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Graph theory (GT) is a mathematical field that involves the study of graphs or diagrams that contain points and lines to represent
the representation of mathematical truth in a diagrammatic format. From simple graphs, complex network architectures can be
built using graph operations. Topological indices (TI) are graph invariants that correlate the physicochemical and interesting
properties of different graphs. TI deal with many properties of molecular structure as well. It is important to compute the TI of
complex structures. The corona product (CP) of two graphs G and H gives us a new graph obtained by taking one copy of G
and V G copies of H and joining the ith vertex of G to every vertex in the ith copy of H. In this paper, based on various CP
graphs composed of paths, cycles, and complete graphs, the geometric index (GA) and atom bond connectivity (ABC) index
are investigated. Particularly, we discussed the corona products Ps⨀Pt , Ct⨀Cs, Kt ⊙ Ks, Kt ⊙ Ps, and Ps ⊙ Kt and GA and
ABC index. Moreover, a few molecular graphs and physicochemical features may be predicted by considering relevant
mathematical findings supported by proofs.

1. Introduction

Graph theory (GT) stands as a foundational mathematical
discipline that explores the intricate interplay of graphs and
diagrams as tools for visualizing and representing mathemati-
cal truths. Within this realm, the amalgamation of points and
lines provides a canvas upon which complex relationships are
elegantly portrayed in a diagrammatic format. The potency of
graphs extends beyond mere visual representations, allowing
for the construction of intricate network architectures through
the application of various graph operations.

A central focus within graph theory is the notion of
topological indices (TI), which serve as fundamental graph
invariants connecting the realm of abstract graphs to the
tangible world of physicochemical properties. These indices

are powerful tools that encapsulate and correlate intriguing
properties of graphs, reaching beyond the boundaries of
pure mathematics into the realm of molecular structures.
By providing insights into the structural characteristics of
molecules, TI enable the deciphering of their physicochemi-
cal intricacies, offering a profound connection between
mathematical abstraction and real-world phenomena.

In this context, the computation of TI, particularly
within the framework of complex structures, emerges as a
critical endeavor. This importance is magnified when con-
sidering the intricacies of intricate graphs generated through
the corona product (CP) operation. The CP of two graphs, G
and H, crafts a novel composite graph by combining a single
instance of G with V G copies of H. This synthesis results
in each vertex of G intricately connecting to every vertex
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within its corresponding copy of H, yielding a versatile plat-
form for the exploration of structural intricacies within com-
plex graph compositions.

The present research embarks on an exploratory journey
through the landscape of CP graphs, placing particular
emphasis on compositions involving paths, cycles, and com-
plete graphs. A pivotal facet of this exploration resides in the
investigation of two crucial indices: the geometric index
(GA) and the atom bond connectivity (ABC) index. These
indices bear the responsibility of encapsulating geometric
patterns and atomic bonding structures within the domain
of CP graph configurations. As the inquiry unravels, an
intricate tapestry of relationships emerges, shedding light
on the interplay between CP operations and the nuanced
behaviour of these indices.

The trajectory of this investigation is guided by a constel-
lation of foundational references, which collectively enrich
the understanding of graph theory. Among these beacons
are the works of Chartrand and Lesniak [1], Carlson [2], Afzal
et al. [3], Alon and Lubetzky [4], Randic [5], Cash [6], and
Lamprey and Barnes [7], among others. Each of these refer-
ences contributes a unique thread to the complex fabric of
graph theory, stitching together the intricate narrative that
spans from mathematical abstraction to real-world applica-
tion. In [8], the authors have calculated degree-based topolog-
ical indices of generalized subdivision double-corona product.
Moreover, readers may study some more literature in [9, 10].

As this journey unfolds, not only does it deepen our
comprehension of mathematical relationships, but it also
opens doors to the prediction of molecular graphs and the
unraveling of physicochemical attributes. The nexus of
mathematical rigor and tangible application establishes the
groundwork for advancing both theoretical understanding
and practical prediction, exemplifying the multifaceted
impact of graph theory in diverse domains.

Through a symphony of mathematical insights and tan-
gible applications, this research seeks not only to contribute
to the ongoing discourse within graph theory but also to
underscore the profound symbiosis between mathematical
exploration and its real-world consequences. As we delve
into the intricate worlds of CP graphs and their accompany-
ing indices, we engage in a harmonious dance between
abstraction and application, deepening our understanding
of both mathematical beauty and physical reality.

