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Fuzzy time series (FTS) is one of the forecasting methods that has been developed until now. The fuzzy time series is a forecasting
method that uses the concept of fuzzy logic, which Song and Chissom first introduced. The fuzzy time series (FTS) Markov chain
uses the Markov chain in defuzzification. The determination of the length of the interval in the fuzzy time series plays an
important role in forming a fuzzy logic relationship (FLR), and this FLR will be used to determine the forecasting value. One
method that can be used to determine the interval length is average-based. However, several studies use partitioning based on
frequency density to obtain the optimal interval length to get better forecasting accuracy. This study combines the fuzzy time
series Markov chain, Average-based fuzzy time series, and Fuzzy time series based on frequency density partitioning to become
average-based fuzzy time series Markov chain based on the Frequency Density Partition which conducts redivided intervals
based on frequency density in the average-based fuzzy time series Markov chain method. This method is implemented in
forecasting the Indonesian Islamic stock index (ISSI) for the selected period. The calculation of the accuracy level using the
mean square error (MSE) and the mean average percentage error (MAPE) shows that the fuzzy Markov chain-based fuzzy
time series based on the frequency density partition has a high level of accuracy in forecasting.

1. Introduction

A time series is defined as a collection of observations or
observations made sequentially over time. Usually, observa-
tions in time series are not independent or can be said to be
correlated. Thus, the order of the observations becomes
important. This results in statistical procedures and tech-
niques based on independent assumptions being no longer
valid; thus, different methods and approaches are needed.
Time series analysis aims for depiction, exposure, prediction,
and monitoring [1].

Forecasting predicts a variable’s values based on the
known values of that variable or related variables [2]. The
rationale for the time series is that current observations
depend on previous observations. Therefore, many types of
forecasting use time series data, including the fuzzy time
series method, smoothing, average, and moving average,
and others.

The forecasting method using the fuzzy logic concept,
hereinafter known as fuzzy time series, was first proposed
by Song and Chissom in 1993. Song and Chissom used
time-invariant and time-variant methods in forecasting. As
a result, several fuzzy time series (FTS) methods have been
developed, including Chen [3, 4], Chen and Hsu [5],
weighted [6], backpropagation [7], multiple-attribute [8],
percentage change [9], and the Markov chain [10].

The Markov chain is a stochastic process where future
events only depend on today’s events and do not depend
on past conditions. The Markov chain is defined by a transi-
tion opportunity matrix that contains information regulat-
ing the system’s movement from one state to another [10].
In fuzzy time series, the Markov chain is used in the defuz-
zification stage [10]. Defuzzification is the calculation step
of fuzzy time series forecasting based on a fuzzy logical rela-
tionship group (FLRG). In FLRG, there is a relationship
between the current and next states. The current state is
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the value that will be calculated as the predicted value, and
the next state is the data used to get the value in the current
state. Therefore, the relationship between the current state
and the next state in the FLRG is considered a conditional
process in line with the basic principles of the Markov chain
method [10]. The Markov chain is used in several fields, one
of which is the research of Indriyani and Pratiwi, et al. [11],
which uses the Markov chain in the measles spread pattern.
The Markov chain method is also used by Prasetya and Fer-
dian [12] in scheduling Oerlikon machine maintenance to
optimize maintenance costs and time. The results show that
calculations with the Markov chains produce more optimal
time and costs.

Ruey-Chyn Tsaur conducted a study by combining the
fuzzy time series method with the Markov chain concept
to predict the Taiwan currency exchange rate against the
dollar. The method used is known as the fuzzy time series
Markov chain. The results obtained are the fuzzy time series
Markov chain that has a better level of accuracy than the
fuzzy time series [10]. Many studies have used the FTS-
Markov chain including Dinatha et al. [13] who used the
FTS-Markov chain to predict export profits. In addition,
Hidayah and Sugiman [14] and Mangkunegara and Yerizon
[15] both use the FTS-Markov chain to forecast exchange
rates. Their research [13–15] produced a small error value,
but in determining the FLR, there are still shortcomings
and will produce different forecasting results because the
length of the interval is determined according to the percep-
tion of each researcher.

