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Coffee berry disease (CBD) is a fungal disease caused by Colletotrichum kahawae. CBD is a major constraint to coffee production
to Kenya and Africa at large. In this research paper, we formulate a mathematical model of the dynamics of the coffee berry
disease. The model consists of coffee plant population in a plantation and Colletotrichum kahawae pathogen population. We
derived the basic reproduction number Rk0, and analyzed the dynamical behaviors of both disease-free equilibrium and
endemic equilibrium by the theory of ordinary differential equations. Using the MATLAB ode45 solver, we carried out
numerical simulation, and the findings are consistent with the theoretical results.

1. Introduction

Coffee berry disease (CBD) is a fungal disease caused by
Colletotrichum kahawae. The fungus Colletotrichum kaha-
wae infects all stages of the coffee crop, from flowers to
mature coffee berries, causing premature fruit drop and
berry rot [1].

Coffee berry disease infects coffee berries (the harvest-
able portion of the crop), leading to direct yield loss. Also,
CBD causes the pulp to adhere to the coffee bean hence
making it more difficult to process and it may lower the
quality of processed coffee [2].

CBD is a major constraint to coffee production in Kenya
and Africa at large. The impact of CBD in Kenya was
strongly felt during the 1962/1963 and 1967/1968 crop years
when losses in coffee production increased to 80% [3].

According to [4], there are around 700 thousand coffee
farmers in Kenya, and it is estimated that 5 million Kenyans
were hired to work in the coffee production chain. This
implies that CBD threatens the livelihood of millions
because direct losses of the crop reduce the income.

Many mathematical models have been created to investi-
gate the effects of preventive and control techniques on the
dynamics of plant disease spread. A study for the dynamics
of the transmission of plant diseases with and without rogu-

ing mechanism was carried out by [5]. The results of the
study demonstrated that roguing mechanisms help in pre-
venting the transmission of plant diseases.

The mathematical model of induced resistance to plant
disease presented by [6] divides the plant population into
three compartments: susceptible plants, resistant plants,
and diseased plants. The outcomes of the model showed that
when the elicitor application is done on plants before the
inoculation of pathogens, plants are less severely affected
by the diseases.

Most of the reviews presented on coffee berry disease
provide qualitative studies that describe the current status
and existing strategies in managing the spread and actions
of the new epidemic (see for, example, [7–10]). In this paper,
we investigate the dynamics of coffee berry disease.

2. Model Formulation

The coffee plants in the plantation are divided into four
groups at any time t, namely, the susceptible coffee plants
S t , coffee plants exposed to Colletotrichum kahawae (the
infected coffee plants which have not shown symptoms) Ek
t , the CBD-infected coffee plants Ik t and recovered cof-
fee plants R t . Let N t be the total number of coffee plants,
then N t = S t + Ek t + Ik t + R t . The number of
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Colletotrichum kahawae pathogens in the plantation at any
time t is Pk t . The susceptible coffee trees are recruited at
a rate of Λ. Some coffee trees will vacate all classes due to
natural death at a constant rate μ. Susceptible coffee trees
are exposed to the coffee berry disease through contact with
Colletotrichum kahawae at a rate ϖk; thus, coffee trees in S t
class will move to Ek t class at the rate ϖk. Some coffee trees
in Ek t progress to Ik at the rate ηk and others progress to
R t at the rate αk. Also, some coffee trees in Ik t recover
and progress to R t at the rate ρk. A proportion of coffee
trees in Ik t class will die from CBD-induced deaths at the
rate δk. In addition, coffee trees Ek t and Ik t contribute
to the increase of Pk pathogen in the environment at the
rates γ1 and γ2, respectively. Finally, pathogens in Pk class
decay at the rate δ1.