Let G and H be 2 graphs, each with a group of vertex
V G and V H and a group of edges E G and E H ,
respectively. We described the corơna product GoH as the
prơduct of twơ graphs, G and H, achieved by combining
each vertex of V G copies of H.

V G⨀H = V G 1 + V H ,
E G⨀H = E G + V G V H + E H

1

Let G = V , E be a nontrivial, simple, or undirected
graph. An independent set of vertices in an adjacent graph
is known as an independent set. A graph’s dominating set
is a set D of vertices in which every vertex in S is not adjacent
to a vertex in D. A set that is both dominant and indepen-

dent in a graph is called an independent set. To determine
their properties, it is crucial to know these composite molec-
ular graphs’ topological indices [3]. Topological indices of
product graphs have been a fascinating area of study in
recent years, and numerous articles offer formulas for vari-
ous topological indices of various graph compositions [11].
Accordingly, researchers were taken by these results and
were inspired to investigate the ABC index [10] and GA
index [11] of the corona products of various graph architec-
tures. The ABC index was introduced in 1998 [10]. As a
result of this index, heat is used to characterize the way in
which alkane production is affected by vertex degrees [10].
Detecting an independently dominating number of corona
products of path, cycle, wheel, and ladder graphs will be
investigated in this study. Consider a simple connected
undirected graph with n vertices; then, the Randic index is
defined as follows:

X G = 1
dudv

, 2

where du is the degree of vertex u.
Consider a simple connected undirected graph G V , E

that has n nodes, and then, the ABC index is defined as
follows:

ABC G = 〠
uv∈E G

du + dv − 2
dudv

, 3

where du is the degree of vertex u.
In addition, the GA index in 2009 [12] by considering

the degrees of vertices in a graph.
The GA index is defined as follows:

GA G = 〠
uv∈E G

2 dudv
du + dv

4

The corona product of G1 and G2 is defined as the graph
obtained by taking one copy of graph G1 and V G1 copies
of G2, where each vertex of the ith copy of G2 relates to
the ith vertex of G and is denoted by G1 ⊙ G2.

Figure 1 shows the corona product of two graphs. We
will discuss different families of corona product graphs and
calculate their topological indices.

2. Main Results

Let Pt , Ct , and Kt be a path, cycle, and complete graphs on n
vertices. In this section, we discuss the ABC index and the
GA index of Pt⨀Ps, Ct⨀Cs, Kt ⊙ Ks, Kt ⊙ Ps, and Ps ⊙ Kt .

°

G1 G2 G1 G2°

Figure 1: Corona product of two graphs.
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Theorem 1. The ABC index and the GA index of the corona
product of two path graphs Pt and Ps are given by the follow-
ing equations:

Proof. Consider the corona product of two path graphs,
denoted as Pt ⊙ Ps. In the case where both t and s are greater
than 1, it is evident that the vertices within this composite
graph can be categorized into four distinct types based on
their respective degrees. Specifically,

(1) the first type encompasses vertices with a degree of 2

(2) the second type consists of vertices with a degree of 3

(3) the third type comprises vertices with a degree of
n + 1

(4) the fourth type encompasses vertices with a degree of
n + 2

Notably, within this graph, the cardinality of the vertex
set V Pt ⊙ Ps is given by t + ts, and the cardinality of the
edge set E Pt ⊙ Ps is equal to ts + t − 1 + t s − 1 , which
simplifies to 2ts − 1.

By carefully considering the degrees of these distinct
vertex types, we discern a total of ten distinct types of edge
partitions. These partitions, each characterized by specific

vertex degree combinations, lend to a comprehensive under-
standing of the connectivity patterns within the composite
graph. The specifics of these edge partitions can be observed
in Table 1, encapsulating the diverse ways in which vertices
of different degrees interact and contribute to the graph’s
structure.

Now, substitute the value in Table 1 for each case.

Case 1. t = s = 2.

