpc({xn} )

i=1
= [M3,() + M(ci.y )7, (1
+2M,||B[|M L

ﬂ(f)%i(f)df>

i

+2M, |B|M (e~ ) (j:”w)%(t)dr)

i

J n(1)E dtds)
> “z b %k,+k

kx+l_k1
k +k
dt Z Ciy1 — i ‘%il
kx+1 i

+2MP<JM£( )d) MY g

+4M2|\B||M

+2M ||B||M

[
+2M |B||M<
([

d; i=1
Kis1=k; k .
+M Z (G —d)) ]‘%‘PC({xﬂ}n 1)
i=1
<M T pe ({%,15321)- (54)

Combining (52), (53), and (54), one can get that

Z{(YZ,)(O)}2) < (MM + H) XL pe ({X,},2,) -

(55)

Furthermore,

Lec({%ahih) < Lo ({Y%132)) (56)
S (M+M™ + H*) X pe ({%,},2,)-

According to the assumption of Theorem 14, we
conclude that 2 pc({x,},2,) =0. Therefore, D={x,}-, is
relatively compact. By Theorem 12, it yields that, in B, Y
has at least one fixed point.

4. Examples

To demonstrate the effectiveness of the obtained results, two
examples are presented in this section.

Example 1.

y o x(=(1/5),7) 1 4

b =ee Y s <5’ 5}"76 ©1)
ox(tn) _ _(iey X(=(1/5), ) 1

T 1+ x(—(1/5),7) (E E}’”e(o b
x(t,0)=x(t,1)=0
x(0,1) = ()
0x(0,7) _

ot _xl(ﬂ)’

Ax(£)(1)|2yj7 = £4J;/7 cos <; —s)x(s, n)ds,n € (0,1),

0x(t)(n) (1 )
A =¢ex(=,n],ne(0,1),
at t=1/7 ! 7

(57)

where t € T =0, 1].
Conclusion of Example 1. (57) is exactly controllable on T.

Proof. (57) can be seen as a system in the form (1), where

3
q 3
b=c,=1,
co=dy=0,
1
a=z
4
d, = o
o= En
e'x(t, P 58
f(tx(1)) :el% +82J08 (s, 1)ds, (58)
G (tx)=¢ o (-115) x(=(1/5),n)
e ’ 1+x(—(1/5),1)’
x(=(1/5),m)

G (t, x) = —.¢"(17115) i
1(6x) = —ese 1+ x(—(1/5), 1)

) o s
A6 (o)
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Let X = L%([0, 1]) be equipped with the norm defined by

x| = (J:)x(t)fdt) m,xe X. (59)

Define Ax =x"", and

D(A) = {x € X : x, x" are absolutely continuous and x'' € X, x(0) = x(1) = 0}.

(60)

Thus,

Ax =

18

- n*(x,e,)e, x € D(A), (61

~—

B
I
—

where e, (1) =v2/msin (ny),0<n<1,n=1,2,---.
We now introduce the cosine function

C(t)x= OZO: cos (nt)(x, e,)e,, t € R. (62)

n=1

According to the subordinate principle [29], it follows
that A is the infinitesimal generator of a strongly continuous
exponentially bounded fractional cosine family C,(t) such

that C,(0) =1 and

00

C(0)= gun(ods t>0 (63)

where ¢, (s) = t77¢,,(st7?), and

¢V(T) - Z n!ll o

_ - 0<y<]I. 64
n=0 (_yn+1_))) v ( )

The fractional Riemann-Liouville family P,(t): [0,00)
— L(X) associated with C,(t) is defined by

P (1) =]17'Cy(t). (65)
Obviously, W' : L*(T,Y) — X defined by
Cisl
Mﬁﬂuzj P,(¢;y1 = $)Bu(s)ds, i=0,1, (66)
i d,-

has a bounded invertible operator (W' )71 taking values in
L*(T, Y)/Kerj". In addition, there exists a positive constant
K such that

¢; -1
H(Wd{“) <K. (67)
Therefore, H4 holds.