In the fuzzy time series method, the determination of the
interval length does not have a definite formula in its calcu-
lation; the interval is formed depending on the researcher
[16], even though the determination of the length of the
interval is very influential on the formation of a fuzzy logical
relationship (FLR) which will result in differences in the
results of forecasting calculations [17].

One method that can be used to determine the length of
the interval is the average-based model which was intro-
duced by Xihao and Yimin [17]. This average-based fuzzy
time series uses an average-based method in determining
the length of the interval. Research by Xihao and Yimin
[17] also shows that the use of the average-based fuzzy time
series method produces better forecasts than Chen’s fuzzy
time series method. Wuryanto and Puspita [18] and Kumar
N. and Kumar H. [19] also used the average-based FTS
model to predict the development of confirmed cases of
COVID-19. Research [18, 19] has a small error value, but
the interval length is still less than optimal because each class
interval has the same interval length regardless of the
frequency in each class.

Furthermore, Chen and Hsu [5] developed Chen’s fuzzy
time series, by repartitioning based on frequency density to
predict the number of applicants at the University of
Alabama. Chen and Hsu redivided intervals before the fuzzi-
fication process. Chen and Hsu’s research shows that after
the redivided interval, the fuzzy time series gets a better
accuracy value than other existing fuzzy time series.
Irawanto et al. [20] used frequency density-based partition-
ing for stock index forecasting. Wulandari et al. [21] used

frequency density partitioning for forecasting the produc-
tion of petroleum which resulted in a small error value.

Based on the description above, the researcher is inter-
ested in examining the average-based fuzzy time series Mar-
kov chain based on frequency density partitioning (FDP).
Because based on the introduction above that the researchers
have read, there has been no research that has conducted
redivided intervals based on frequency density in the
average-based fuzzy time series Markov chain method, and
because frequency density partitioning produces subinter-
vals, which is based on empirical analysis, these subintervals
cause the fuzzy numbers to get closer to the crisp value. This
idea is explained in the following chart in Figure 1.

This method is applied to forecast the Indonesian
Islamic stock index (ISSI). Furthermore, to see the level of
accuracy of the method, the mean square error (MSE) and
the mean average percentage error (MAPE) are used. Then,
for comparison, the researcher used Chen’s fuzzy time series.

2. Basic Knowledge

2.1. Fuzzy Time Series. The definition of fuzzy time series
was first introduced by Song and Chissom [16]. Let U be
the universe of discourse, with U = fu1, u2,⋯, ung on a
fuzzy set Ai defined as

Ai =
f A u1ð Þ
u1

+ f A u2ð Þ
u2

+⋯+ f A unð Þ
un

, ð1Þ

where f A is the membership of the fuzzy set Ai, uk is an
element of the fuzzy set Ai, and f AðukÞ shows the degree of
membership of uk in Ai, where k = 1, 2, 3,⋯, n.

Definition 1. We assume YðtÞðt =⋯,0, 1, 2,⋯Þ subset of U ,
which becomes the universe discourse, where the fuzzy set
Ai has been defined previously. Then, if FðtÞ is a collection
of Ai ði = 1, 2,⋯, nÞ, then FðtÞ is called fuzzy time series
on YðtÞðt =⋯,0, 1, 2,⋯Þ [5].