ABC Pt ⊙ Ps = 4 s + 1 + 2 − 2
2 s + 1 + 2 s − 2 s + 1 + 3 − 2

3 s + 1

+ 2 s + 1 − 2
s + 1 s + 1 + 2 t − 2 s + 2 + 2 − 2

2 s + 2

+ t
2 + 2 − 2

22 = 3 2 + 2
3

7

ABC Pt ⊙ Ps =

3 2 + 2
3 , t = 2, s = 2,

4 2 + 4 s − 3
3 + 2 s − 2 s + 2

3 s + 1 + 2s
s + 1 , t = 2, s > 2,

3t
2
+ 5

3 +
t − 3 6

4 , t > 2, s = 2,

2 2t + 2t s − 3
3 + 2 s − 2 s + 2

3 s + 1 + 2 2s + 1
s + 1 s + 2 + t − 3 2s + 2

s + 2 + t − 2 s − 2 s + 3
3 s + 2 , t > 2, s > 2,

5

GA Pt ⊙ Ps =

3 + 8 6
5 , t = 2, s = 2,

1 + 2 s − 3 + 8 6
5 + 8 2 s + 1

s + 3 + 4 s − 2 3 s + 1
s + 4 , t = 2, s > 2,

2t − 3 + 4 2 t − 2
3 + 8 3

7 + 6
5 , t > 2, s = 2,

4 s + 1 2 2
s + 3 + 3 s − 2

s + 4 + s + 2
2s + 3 + 2 t − 2 s + 2 2 2

s + 4 + 3 s − 2
s + 5 + 4 6t

5 + t s − 3 , t > 2, s > 2

6
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Case 2. t = 2, s > 2.

ABC Pt ⊙ Ps = 4 s + 1 + 2 − 2
2 s + 1 + 2 s − 2 s + 1 + 3 − 2

3 s + 1

+ 2 s + 1 − 2
s + 1 s + 1 + 2 t − 2 s + 2 + 2 − 2

2 s + 2

+ 2t 2 + 3 − 2
6 + t s − 3 3 + 3 − 2

9

= 4 2 + 4 s − 3
3 + 2 s − 2 s + 2

3 s + 1 + 2s
s + 1

8

Case 3. t > 2, s = 2.

ABC Pt ⊙ Ps = 4 s + 1 + 2 − 2
2 s + 1 + 2 s − 2 s + 1 + 3 − 2

3 s + 1

+ 2 s + 1 + s + 2 − 2
s + 1 s + 2 + t − 3 2 s + 2 − 2

s + 2 s + 2

+ 2 t − 2 s + 2 + 2 − 2
2 s + 2

+ t − 2 s − 2 s + 2 + 3 − 2
3 s + 2 + t

2 + 2 − 2
22

= 3t
2
+ 5

3 +
t − 3 6

4
9

Case 4. t > 2, s > 2.

ABC Pt ⊙ Ps = 4 s + 1 + 2 − 2
2 s + 1 + 2 s − 2 s + 1 + 3 − 2

3 s + 1

+ 2 s + 1 + s + 2 − 2
s + 1 s + 2 t − 3 2 s + 2 − 2

s + 2 s + 2

+ 2 t − 2 s + 2 + 2 − 2
2 s + 2

+ t − 2 s − 2 t + 2 + 3 − 2
3 s + 2

+ 2t 2 + 3 − 2
6 + t s − 3 3 + 3 − 2

32

= 2 2t + 2t s − 3
3 + 2 s − 2 s + 2

3 s + 1

+ 2 2s + 1
s + 1 s + 2 + t − 3 2s + 2

s + 2

+ t − 2 s − 2 s + 3
3 s + 2

10

Similarly, using Equation (6) and the values in Table 1,
we obtain the required result for the G Pt⨀Ps , which com-
pletes the proof.

Theorem 2. The ABC index and the GA index and the
corona product of the two cycles Ct and Cs are given by the
following equations:

ABC Ct⨀Cs = 2ts
3

+ t 2s + 2
s + 2

+ ts
s + 3

3 s + 2
,

GA Ct⨀Cs = t s + 1 + 2ts 3 s + 2
s + 5

11

Proof. The theorem’s verification is straightforward: for
tand s both exceeding 2, it becomes evident that the cardinality
of the vertex set in the corona product of two cycle graphs,
denoted as V Ct⨀Cs , equals n + nm. Additionally, the
edge set’s cardinality, represented by E Ct⨀Cs , amounts
to t + 2ts.

Furthermore, within this composite graph, a classifica-
tion of vertices into two distinct types based on their degrees
emerges. The first type encompasses vertices with a degree of
3, while the second type comprises vertices with a degree of
s + 2. These differing degrees illuminate the diverse connec-
tivity patterns within the graph, offering insights into the
way vertices of distinct degrees interact and contribute to
the overall structural makeup.