2.1. Model Assumptions. The following are the assumptions
of the model:

(i) The fungus multiplies on the coffee plant only

(ii) There is permanent immunity upon recovery

(iii) There is disease-related death of coffee plant

(iv) There is on planting once coffee plants die (dry)

2.2. Model Flow Chart and Equations. From Figure 1, we
have the following equations of the model:

dS
dt

=Λ − ϖkPk + μ S,

dEk

dt
= ϖkPkS − αk + μ + ηk Ek,

dIk
dt

= ηkEk − ρk + μ + δk Ik,

dPk

dt
= γ1Ek + γ2Ik − δ1Pk,

dR
dt

= αkEk + ρkIk − μR

1

3. Well-Posedness of the Model

Since the system model (1) describes coffee plants popula-
tion and Colletotrichum kahawae pathogen population, it is
essential to prove the well-posedness of the model solutions.
Well-posedness of the model is proved by showing that the
solutions with non-negative initial data are positive and
bounded for all time t > 0 as follows.

3.1. Positivity of the Solutions of the System Model (1)

Lemma 1. Let S0 > 0, Ek0 ≥ 0, Ik0 ≥ 0, Pk0 ≥ 0, and R0 ≥ 0 be
the initial conditions of the system (1). Then the solutions S,
Ek, Ik, Pk, and R are nonnegative ∀t > 0.

Proof. From system (1), we define T as the maximum
endemic time, and it is given by

T = sup t > 0 S τ > 0, Ek τ ≥ 0, Ik τ ≥ 0, Pk τ ≥ 0, R τ ≥ 0∀τ ∈ 0, t

2

Consider S0 > 0, Ek0 ≥ 0, Ik0 ≥ 0, Pk0 ≥ 0, and R0 ≥ 0.
Also, let us consider the first equation of system (1)

dS
dt

=Λ − ϖkPk + μ S 3

Equation (3) can be written as

dS
dt

+ ϖkPk + μ S =Λ 4

upon multiplication of both sides of equation (4) by the inte-
grating factor, we get

d
dt

S t exp
T

0
ϖkPk + μ s ds =Λexp

T

0
ϖkPk + μ s ds

5

EkS Ik R

Pk

Λ

𝜇 𝜇𝜇 + 𝛿k𝜇

𝛿1

𝛾1 𝛾2

𝛽kPk 𝜂k 𝜌k

𝛼k

Figure 1: Flow chart of epidemic coffee plants.
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Integrating both sides of equation (5) from 0 to T, we get

S T = exp −
T

0
ϖkPk + μ s ds S0 +

T

0
Λexp

T

0
ϖkPk + μ τ dτ dT

6

Thus, S t > 0∀t > 0.
For the second equation of system (1), we have

dEk

dt
= ϖkPkS − αk + μ + ηk Ek ≥ − αk + μ + ηk Ek ⇒ Ek

≥ Ek0 exp −
T

0
αk + μ + ηk s ds

≥ Ek0 exp − αk + μ + ηk T ≥ 0
7

Hence, Ek t ≥ 0∀t > 0.
Proving the remaining three equations in the same man-

ner, we obtain

Ik t ≥ 0, Pk t ≥ 0, R t ≥ 0 8

Thus, all the solutions are non-negative ∀t > 0.

3.2. Boundedness of the Solutions of the System Model (1).
We demonstrate that every feasible solution is uniformly
bounded in a proper subset D.

Lemma 2. Let the initial conditions of system (1) be nonneg-
ative in ℝ4

+ ×ℝ1
+,

DN = S, Ek, Ik, R ∈ℝ4
+ N t ≤

Λ

μ
,

DPk
= Pk ∈ℝ

1
+ Pk t ≤

Λ γ1 + γ2 + γ3 + γ4
μδ1

9

Then the set D =DN ∪DPk
⊂ℝ4

+ ×ℝ1
+ is positively

invariant

Proof. In this lemma, we are required to show that DN and
DPk

are positively invariant. To start, we sum the first three
equations and the last equation of the system (1) to get

dN
dt

=Λ − μN − δkIk 10

In the absence of the CBD, we have

dN
dt

≤Λ − μN 11

Upon solving equation (11) for N , we get

N t ≤
Λ

μ
+ N0 −

Λ

μ
e−μt 12

Thus,

N t ≤
Λ

μ
as t⟶∞ 13

It follows that the feasible region for the coffee plants
population in the system (1) is defined by