Definition 2. If FðtÞ is caused by Fðt – 1Þ, then the relation in
the first order rmodel FðtÞ can be stated as follows [3]:

F tð Þ = F t − 1ð Þ○R t, t − 1ð Þ, ð2Þ

where “○” is the Max–Min composition operator and
Rðt, t − 1Þ is a relation matrix to describe the fuzzy relation-
ship between Fðt − 1Þ and FðtÞ.
2.2. Average-Based Algorithm. Average-based algorithm is
an algorithm that can be used to set the interval length that
is determined at the initial stage of forecasting when using
fuzzy time series. The steps of the average-based algorithm
are as follows [17]:

(a) Determine the absolute difference (lag) between data
n + 1 and data n with the formula:
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lag = Data n + 1 –Data nj j: ð3Þ

(b) Determine the length of the interval

Length of interval = total lag
numbers of data

� �
: 2: ð4Þ

(c) Based on the interval length obtained from step (b),
determine the basis value of the interval length
according to Table 1

(d) The length of the interval is then rounded up accord-
ing to the interval basis table

2.3. Frequency Density Partition.Chen andHsu [5] developed a
fuzzy time series by redivided intervals based on frequency
density. In his research, after partitioning the universe dis-
course into n intervals of equal length, subpartition the intervals
of the same length based on frequency density. By rule,

(a) the interval with the first densest frequency is
divided into 4 subintervals

(b) the interval with the second densest frequency is
divided into 3 subintervals

(c) the interval with the third densest frequency is
divided into 2 subintervals

2.4. Markov Chain. Markov first introduced the Markov
chain in 1906. The Markov chain analysis is a method that
studies the properties of the past to estimate the properties

of these variables in the future. Conceptually, the Markov
chain can be described by assuming fXn, n = 0, 1, 2,⋯g as
a finite stochastic process or the probability value can be cal-
culated. The set of probability values of the stochastic pro-
cess is denoted by the set of positive integers f0, 1, 2,⋯g.

If Xn = i, then this process occurs in i when n, assuming
that whenever this process occurs in state i, on a point of
probability Pij who will move to the state j. Thus, it can be
written as follows:

P Xn+1 = j Xn−1 = in−1,⋯, X1 = I1, X0 = i0jf g = Pij: ð5Þ

For all states i0, i1,⋯, in−1, i, j, n ≥ 0. This process is
called the Markov chain.

The above equation is interpreted in the Markov chain as
a conditional distribution of the future state Xn+1 obtained
from the previous state X0, X1,⋯, Xn−1 and the current state
Xn and does not depend on the previous state but depends
on current state.

The value of Pij represents the probability of the transi-
tion process from i to j. Because the probability value is
always positive and the transition process moves, then Pij

≥ 0 and i, j ≥ 0, sum Pij = 1, j = 1,⋯,∞, and i = 0, 1,⋯ Let
P be the transition probability matrix Pij; then, it can be
denoted in the following equation [10]:

P =

P00 P01 P02 ⋯

P10 P11 P12 ⋯

P20 P21 P22 ⋯

⋮

⋯ ⋯ ⋯ ⋯

2
666666664

3
777777775
: ð6Þ

Case study on ISSI forecasting

Average based-fuzzy time series markov 
chain based on modified frequency density

partitioning
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Figure 1: Flow chart idea of average-based fuzzy time series Markov chain based on modified frequency density partitioning.
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The Markov chain process in the fuzzy time series used
is a transition probability matrix. The transition probability
matrix is used as the basis for forecasting calculations. The
probability from the current state to the next state is
obtained from the FLRG. State transition probabilities are
written as follows [10]:

Pij =
Mij

Mi
, i, j = 1, 2,⋯, n, ð7Þ

where Pij is the transition probability of state Ai to state
Aj one step,Mij is the number of transitions from state Ai to
state Aj one step, and Mi is the amount of data included in
the state Ai.

The probability matrix P of all states is dimension n × n,
with n being the number of fuzzy sets, and can be written as
follows [10]:

P =
P11 ⋯ P1n

⋮ ⋱ ⋮

Pn1 ⋯ Pnn

2
664

3
775: ð8Þ

2.5. Average-Based Fuzzy Time Series Markov Chain Based
on Frequency Density Partitioning. Average-based fuzzy time
series Markov chain based on frequency density partition
is a forecasting method using fuzzy time series combined
with the Markov chain and using average-based as interval
determination which is then redivided interval based on
frequency density.