To concretize this insight, a comprehensive depiction of
the edge partitions, discerned through a careful consider-
ation of each vertex’s degree, is presented in Table 2. This
table succinctly captures the distinct arrangements of edges

Table 1: Number of the edges in each partition of Pt⨀Ps based on
the degree of the end vertices of each edge.

(du, dv) Number of edges

s + 1, 2 4
s + 1, 3 2 s − 2

s + 1, s + 1 1 ; t = 2
0 ; t > 2

s + 2, s + 2 0 ; t = 2
t − 3, t > 2

s + 1, s + 2 0 ; t = 2
2 ; t > 2

s + 2, 2 0 ; t = 2
2 t − 2 s − 2 , t > 2

s + 2, 3 0 ; t = 2
t − 2 s − 2 , t > 2

2, 2 t ; s = 2
0 ; s > 2

2, 3
0 ; s = 2
2t ; s > 2

3, 3
0 ; s = 2

t s − 3 ; s > 2

4 Journal of Applied Mathematics



based on the degrees of the respective vertices, shedding
light on the intricate relationships and connectivity dynam-
ics within the composite graph.

By substituting values in Table 2 in Equation (2) and
simplifying the formula, we obtain

ABC Ct ⊙ Cs = t
s + 2 + s + 2 − 2

2 s + 2

+ ts
s + 2 + 3 − 2
3 s + 2 + ts

3 + 3 − 2
9

= 2ts
3 + t 2s + 2

s + 2 + ts
s + 3

3 s + 2

12

Similarly, using Equation (3) and the values in Table 2,
we obtain the required result for G Ct⨀Cs .

Theorem 3. For the corona product, of two complete graphs
Kt and Ks, ABC index and GA index are equal to the follow-
ing equations, respectively:

ABC Kt ⊙ Ks = t
s − 1 3

2
+ s

t + s − 1

s t + 2s − 3 + t − 1
t + s − 2

2 t + s − 1
,

13

GA Kt ⊙ Ks = t s − 1 + t − 1
2

+ 2ts s t + s − 1
t + 2s − 1

14

Proof. By invoking the corona product definition, it
becomes evident that when both t and s surpass 1, the car-
dinality of the vertex set in the corona product of two
complete graphs, represented as V Kt ⊙ Ks , is t + ts.
Additionally, the cardinality of the edge set, denoted as
E Kt ⊙ Ks , equates to ts + C t, 2 + tC s, 2 , where C n, k
represents the binomial coefficient.

It is worth highlighting that, within this composite
graph, a classification of vertices unfolds based on their
degrees. Specifically, one classification pertains to vertices
possessing a degree of s, while the other involves vertices
with a degree of t + s − 1. This duality of vertex degrees
underscores the diverse interactions and contributions of
vertices to the graph’s overall structure.

Consequently, this classification engenders the existence
of three distinctive types of edge partitions, as eloquently
displayed in Table 3. Each of these partitions corresponds
to different configurations of edges, contingent upon the
degrees of the participating vertices. This delineation illumi-
nates the intricate interplay between vertex degrees and edge
connections within the composite graph.

By substituting the values in Table 3 in Equation (13)
and simplifying the formula, we obtain

ABC Kt ⊙ Ks = t
s − 1 3

2 + t

t + s − 1

s t + 2s − 3 + t − 1 t + s − 2
2 t + s − 1

15

Similarly, by substituting the values in Table 3 to
Equation (14) and simplifying the formula, we have

GA Kt ⊙ Ks = t s − 1 + t − 1
2 + 2ts s t + s − 1

t + 2s − 1 16

This completes the proof.

Theorem 4. For the corona product of the complete graph
and path graph Kt and Ps, ABC index and GA index are
equal to the following equations, respectively:

Table 2: Number of edges in each the partition of Ct⨀Cs based on
the degree of end vertices of each edge.