DN = S, Ek, Ik, R ∈ℝ4
+ N t ≤

Λ

μ
14

Considering the fourth equation of system (1), the equa-
tion for Colletotrichum kahawae pathogens is

dPk

dt
= γ1Ek + γ2Ik − δ1Pk 15

We rewrite it as

dPk

dt
≤
Λ γ1 + γ2

μ
− δ1Pk 16

Solving equation (16), we get

Pk t ≤
Λ γ1 + γ2

μδ1
+ Pk0 −

Λ γ1 + γ2
μδ1

e−δ1t 17

Hence,

Pk t ≤
Λ γ1 + γ2

μδ1
as t⟶∞

DPk
= Pk ∈ℝ

1
+ Pk t ≤

Λ γ1 + γ2
μδ1

18

Consequently, the feasible region defined by the set
D =DN ∪DPk

⊂ℝ4
+ ×ℝ1

+ is positively invariant.

It follows that every feasible solution of system (1) is uni-
formly bounded in D; thus, the system is appropriate for the
study of the dynamics of CBD infection.

3.3. CBD Disease-Free Equilibrium Point (DFE). The DFE for
CBD is a situation in which there is no CBD infection in the
plant population. Therefore, DFE for CBDmodel (1) is given by

E0
k = S0, E0

k, I0k, P0
k, R0 = Λ

μ
, 0, 0, 0, 0 19

3.4. Reproduction Number (Rk0). According to [11],Rk0 is the
average number of secondary infections produced by a “typica-
l”infected plant in a completely susceptible plant population. To
compute Rk0, the next-generation method [12] is applied.
Using this method, Rk0 is given by ρ FV−1 (the spectral
radius of FV−1) where F is the Jacobian of F i at E

0
k and F i is

the rate at which new infections appear in compartment i,
and V is the Jacobian ofV i at E

0
k andV i is the rate of progres-

sion of plants into and out of compartment i. In view of the
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system model (1), the infected compartments are given by the
following system:

dEk

dt
= ϖkPkS − αk + μ + ηk Ek,

dIk
dt

= ηkEk − ρk + μ + δk Ik,

dPk

dt
= γ1Ek + γ2Ik − δ1Pk

20

From the system (20), we derive

F i =
ϖkPkS

0
0

,

V i =
αk + μ + ηk Ek

−ηkEk + ρk + μ + δk Ik

−γ1Ek − γ2Ik + δ1Pk

21

And it follows that

F =
0 0 ϖkΛ

μ

0 0 0
0 0 0

,

V =
αk + μ + ηk 0 0

−ηk ρk + μ + δk 0
−γ1 −γ2 δ1

22

The inverse of V is given by

V−1 =

1
αk + μ + ηk

0 0

ηk
αk + μ + ηk ρk + μ + δk

1
ρk + μ + δk

0

ρk + μ + δk γ1 + ηkγ2
αk + μ + ηk ρk + μ + δk δ1

γ2
ρk + μ + δk δ1

1
δ1

23

Computing the product of F and V−1, it obtains

FV−1 =

ϖkΛ ρk + μ + δk γ1 + ηkγ2
αk + μ + ηk ρk + μ + δk μδ1

ϖkΛγ2
ρk + μ + δk μδ1

ϖkΛ

μδ1

0 0 0
0 0 0

24

Clearly, the dominant eigenvalue of FV−1 is ϖkΛ ρk +
μ + δk γ1 + ηkγ2 / αk + μ + ηk ρk + μ + δk μδ1. Hence,

Rk0 =
ϖkΛ ρk + μ + δk γ1 + ηkγ2
αk + μ + ηk ρk + μ + δk μδ1

25

3.5. Local Stability of the DFE

Theorem 3. The DFE of coffee berry disease, E0
k, is locally

asymptotically stable if Rk0 < 1 and unstable if Rk0 > 1.