2.6. Forecasting Error Measurement. The reliability of a fore-
cast can be determined by looking at the mean square error
(MSE) and mean average percentage error (MAPE); these
are the MSE and MAPE formulas [1]:

MSE =
∑n

t=1 Yt − F′t
� �2

n
, ð9Þ

MAPE = 1
n
〠
n

t=1

Y tð Þ − F ′ tð Þ�� ��
Y tð Þ × 100%, ð10Þ

where Yt is the actual data period t, F′t is the t period fore-
casting value, and n is the predictable amount of data.

3. Materials and Methods

3.1. Data Collection. The data used in the study is the weekly
data on the Indonesian Sharia Stock Price Index (ISSI) for
the period June 2019–May 2021, which was obtained from
the http://yahoo.finance.com site. The results of the forecast-
ing test are then validated using the MSE and MAPE values.
Furthermore, it is compared with Chen’s fuzzy time series.

3.2. Forecasting Method. This study uses an average-based
fuzzy time series Markov chain based on frequency density
partitioning. The difference between this study and the pre-
vious research lies in the use of density partitioning frequen-
cies in the average fuzzy-based Markov time series chain
which will make the fuzzy values closer to the crisp values,
so that the forecasting values have a good accuracy value.
The steps are as follows [5, 10, 17, 22]:

(a) Define the universe of discourse

(b) Divide the universe of discourse into intervals using
the average-based method

(c) Distribute all research data into intervals

(d) Determine the frequency density

(e) Perform redivided intervals based on frequency
density

(f) Define a fuzzy set. Let A1, A2,⋯, An be a fuzzy set
that has a linguistic value from a linguistic variable;
the definition of fuzzy set A1,A2,⋯, An in the
universe of discourse U is as follows:

A1 =
1
u1

+ 0:5
u2

+ 0
u3

+ 0
u4

+⋯+ 0
un

,

A2 =
0:5
u1

+ 1
u2

+ 0
u3

+ 0
u4

+⋯+ 0
un

,

⋮

An =
0
u1

+ 0
u2

+ 0
u3

+⋯+ 0:5
n − 1 + 1

un
,

ð11Þ

where uiði = 1, 2,⋯, nÞ is an element of the universe of
discourse (U)

(g) Fuzzification of historical data

(h) Define FLR

(i) Define FLRG

(j) Determine the transition probability with the
formula:

Pij =
Mij

Mi
, i, j = 1, 2,⋯, n, ð12Þ

Table 1: Basis mapping table.

Range Basis

0,1 – 1,0 0,1

1,1 – 10 1

11 – 100 10

101 – 1000 100
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and determine the probability matrix of all states of the
FLRG with dimensions of n x n, where n is the number of
fuzzy sets that can be written as follows:

P =
P11 ⋯ P1n

⋮ ⋱ ⋮

Pn1 ⋯ Pnn

2
664

3
775: ð13Þ

(k) Calculate the initial forecast value using a probability
matrix with the following rules:

Rule 1: if the FLRG Ai is one to one (e.g., Ai ⟶ Ak,
where Pik = 1 and Pij = 0, j ≠ k), the forecast FðtÞ ismk which
is the middle value of uk with the following equation:

F tð Þ =mkPik =mk: ð14Þ

Rule 2: if the FLRG Ai is one too many (e.g., Aj ⟶ A1,
A2,⋯, An. j = 1, 2,⋯, n), when Yðt − 1Þ at time ðt − 1Þ is
included in state Aj, then the forecasting FðtÞ is

F tð Þ =m1Pj1 +m2Pj2+⋯+mj−1Pj j−1ð Þ
+ Y t − 1ð ÞPjj +mj+1Pj j+1ð Þ+⋯+mnPjn,

ð15Þ

where m1,m2,⋯,mj−1,mj+1,⋯,mn is the middle value
u1, u2,⋯, uj−1, uj+1,⋯, un and Yðt − 1Þ are state values Aj at
time t − 1