(du, dv) Number of edges

s + 2, s + 2 t

s + 2, 3 ts

3, 3 ts

ABC Kt ⊙ Ps =

3t
2
+ t t − 1 2t

2 t + 1 , t ≥ 2, s > 2,

t

t + s − 1
s − 2 t + s

3 + t − 1
2

2t + 2s − 4
t + s − 1 + 4t

2
+ 2t s − 3

3 , t ≥ 2, s > 2,
17

GA Kt ⊙ Ps =

t t + 1
2 + 4t 2 t + 1

t + 3 , t ≥ 2, s = 2,

t t − 1
2 + 4t 2 t + s − 1

t + s − 1 + t s − 3 + 2t s − 2 3 t + s − 1
t + s + 2 + 4t 6

5 , t ≥ 2,m > 2
18
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Proof. Considering the corona product of Kt ⊙ Ps, where
both t and s exceed 1, a distinctive classification of vertices
emerges based on their degrees. This categorization yields
three primary vertex types:

(1) Vertices with a degree of 2 constitute the first type

(2) The second type encompasses vertices possessing a
degree of 3

(3) The third type comprises vertices with a degree of
n +m − 1

In the context of this composite graph, the cardinality of
the vertex set, V Kt ⊙ Ps , equates to n + nm. Correspond-
ingly, the cardinality of the edge set, E Kt ⊙ Ps , is charac-
terized by ts + t s − 1 + C t, 2 .

An insightful observation emerges upon evaluating the
degrees of the vertices: the graph exhibits six distinct types
of edge partitions, as eloquently depicted in Table 4. Each
partition encapsulates a unique configuration of edges,
shaped by the degrees of the connected vertices. This revela-
tion accentuates the intricate interplay between vertex
degrees and edge connections within the composite graph.

Now, substitute the values in Table 4 in Equation (17)
for both cases.

Case 1. n ≥ 2,m = 2.

ABC Kt ⊙ Ps = tC2
2 t + s − 1 − 2

t + s − 1 2 + 2t 2 + t + s − 1 − 2
2 t + s − 1

+ t s − 2 3 + t + s − 1 − 2
3 t + s − 1 + t

2 + 2 − 2
22

19

By simplifying the formula, we obtain

ABC Kt ⊙ ps = 3t
2
+ t t − 1 2t

2 t + 1 20

Case 2. n ≥ 2,m > 2.

ABC Kt ⊙ Ps = tC2
2 t + s − 1 − 2

t + s − 1 2 + 2t 2 + t + s − 1 − 2
2 t + s − 1

+ t s − 2 3 + t + s − 1 − 2
3 t + s − 1 + 2t 2 + 3 − 2

2 3

+ t s − 3 3 + 3 − 2
32

21

Through the process of simplifying the formula, we
achieve the desired outcome. Similarly, by plugging in the
values from Table 4 into equation (18) and then simplifying
the formula, we attain the necessary results for the GA index
of the corona product graph (Kt ⊙ Ps).

Theorem 5. The ABC index and the GA index of the corona
product of the path graph and complete graph Ps and Kt are
given by the following equations:

Table 3: Number of edges in each partition of Kt⨀Ks based on the
degree of the end vertices of each edge.

(du, dv) Number of edges

s, s t Cs
2

s, t + s − 1 ts

t + s − 1, t + s − 1 Ct
2

Table 4: Number of edges in each partition of Kt⨀Ps based on the
degree of end vertices of each edge.

(du, dv) Number of edges

t + s − 1, t + s − 1 Ct
2

t + s − 1, 2 2t
t + s − 1, 3 t s − 2

2, 2 t ; s = 2
0 ;m > 2

2, 3 0 ; s = 2
2t ; s > 2

3, 3 0 ; s = 2
t s − 3 ; s > 2

ABC Ps ⊙ Kt =

2t
t + 1 + t − 1 2 t − 1 + 2t 2t − 1

t t + 1 , t ≥ 2, s = 2,

s t − 1 2t − 2
2 + 2t 2t − 1

t t + 1 + 2 2t + 1
t + 1 t + 2 + s − 3 2 t + 1

t + 2 + t s − 2 2
t + 2, t ≥ 2, s > 2,

22

GA Ps ⊙ Kt =
1 + t t − 1 + 4t t t + 1

2t + 1 , t ≥ 2, s = 2,

ts t − 1
2 + 4t t t + 1

2t + 1 + s − 3 + 4 t + 1 t + 2
2t + 3 + t s − 2 t t + 2

t + 1 , t ≥ 2, s > 2
23
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Proof. Let us delve into the corona product of the path graph
and the complete graph, denoted as Ps ⊙ Kt , where both t
and s are greater than 1. Within this context, a classification
of vertices emerges based on their respective degrees, leading
to the identification of three distinct vertex types:

(1) The first type encompasses vertices with a degree of t

(2) The second type consists of vertices possessing a
degree of t + 1

(3) The third type comprises vertices with a degree of
t + 2

In relation to this composite graph, the cardinality of the
vertex set, denoted as V Ps ⊙ Kt , corresponds to s + ts.
Simultaneously, the edge set’s cardinality, represented by
E Ps ⊙ Kt , can be expressed as ts + s − 1 + sC t, 2 .