Proof. If the Jacobian matrix’s eigenvalues at E0
k have nega-

tive real parts, E0
k is considered to be locally asymptotically

stable. Evaluating the Jacobian matrix of system (1) at E0
k,

we get

J E0
k =

−μ 0 0 −ϖkΛ

μ
0

0 − αk + μ + ηk 0 ϖkΛ

μ
0

0 ηk − ρk + μ + δk 0 0
0 γ1 γ2 −δ1 0
0 αk ρk 0 −μ

26

It is clear that λ1 = −μ and λ2 = −μ are the eigenvalues of
matrix (26). Thus, we reduce the matrix to get

J1 E0
k =

− αk + μ + ηk 0 ϖkΛ

μ

ηk − ρk + μ + δk 0
γ1 γ2 −δ1

27

To determine the eigenvalues of the matrix (27), we
express it as follows

− αk + μ + ηk − λ 0 ϖkΛ

μ

ηk − ρk + μ + δk − λ 0
γ1 γ2 −δ1 − λ

= 0

28

From equation (28), we have the following characteristic
equation

λ3 + αk + μ + ηk + ρk + μ + δk + δ1 λ2 + δ1 ρk + μ + δk

+ αk + μ + ηk ρk + μ + δk + δ1 λ + αk + μ + ηk

ρk + μ + δk δ1 −
ϖkΛγ1

μ
λ −

ϖkΛ ρk + μ + δk γ1 + ηkγ2
μ

= 0

29

Upon simplification of equation (29), we obtain

λ3 + p1λ
2 + p2λ + p3 = 0, 30
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where

p1 = αk + μ + ηk + ρk + μ + δk + δ1,
p2 = δ1 ρk + μ + δk + αk + μ + ηk ρk + μ + δk

+ αk + μ + ηk δ1 −
ϖkΛγ1

μ

p3 = αk + μ + ηk ρk + μ + δk δ1 −
ϖkΛ ρk + μ + δk γ1 + ηkγ2

μ

31

According to Routh-Hurwitz criterion, equation (30) has
roots with negative real parts if

p1, p2, p3 > 0,
p1p2 > p3

32

Considering the coefficients p1, p2, and p3, it is clear that
p1 > 0. In order to show that p2, p3 > 0, we first express p2 in
terms of Rk0. Thus, we rewrite the equation (25) as

Rk0 αk + μ + ηk δ1 −
ϖkΛηkγ2

μ ρk + μ + δk
= ϖkΛγ1

μ
33

Substituting the equation (33) in p2, we get

p2 = δ1 ρk + μ + δk + αk + μ + ηk ρk + μ + δk

+ ϖkΛηkγ2
μ ρk + μ + δk

+ αk + μ + ηk δ1 1 −Rk0
34

Therefore, p2, p3 > 0 when Rk0 < 1. Also it is clear that
p2, p3 < 0 when Rk0 > 1. Hence, E0

k is locally asymptotically
stable if Rk0 < 1 and unstable if Rk0 > 1.

3.6. Global Stability of Disease-Free Equilibrium

Theorem 4. E0
k is globally asymptotically stable if Rk0 < 1

and unstable if Rk0 > 1.