Rule 3: if the FLRG Ai is empty (Ai ⟶∅), forecast
value FðtÞ is mi which is the middle value of ui with the
following equation:

F tð Þ =mi: ð16Þ

(l) Adjusting the trend of forecasting values with the
following rules:

(i) If state Ai communicates with Ai, starting from state
Ai at time t − 1 expressed as Fðt − 1Þ = Ai and under-
going an increasing transition to state Aj at the time t
where (i < j), then the adjustment value is

Dt1 =
l
2

� �
, ð17Þ

where l is the basis interval

(ii) If state Ai communicates with Ai, starting from state
Ai at the time t − 1 expressed as Fðt − 1Þ = Ai and
experiencing a decreasing transition to state Aj at
the time t, where (i > j), the adjustment value is

Dt1 = −
l
2

� �
: ð18Þ

(iii) If state Ai at the time t − 1 is expressed as Fðt − 1Þ
= Ai and undergoes a jump forward transition to
state Ai+s at the time t, where (1 ≤ s ≤ n − i), then
the adjustment value is

Dt2 =
l
2

� �
s, ð19Þ

where s is the number of forwarding jumps

(iv) If state Ai at the time t − 1 is as Fðt − 1Þ = Ai and
undergoes a jump-backward transition to state Ai−v
at the time t, where (1 ≤ v ≤ i), then the adjustment
value is

Dt2 = −
l
2

� �
v, ð20Þ

where v is the number of jumps backward

(m) Determine the final forecast value based on the
adjustment of the trend of the forecasting value.

If FLRG Ai is one to many and state Ai+1 can be accessed
from stateAi, where stateAi is related toAi, then the forecasting
result becomes ’ðtÞ = FðtÞ +Dt1 +Dt2 = FðtÞ + ðl/2Þ + ðl/2Þ. If
FLRG Ai is one to many and state Ai+1 can be accessed from
Ai, where state Ai is not related to Ai, then the forecasting
values become F’ðtÞ = FðtÞ +Dt2 = FðtÞ + ðl/2Þ: If FLRG Ai
is one to many and state Ai−2 can be accessed from state
Ai, where Ai is not related to Ai, then the forecasting
result is F’ðtÞ = FðtÞ −Dt2 = FðtÞ − ðl/2Þ × 2 = FðtÞ – l: If v
is a jump step, the general form of the forecast is

F’ tð Þ = F tð Þ ±Dt1 ±Dt2 = F tð Þ ± l
2

� �
± l

2

� �
v: ð21Þ

4. Results and Discussion

Average-based fuzzy time series Markov chain based on fre-
quency density partitioning was tested on the Indonesian
Sharia Stock Price Index (ISSI) forecasting to see whether
this method could optimize the interval on the FLR to pro-
duce more accurate forecasts.

In forecasting using an average-based fuzzy time series
Markov chain based on frequency density partitioning, the
first step is to collect ISSI historical data obtained as many
as 104 data. The data is used to determine the universe of
discourse. Furthermore, dividing into several subsets using
an average based is as follows:
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(a) Determine the smallest values (Dmin) and greatest
value (Dmax) obtained Dmin = 123:78 and Dmax =
192:86 and the value of D1 = 0:78 and D2 = 0:14 so
that it can be defined U = ½123:78 − 0:78, 192:86 +
0:14� = ½123, 193�

(b) Calculate the absolute difference between the data
Dn and Dn+1 using equations lagDn = jDn+1 −Dnj;
as an example, data to 1 is as follows:

lagD1 = Dn+1 −Dnj j,
lagD1 = 183,8 − 182,76j j,

lagD1 = 1, 04j j,
lagD1 = 1, 04:

ð22Þ

The calculation above is also used for the second data
and so on; the total difference from the data is 304.62. Fur-
thermore, the difference in the data is calculated on average
using the equation ∑jDn+1 −Dnj/lots of data = 304:62/103,
so the obtained average absolute difference is 2.96.