A significant observation materializes as we assess the
vertex degrees: the graph is characterized by six distinct
types of edge partitions, as vividly portrayed in Table 5. Each
partition embodies a unique arrangement of edges, intri-
cately shaped by the degrees of the vertices they connect.
This insight highlights the intricate interplay between vertex
degrees and the network of edge connections within the
composite graph.

Now, substitute the values in Table 5 in Equation (22)
for both cases.

Case 1. n ≥ 2,m = 2.

ABC Ps ⊙ Kt = 2 t + 1 − 2
t + 1 2 + stC2

2t − 2
t2

+ 2t t + t + 1 − 2
t t + 1

24

By simplifying the formula, we obtain

ABC P2 ⊙ Kt = 2t
t + 1 + t − 1 2 t − 1 + 2t 2t − 1

t t + 1
25

Case 2. n ≥ 2,m > 2.

ABC Ps ⊙ Kt = stC2
2t − 2
t2

+ 2t t + t + 1 − 2
t t + 1

+ 2 t + 1 + t + 2 − 2
t + 1 t + 2

+ s − 3 2 t + 2 − 2
t + 2 2

+ t s − 2 t + t + 2 − 2
t t + 2

26

Through the process of simplifying the formula, we
achieve the desired outcome. In a similar vein, by inserting
the values from Table 5 into Equation (23) and subsequently
simplifying the formula, we acquire the necessary results for
the GA index of the corona product graph (Ps ⊙ Kt).

Corollary 6. The Randic index, ABC index, and GA index of
the corona product of graphs Wn and Pm are defined by the
following equations (for particular cases, general result still
can be worked out for such products):

(i) Randic index Wn⨀Pm = n = 3,m = 6 = 12 898

(ii) ABC index Wn⨀Pm = n = 3,m = 6 = 31 718

(iii) GA index Wn⨀Pm = n = 3,m = 6 = 45 865

Proof. Let us examine the corona product of two graphs,
Wn⨀Pm, where n and m are both greater than 2. By analyz-
ing the degrees of vertices, we can categorize them into four
distinct types.

The first type consists of vertices with a degree of 3, while
the second type comprises vertices with a degree of 4. The
third type encompasses vertices with a degree of n + 3, and
the fourth type includes vertices with a degree of m + 2. By
delving into the degrees of these vertices, we can identify a
total of six different partition types, as illustrated in Table 6.

Now, substitute the value in Table 6 for each case.

Case 1. n = 3, p = 6.

X G = 4
3X2

+ 4
2X3

+ 12
3X3

+ 8
2X9

+ 16
3X9

+ 6
9X9

,

X G = 12 898
27

Case 2. n = 3, p = 6.

ABC G = 12
6 + 12

6 + 48
9 + 72

18 +
160
27 + 96

81,

ABC G = 31 718
28

Table 5: Number of edges in each partition of Ps⨀Kt based on the
degree of end vertices of each edge.

(du, dv) Number of edges

t + 1, t + 1
1 ; s = 2
0 ; s > 2

t, t s Ct
2

t, t + 1 2t

t + 1, t + 2 0 ; s = 2
2 ; s > 2

t + 2, t + 2 0 ; s = 2
s − 3 ; s > 2

t + 2, t 0 ; s = 2
t s − 2 ; s > 2
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Case 3. n = 3, p = 6.

GA G = 18 6
5 + 12 9

3 + 16 18
11 + 8 27

3 + 2 81
3 ,

GA G = 45 865
29

Corollary 7. The Randic index, ABC index, and GA index of
the corona product of graphs kn and Lm are defined by the fol-
lowing equations:

(i) Randic index kn⨀Lm = n = 4,m = 4 = 17 028

(ii) ABC index Kn⨀Lm = n = 4,m = 4 = 46 243

(iii) GA index Kn⨀Lm = n = 4,m = 4 = 73 117

Proof. Let us explore the corona product of two graphs,
Kn⨀Lm, where both n and m exceed 3. By examining the
vertex degrees, we can distinguish four distinct types of verti-
ces. The initial type comprises vertices with a degree of 4,
while the second type encompasses vertices with a degree of
5. The third type consists of vertices with a degree of n,
and the fourth type encompasses vertices with a degree
of n +m − 1. By analyzing the vertex degrees in this manner,
we can identify a total of seven distinct partition types, as illus-
trated in Table 7.