Proof. Consider the Lyapunov function,

L = ρk + μ + δk γ1 + ηkγ2
αk + μ + ηk

Ek + γ2Ik + ρk + μ + δk Pk

35

Taking derivative of L , we get

dL
dt

= ρk + μ + δk γ1 + ηkγ2
αk + μ + ηk

dEk

dt
+ γ2

dIk
dt

+ ρk + μ + δk
dPk

dt
,

36

substituting the values of dEk/dt, dIk/dt, and dPk/dt in
equation (36), we get

dL
dt

= ρk + μ + δk γ1 + ηkγ2d
αk + μ + ηk

ϖkPkS − αk + μ + ηk Ek

+ γ2 ηkEk − ρk + μ + δk Ik + ρk + μ + δk
γ1Ek + γ2Ik − δ1Pk

37

Upon simplifying equation (37), we obtain

dL
dt

= ϖk ρk + μ + δk γ1 + ηkγ2
αk + μ + ηk

S − ρk + μ + δk δ1 Pk

38

Since S ≤ S0 =Λ/μ, equation (38) can be rewritten as

dL
dt

≤
ϖkΛ ρk + μ + δk γ1 + ηkγ2

αk + μ + ηk μ
− ρk + μ + δk δ1 Pk

39

Clearly dL/dt ≤ 0 when Rk0 < 1 and dL/dt = 0 when
Pk = 0. Therefore, if Pk ⟶ 0 as t⟶∞, then S, Ek, Ik, Pk,
R ⟶ S0, 0, 0, 0, 0 = Λ/μ, 0, 0, 0, 0 as t⟶∞. Hence,
E0

k is the largest invariant set of D =DN ∪DPk
⊂ℝ4

+ ×
ℝ1

+ dL/dt = 0 According to LaSalle’s invariance principle
[13], E0

k is globally asymptotically stable in D provided that
Rk0 < 1.

3.7. Existence of Endemic Equilibrium (E∗
k ) of Coffee Berry

Disease. Equating the right hand side of system (1) to zero
and substituting S = S∗, Ek = E∗

k , Ik = I∗k , Pk = P∗
k , and R = R∗,

we obtain

0 =Λ − ϖkP
∗
k + μ S∗,

0 = ϖkP
∗
k S

∗ − αk + μ + ηk E∗
k ,

0 = ηkE
∗
k − ρk + μ + δk I∗k ,

0 = γ1E
∗
k + γ2I

∗
k − δ1P

∗
k ,

0 = αkE
∗
k + ρkI

∗
k − μR∗

40

From system (40), we solve for S∗, E∗
k , I

∗
k , P

∗
k , and R

∗ to get

S∗ = Λ

μRk0
,

E∗
k =

μδ1 ρk + μ + δk Rk0 − 1
ϖk γ1 ρk + μ + δk + γ2ηk

,

I∗k =
ηk

ρk + μ + δk
E∗
k ,

P∗
k =

μ Rk0 − 1
ϖk

,

R∗ = αk ρk + μ + δk + ρkηk
ρk + μ + δk μ

E∗
k

41

Thus, the following theorem hold.

5Journal of Applied Mathematics



Theorem 5. There exist a unique positive E∗
k = S∗, E∗

k , I∗k ,
P∗
k , R∗ if Rk0 > 1.

3.8. Local Stability of Endemic Equilibrium

Theorem 6. The endemic equilibrium point of coffee berry
disease E∗

k is locally asymptotically stable if Rk0 > 1.

Proof. The Jacobian of system (1) at E∗
k = S∗, E∗

k , I∗k , P∗
k , R∗ )

is given by

J E∗
k =

− μ + ϖkP
∗ 0 0 −ϖkS

∗ 0
ϖkP

∗ − αk + μ + ηk 0 ϖkS
∗ 0

0 ηk − ρk + μ + δk 0 0
0 γ1 γ2 −δ1 0
0 αk ρk 0 −μ

42

Clearly, from matrix (42), λ1 = −μ is one of the eigen-
values. Thus, we consider the reduced matrix

J1 E∗
k =

− μ + ϖkP
∗ 0 0 −ϖkS

∗

ϖkP
∗ − αk + μ + ηk 0 ϖkS

∗

0 ηk − ρk + μ + δk 0
0 γ1 γ2 −δ1

43

The trace of matrix (43) is given by

tr J1 E∗
k = − μ + ϖkP

∗ + αk + μ + ηk + ρk + μ + δk + δ1 < 0,
44

and the determinant is given by

det J1 E∗
k = μ αk + μ + ηk ρk + μ + δk δ1 Rk0 − 1

45

In view of equation (45), det J1 E∗
k > 0 when Rk0 > 1.