(c) The result is then divided by 2 to get 1.48

(d) The value of 1.48 is then determined using Table 1,
and the basis for the length of the interval is 1

(e) U can be a partition into the same interval length,
namely, u1, u2, u3, u4, u5,⋯, u66, u67, u68, u69, u70;
successively, the value for each interval is

u1 = 123, 124½ � ⋮

u2 = 124, 125½ � u66 = 188, 189½ �
u3 = 125, 126½ � u67 = 189, 190½ �
u4 = 126, 127½ � u68 = 190, 191½ �
u5 = 127, 128½ � u69 = 191, 192½ �

⋮ u70 = 192, 193½ �

: ð23Þ

The next step is to distribute the data to each interval
and determine the frequency density; we get u64 as the first
densest frequency with a frequency of 7, which is further
divided into 4 subintervals (u64,1 = ½186, 186:25�, u64,2 = ½
186:25, 186:5�, u64,3 = ½186:5, 186:75�, and u64,4 = ½186:75,
187�), the second most populous is u65 divided into 3 subin-
tervals (u65,1 = ½187, 187:33�, u65,2 = ½187:33, 187:67�, and
u65,3 = ½187:67, 188�), the third most populous is u26 and
u60 divided into 2 subintervals (u26,1 = ½148, 148:5� and u26,2
= ½148:5, 149� and u60,1 = ½182, 182:5� and u60,2 = ½182:5,
183�, respectively) and eliminates intervals that have no fre-
quency, i.e., u2, u3, u4, u5, u6, u7, u8, u9, u11, u12, u13, u17, u19,
u25, u32, u33, u35, u37, u39, u41, u42, u43, u44, u45, and u48: Next,
look for the middle value (mi) of each interval; we get table
middle value at Table 2.

Table 2 shows the mean value of each interval that has
been repartitioned based on frequency density. This middle
value is used to calculate the initial forecast value on the
fuzzy time series. The following is an example of calculating
the mean value u1ðm1Þ:

m1 =
lower limit u1 + upper limit u1ð Þ

2 ,

m1 =
123 + 124ð Þ

2 ,

m1 =
247
2 ,

m1 = 123:5:

ð24Þ

Furthermore, defining fuzzy sets, fuzzy sets that can be
formed from the universe of conversation are 53 fuzzy sets.
Based on equation (8), the fuzzy set formed is as follows:

A1 =
1
u1

+ 0:5
u10

+ 0
u14

+ 0
u15

+⋯+ 0
u68

+ 0
u69

+ 0
u70

� �
,

A2 =
0:5
u1

+ 1
u10

+ 0:5
u14

+ 0
u15

+⋯+ 0
u68

+ 0
u69

+ 0
u70

� �
,

A3 =
0
u1

+ 0:5
u10

+ 1
u14

+ 0:5
u15

+⋯+ 0
u68

+ 0
u69

+ 0
u70

� �
,

⋮

A56 =
0
u1

+ 0
u10

+ 0
u14

+ 0
u15

+⋯+ 1
u68

+ 0:5
u69

+ 0
u70

� �
,

A57 =
0
u1

+ 0
u10

+ 0
u14

+ 0
u15

+⋯+ 0:5
u68

+ 1
u69

+ 0:5
u70

� �
,

A53 =
0
u1

+ 0
u10

+ 0
u14

+ 0
u15

+⋯+ 0
u68

+ 0:5
u69

+ 1
u70

� �
:

ð25Þ

The next step is to perform fuzzification; the data from
the fuzzification results are presented in Table 3.

Table 3 shows the results of ISSI weekly data fuzzification;
fuzzification is performed to convert firm values into fuzzy
values. An example of the fuzzification process for data on
June 9, 2019 (t = 1), is 182.76 entered in the interval u60,2 =
½182:5, 183�. Next, the formed fuzzy set u60,2 has a member-
ship degree of 1 when it is in the fuzzy set A38, so that for
the 9 June 2019 data, the fuzzified data obtained is A38.