Now, substitute the value in Table 7 for each case.

Case 1. n = 4,m = 4.

X G = 8
3X3

+ 8
4X3

+ 8
3X4

+ 16
4X4

+ 16
3X11

+ 16
4X11

+ 6
11X11

,

X G = 17 028 30

Case 2. n = 4,m = 4.

ABC G = 32
9 + 40

12 +
40
12 +

96
16 +

192
33 + 208

44 + 120
121 ,

ABC G = 46 243
31

Case 3. n = 4,m = 4.

GA G = 16 9
6 + 32 12

7 + 16 33
7 + 32 44

15 + 6 121
11 ,

GA G = 73 117
32

Corollary 8. The Randic index, ABC index, and GA index of
the corona product of graphs Ln and Km are defined by the
following equations:

(i) Randic index Ln⨀Km = n = 4,m = 6 = 34 872

(ii) ABC index Ln⨀Km = n = 4,m = 6 = 90 728

(iii) GA index Ln⨀Km = n = 4,m = 6 = 117 195

Proof. Let us examine the corona product of two graphs,
Ln⨀Km, where both n and m are greater than 4. By analyz-
ing the degrees of vertices, we can classify them into four
specific types.

The initial type encompasses vertices with a degree of 5,
while the second type comprises vertices with a degree of 6.
The third type consists of vertices with a degree of n + 1, and
the fourth type includes vertices with a degree of m + 2.
Through this analysis of vertex degrees, we can identify a
total of nine distinct partition types, as depicted in Table 8.

Now, substitute the value in Table 8 for each case.

Case 1. n = 4,m = 6.

X G = 8
5X6

+ 112
6X6

+ 2
5X8

+ 22
6X8

+ 2
8X8

+ 2
9X8

+ 24
6X9

+ 2
8X9

+ 4
9X9

,

G = 34 872 33

Table 6: Number of edges in each partition of Wn⨀Pm based on
the degree of end vertices of each edge.

Edge point Number of pair

(3,9) 16

(9,9) 6

(2,9) 8

(2,3) 4

(3,3) 12

(3,2) 4

Table 7: Number of edges in each partition of Kn⨀Lm on the basis
of the degree of end vertices of each edge.

Edge point Number of pair

(3,11) 16

(4,11) 16

(11,11) 6

(3,4) 8

(4,4) 16

(3,3) 8

(4,3) 8
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Case 2. n = 4,m = 6.

ABC G = 72
30 +

1120
36 + 22

40 +
264
48 + 28

64

+ 30
72 +

312
54 + 30

72 +
64
81 ,

ABC G = 90 728 34

Case 3. n = 4,m = 6.

GA G = 16 30
11 + 56 36

3 + 4 40
13 + 22 48

7 + 64
4

+ 4 72
17 + 48 54

15 + 4 72
17 + 4 81

9 ,

GA G = 177 195 35

3. Material and Methods

The authors studied the concepts of different operations for
the graphs and found the corona product operation very
interesting and useful. It has a waste application in chemis-
try, physics, and computer fields for constructing complex
networks; some applications may be studied in [7, 13, 14].
Some recent developments and benefits of studying the
degree-based topological indices for such graphs were
greatly beneficial. Using the idea and developing special
corona product graphs, we used the techniques to calculate
some topological indices of these products by considering
some special cases. Moreover, a combination of studying dif-
ferent graphs under different degrees, distances, or edge-
based invariants can be seen in [4, 8–10, 13–17].

4. Conclusion

In this study, we generalized the concept of topological indi-
ces of different families of corona product graphs and
described the corona graphs of the Pt , Ps, Kt , Ks, and Ct , Cs
. In the future, you will be able to find the topological indices
based on the order and distance of these graph operations.
The results are convenient for constructing and investigating
topological indexes of complex network structures. In this

study, we created corona products’ ABC and GA indexes
when synthesizing paths, cycles, and complete graphs. In
addition, a generalized corona product graph calculation
example is given in different cases.

Open problems: find the GA and ABC index for the fol-
lowing families of corona products Wn⨀Pm, Kn⨀Lm, and
Ln⨀Km.
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