Thus, by Routh-Hurwitz criteria, since matrix (43) has positive
determinant when Rk0 > 1 and negative trace, it follows that
the all the eigenvalues of matrix (43) have negative real parts.
Therefore, E∗

k is locally asymptotically stable ifRk0 > 1

3.9. Global Stability of the Endemic Equilibrium Point

Theorem 7. The endemic equilibrium point E∗
k of the system

(1) is globally asymptotically stable if Rk0 > 1.

Proof. Consider the following Lyapunov function

L S, Ek, Ik, Pk, R = S − S∗ ln S
S∗

+ Ek − E∗
k ln

Ek

E∗
k

+ Ik − I∗k ln
Ik
I∗k

+ Pk − P∗
k ln

Pk

P∗
k

+ R − R∗ ln R
R∗

46

Differentiating L with respect to t, we get

dL
dt

= 1 − S∗

S
dS
dt

+ 1 − E∗
k

Ek

dEk

dt
+ 1 − I∗k

Ik

dIk
dt

+ 1 − P∗
k

Pk

dPk

dt
+ 1 − R∗

R
dR
dt

47

Using system (1), we express equation (47) as

dL
dt

= 1 − S∗

S
Λ − ϖkPk + μ S + 1 − E∗

k

Ek

ϖkPkS − αk + μ + ηk Ek + 1 − I∗k
Ik

ηkEk − ρk + μ + δk Ik + 1 − P∗
k

Pk

γ1Ek + γ2Ik − δ1Pk + 1 − R∗

R
αkEk + ρkIk − μR

48

Rearranging system (40), we obtain

Λ = ϖkP
∗
k + μ S∗

αk + μ + ηk = ϖkP
∗
k S

∗

E∗
k

,

ρk + μ + δk = ηkE
∗
k

I∗k
,

δ1 =
γ1E

∗
k + γ2I

∗
k

P∗
k

,

μ = αkE
∗
k + ρkI

∗
k

R∗

49

Table 1: Parameter values of the model.

Parameter symbol Value Range Source

Λ 0.00133/day — [16]

μ 0 00056/day — [16]

ϖk 0.0007954551/day 0-1.0 Assumed

αk 0 001/day 0-1.0 Assumed

ηk 0 01/day 0-1.0 Assumed

ρk 0 005/day 0-1.0 Assumed

δk 0 0001/day 0-1.0 Assumed

γ1 0 0587364/day 0-1.0 Assumed

γ2 0 0487364/day 0-1.0 Assumed

δ1 0 00900982/day 0-1.0 Assumed
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Figure 2: Graphs showing the dynamics of model system (1) whenRk0 = 0 00095 < 1 for susceptible coffee plants (a), exposed coffee plants
(b), the CBD-infected coffee plants (c), Colletotrichum kahawae pathogen (d), and recovered coffee plants (e) based on parameter values:
Λ = 0 00133, μ = 0 00056, ϖk = 0 0007954551, αk = 0 001, ηk = 0 01, ρk = 0 005, δk = 0 0001, γ1 = 0 0587364, γ2 = 0 0487364, and δ1 =
0 00900982
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Figure 3: Graphs showing the dynamics of model system (1) when Rk0 = 1 1391 > 1 for susceptible coffee plants (a), exposed coffee plants
(b), the CBD-infected coffee plants (c), Colletotrichum kahawae pathogen (d), and recovered coffee plants (e) based on parameter values:
Λ = 0 00133, μ = 0 056, ϖk = 0 0007954551, αk = 0 1, ηk = 0 01, ρk = 0 005, δk = 0 1, γ1 = 0 1, γ2 = 0 1, and δ1 = 0 0900982.