After fuzzification is obtained, the next step is to deter-
mine FLR and FLRG, presented in Tables 4 and 5.

Table 4 shows that data 1 is fuzzified at A38 and the sec-
ond data is fuzzified at A39 so that the FLR is A38 ⟶ A39.
FLR plays an important role because it is FLR that is used
to determine forecasting values.
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Based on Table 5, all FLR formed in Table 4 are grouped
into interconnected FLRG, for example, FLRG on A3, where
A3 is the current state and has a relationship to A3 ⟶ A4
and A3 ⟶ A9. These 2 FLR are grouped into 1 FLRG,
namely, A3 ⟶ A4, A9.

The next step is to calculate the initial forecast; FLRG is
used to form a Markov chain and transition probability
matrix. In this study, a transition probability matrix of the
order 53 × 53 was formed, where each element is a probabil-
ity value obtained from equation (7), for example, the calcu-
lation of the elements of the probability matrix for Ai ⟶ Aj,
with i = 11 and j = 1, 2, 3,⋯, n, because state Ai transitions
to another state 3 times, namely, 2 times to state A11 and 1
time to state A13; then, P11,11 = 2/3 = 0:667 and P11,13 = 1/3
= 0:333. The same method is used to determine each ele-

ment on the probability matrix so that the matrix can be
as follows:

P =

0 1 0 0 ⋯ 0 0 0 0
0 0 1 0 ⋯ 0 0 0 0
0 0 0 0:5 ⋯ 0 0 0 0
0 0 0 0 ⋯ 0 0 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 ⋯ 0 0:25 0 0
0 0 0 0 ⋯ 0:5 0 0 0
0 0 0 0 ⋯ 0 1 0 0
0 0 0 0 ⋯ 0 0 0:5 0:5

2
666666666666666666664

3
777777777777777777775

:

ð26Þ

After the probability matrix element values are
obtained, the next step is to calculate the initial starting
value using formulas (14), (15), and (16). For example,
for June 16, 2019 (t = 2), the data seen is the previous
week’s data, namely, June 9, 2019 (t = 1), where the state
transitions from A38 ⟶ A39; then, the forecast calcula-
tion FðtÞ =m28P38,28 + Y1P38,38 +m39P38,39 = 173:5ð0:33Þ +
182:76ð0Þ + 183:5ð0:67Þ = 180:17; the same steps are also
used for t = 3, 4, 5,⋯104. The summary of the initial
forecasting results is shown in Table 6.

Table 6 shows the initial forecasting values for the
period 16 June 2019 to 30 May 2021. These initial fore-
casting values were obtained from the defuzzification
results of the FLRG group.

The next step is to adjust the forecasting trend. For
example, the adjustment value for June 16, 2019, the next
state is A39, and the current state is A38; then, the adjustment
calculation uses the forecast adjustment rule point c with
equation (19) Dt2 = ðl/2Þs = ð0:5/2Þ1 = 0:25. For the

Table 3: Fuzzification results.

t Actual data Fuzzy data T Actual data Fuzzy data

1 182,76 A38 ⋮ ⋮ ⋮

2 183,8 A39 101 175,12 A30

3 186,01 A42 102 170,19 A25

4 186,66 A44 103 171,94 A26

5 186,18 A42 104 176,52 A31

Table 4: FLR.

Data order FLR Data order FLR

1-2 A38 ⟶ A39 ⋮ ⋮

2-3 A39 ⟶ A42 101-102 A30 ⟶A25

3-4 A42 ⟶ A44 102-103 A25 ⟶A26

4-5 A44 ⟶ A42 103-104 A26 ⟶A31

Table 5: FLRG.

Current state Next state Current state Next state

A1 1ð ÞA2 ⋮ ⋮

A2 1ð ÞA3 A51 1ð ÞA49, 1ð ÞA50

A3 1ð ÞA4, 1ð ÞA9 A52 1ð ÞA51

A4 1ð ÞA5 A53 1ð ÞA52, 1ð ÞA53

Table 6: Initial forecasting results ðFðtÞÞ.