According to Definition 4, there exists a constant M > 0
such that [|C, ()| < M. Put x(t) = x(t, 1), that is, x(¢)(y) =

11

x(t,1),t€1[0,1],7€[0,1]. B: Y — X which is defined as
Bu(t) =z(t,n) is a bounded linear operator.

Clearly,
sexpl=al S v [ e xena
<]+ e = (e + €2 )

16 (6.3) e <) (69
|16 ) ] (70
ra(atea <l 7
|t el (72)

Combining (68)-(72), the assumptions H1-H3 hold with

(t)
b(t) =0,
9,(1) = g,(t) = &5,
hy(t) =hy () =0,
Fo=€sin g,
Th=e
my =y =0,
oo M 2
P r(3/2) 3

2
&2 &
F, = El + (62 —68/5)8182 + (ez —68/5) 52,
Fy=F, =0,
g=9g=¢s
h=h=0.

Therefore, when ¢, €,, &, and ¢, are sufficiently small,
the conditions P € (0,1) and P, € (0,1) in Theorem 14 are
guaranteed. That is, (57) is exactly controllable on [0, 1]. [

Example 2. The design of digital filters has attracted a lot of
attention of a wide range of researchers since the last cen-
tury. A digital filter is a system that can manipulate the sam-
pled digital signal, usually to enhance or reduce some
properties of the signal being processed. Digital filters are
often used in industry because of their significant advantages
of stable input and output, phase linearity, and low coeffi-
cient sensitivity. We introduced filter mode for system (1),
as shown in the attached picture.
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Pq (t-s)

x(s)

A 4

7 —>(Ttegrator

v
Integrator
5 grator)
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C,(t-d))

G/ (dx(c)))

Gj (dj,x(cj’))

Sq (t—dj)

G; (djx(c;)

C, (t-cf1)

I (xe(cf1+))

Ijk].+k (X(C]kﬁki))

8, (t=¢/1")

L™ (x(ef )

Ek/.+k (X(C]k#k?))

ki+k
Sq (t—cjj )

Ficurek 1: Digital filter model.

We present our filter system in Figure 1, which shows
the rough pattern of the digital filter model based on the fil-
ter systems defined in [30-35].

(1) Product modulator 1 gets the input A and P,(t-5s)
turns out the output as AP, (t - s)

(2) Product modulator 2 gets the input f and x(s) turns
out the output as (s, x(s))

(3) Product modulator 3 gets the input B and u turns
out the output as Bu

(4) Here, integrators performed the integral of P (- s)
[f (s, x(s)) + Bu(s)], over the period ¢

In addition,

(i) inputs P, (t—s) and f(s,x(s)) are combined and
multiplied with an output of integrator over (0, t)

(ii) inputs P, (¢ —s) and Bu(s) are combined and multi-
plied with an output of integrator over (0, t)

In the end, move all the outputs from the integrators to
the summer network. Therefore, the output of x(t) is made,
which is bounded and exactly controllable.

5. Conclusions

The paper obtained the existence of mild solutions and exact
controllability for a type of fractional semilinear system of
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order g€ (1,2) with instantaneous and noninstantaneous
impulses. The existence result is investigated by the
Kuratowski measure of noncompactness and Monch fixed
point theorem. It is remarkable that we do not use the
Lipschitz conditions, because they are stronger than our
assumptions for nonlinear term and the impulses. On this
basis, the exact controllability for the considered system is
obtained. The conclusions of this paper are important and
general, which fill the gap of previous studies of fractional sys-
tems of g € (1,2) with instantaneous and noninstantaneous
impulses. In the future, we will study the systems with time
delay and nonlocal conditions and try to investigate the
systems in the form of other fractional derivatives such as
the Hilfer fractional derivatives. They can make the systems
describe more complex phenomena.
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