8 Journal of Applied Mathematics



Substituting equation (49) in (48), we get

dL
dt

= 1 − S∗

S
ϖkP

∗
k + μ S∗ − ϖkPk + μ S

+ 1 − E∗
k

Ek
ϖkPkS −

ϖkP
∗
k S

∗

E∗
k

Ek + 1 − I∗k
Ik

ηkEk −
ηkE

∗
k

I∗k
Ik + 1 − P∗

k

Pk

γ1Ek + γ2Ik −
γ1E

∗
k + γ2I

∗
k

P∗
k

Pk

+ 1 − R∗

R
αkEk + ρkIk −

αkE
∗
k + ρkI

∗
k

R∗ R

50

Equation (50) can be written as

dL
dt

= −μ
S − S∗ 2

S
+ ϖkP

∗
k S

∗ 1 − 1
w

− ϖkP
∗
k S

∗ xw − x

+ ϖkP
∗
k S

∗ wz − x −
wz
x

+ 1 + ηkE
∗
k x − y −

x
y
+ 1

+ γ1E
∗
k x − z −

x
z
+ 1 + γ2I

∗
k y − z −

y
z
+ 1

+ αkE
∗
k x − q −

x
q
+ 1 + ρkI

∗
k y − q −

y
q
+ 1

51

where

w = S
S∗

,

x = Ek

E∗
k
,

y = Ik
I∗k

,

z = Pk

P∗
k
,

q = R
R∗

52

Upon simplifying equation (51), we get

dL
dt

= −μ
S − S∗ 2

S
+ f q,w, x, y, z , 53

where

f q,w, x, y, z = ϖkP
∗
k S

∗ 2 − 1
w

−wx +wz −
wz
x

+ ηkE
∗
k x − y −

x
y
+ 1 + γ1E

∗
k x − z −

x
z
+ 1

+ γ2I
∗
k y − z −

y
z
+ 1 + αkE

∗
k x − q −

x
q
+ 1

+ ρkI
∗
k y − q −

y
q
+ 1

54

Using geometric mean inequality [14], we obtain

2 − 1
w

−wx +wz −
wz
x

≤ 0,

x − y −
x
y
+ 1 ≤ 0,

x − z −
x
z
+ 1 ≤ 0,

y − z −
y
z
+ 1 ≤ 0,

x − q −
x
q
+ 1 ≤ 0,

y − q −
y
q
+ 1 ≤ 0

55

Therefore, f q,w, x, y, z ≤ 0, and it follows that dL/dt
≤ 0 in D. The equality dL/dt = 0 if q =w = x = y = z = 1
and S = S∗. Hence, according to LaSalle’s invariance princi-
ple [13], E0

k is globally asymptotically stable in D.

4. Numerical Simulation

We carry out numerical simulations of the model (1), using
MATLAB ode45 solver as carried out in [15]. The parameter
values used are presented in Table 1, and the initial popula-
tions are taken to be S 0 = 10000, Ek 0 = 2000, Ik 0 = 100,
Pk 0 = 1600, and R 0 = 1000.

From Figure 2, it can be seen that when Rk0 < 1, the
number of exposed coffee plants, infected coffee plants,
recovered coffee plants, and Colletotrichum kahawae patho-
gens converges to zero. However, the susceptible coffee
plants tend to a constant Λ/μ. This demonstrates that only
susceptible coffee plants remain after CBD infection dies
out. The given CBD model system tends to the DFE which
is consistent with Theorem 3. Also, Figure 3 demonstrates
that the plants in various classes of CBD model converge
to the endemic equilibrium point when Rk0 > 1, thus the
CBD endemic would persist.

5. Conclusion

In this paper, we have formulated a mathematical model of
the dynamics of CBD. We have calculated the equilibrium
points of the system model, derived the basic reproduction
numberRk0, and demonstrated that the CBD dies out when
Rk0 < 1. We have also demonstrated that CBD persists in
the coffee plant population if Rk0 > 1. The findings of the
numerical simulation are consistent with theoretical results
in stability analysis.
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