Period Actual data F tð Þ Period Actual data F tð Þ
09/6/19 182,76 Na ⋮ ⋮ ⋮

16/6/19 183,8 180,17 23/5/21 171,94 171,5

23/6/19 186,01 183,22 30/5/21 176,52 176,5

Table 7: Final forecast value.

Periode Y(t) F′t Periode Y(t) F′t
09/6/19 182,76 NA ⋮ ⋮ ⋮

16/6/19 183,8 180,42 02/5/21 174,82 178,89

23/6/19 186,01 184,72 09/5/21 175,12 179

30/6/19 186,66 188,31 16/5/21 170,19 168

07/7/19 186,18 186,53 23/5/21 171,94 172

14/7/19 189,01 189,06 30/5/21 176,52 179

Table 2: Middle value.

ui mi ui mi

u1 123,5 ⋮ ⋮

u10 132,5 u67 189,5

u14 136,5 u68 190,5

u15 137,5 u69 191,5

u16 138,5 u70 192,5
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calculation of other forecasting value adjustments, use equa-
tions (17), (18), (19), and (20).

After the adjustment value is obtained, then calculate the
final forecast value. For the calculation of the adjusted fore-
cast value, follow the existing rules in equation (21). For
example, calculations for adjusted forecast values F′2 = F2
±Dt2 = 180:17 + 0:25 = 180:42; by doing the same way, the
summary of the final forecasting results is shown in Table 7.

Table 7 shows the results of the final forecast that has
made some adjustments. This final forecasting value is
obtained from the sum of the initial forecasting value with
the adjustment value. The initial forecasting value that has
made several adjustments produces a final forecasting value
that is closer to the actual data. The comparison of the final
forecasting value with actual data can be seen in Figure 2.

Figure 2 shows a comparison of forecasting results using
an average-based Markov Chain based on frequency density
partitioning. The graph in blue shows the actual data, and
the graph in orange shows the results of forecasting using
an average-based fuzzy time series Markov chain based on
frequency density partitions. Average-based fuzzy time
series Markov chain based on frequency density partitioning
shows a pattern that is almost the same as the actual data,
although the resulting forecasting value is not the same as
the actual data; the pattern of forecasting values uses the
average-based fuzzy time series Markov chain based on
density partitioning the frequency that follows the pattern
of the actual data.

The last step is to calculate the forecast accuracy value
using MSE and MAPE. For the MSE and MAPE values, this
calculation uses formulas (9) and (10), respectively; the
average-based fuzzy time series method based on FDP is
5.76 and 1.04%. This shows good forecasting performance
on the average-based fuzzy time series Markov chain based
on frequency density partitioning as shown in Figure 2,
where the forecasting value is closer to the actual value.

The good accuracy value on the fuzzy time series
Markov chain is obtained due to the use of frequency density
partitions which produce subintervals so that the fuzzy
values can be close to the crisp values. This is also supported
by the use of average-based method to determine the opti-
mal interval length.

5. Conclusions

Forecasting using the average-based fuzzy time series Mar-
kov chain based on the frequency density partition (FDP)
has a good accuracy value; this can be seen from the MSE
and MAPE values of 5.76 and 1.04%, respectively. This is a
good accuracy value because the Markov chain fuzzy time
series uses an average-based method to determine the length
of the interval so that the length of the interval used is not
just the perception of the researcher. The length of this inter-
val is then partitioned based on frequency density to obtain a
more optimal interval length. Determination of the length of
the interval on the FTS-Markov chain plays an important
role in forming a fuzzy logical relationship (FLR), and this
FLR is used to determine the forecast value.

Data Availability

The table data used to support the findings of this study are
included within the supplementary information file and also
within the article and are also available online at https://g.co/
finance/ISSI:IDX?window=5Y.
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Figure 2: Graph of comparison of actual data with Chen and average-based fuzzy time series Markov chain based on FDP.
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