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The generalized Pareto distribution is one of the most important distributions in statistics of extremes as it has wide applications in
fields such as finance, insurance, and hydrology. This study proposes two new methods for estimating the shape parameter of the
generalized Pareto distribution (GPD). The proposed methods use the shrinkage principle to adapt the existing empirical Bayesian
with data-based prior and the likelihood moment method to obtain two estimators. The performance of the proposed estimators is
compared with the existing estimators (i.e., maximum likelihood, likelihood moment estimators, etc.) for the shape parameter of
the generalized Pareto distribution in a simulation study. The results show that the proposed estimators perform better for small to
moderate number of exceedances in estimating shape parameter of the light-tailed distributions and competitive when estimating
heavy-tailed distributions. The proposed estimators are illustrated with practical datasets from climate and insurance studies.

1. Introduction

The generalized Pareto distribution (GPD) is one of the fun-
damental distributions used in extreme value theory. As
reported in [1, 2], the GPD is the limiting distribution of
excesses over a large threshold regardless of the underlying
distribution of data, F The significance of the GPD in
extreme value theory cannot be overemphasized because of
its extensive applicability: hydroelectric dam management
[3], flood levels of river, insurance and finance [4, 5], waiting
time problems [6], ecology [7], and climatology [8], among
others.

Let Y1, Y2,⋯, Yn be a random sample from Y with
unknown underlying distribution function, F An exceedance
occurs over a deterministic threshold, u, if the value of Y is
greater than u, i.e., Y = Y j Yi > u, j = 1,⋯, nu ; i = 1,⋯, n,
where nu is the number of observations exceeding u Also,
the excess over a threshold is defined as Y − u with Y > u

The excess distribution over threshold is given by

Fu y = P Y − u ≤ y Y > u = F y + u − F u
1 − F u

, 0 ≤ y ≤ y0 − u,

1

where y0 is the finite or infinite right endpoint of the distribu-
tion F. From [1, 2], the distribution of Y is well approximated
by the GPD with the survival function defined as

1 − F y =
1 + εy −1/ε, 1 + εy > 0, y ≥ 0, if ε ≠ 0,
exp −y , y ≥ 0, if ε = 0

2

If the location μ μ ∈ℝ , shape (ε ε ∈ℝ ), and scale
(σ σ > 0 ) parameters are included (see, e.g., [9]), the resulting
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three-parameter generalized Pareto distribution is given by

1 − F y =
1 + ε

y − μ

σ

−1/ε
, 1 + ε

y − μ

σ
, y ≥ 0, if ε ≠ 0,

exp −
y − μ

σ
, y ≥ 0, if ε = 0

3

The shape parameter, ε, is usually referred to as the tail
index or the extreme value index [3, 10, 11]. The mean and
the variance of a GPD random variable, Y , are given by

E Y = σ

1 − ε
,

Var Y = σ2

1 − ε 2 1 − 2ε
,

4

respectively. Here, the expected value of Y exists when
ε < 1 and the variance when ε < 1/2

The shape (tail index) parameter shows the tail heaviness
of the underlying distribution and can be used to classify the
distribution into three classes. These are short-tailed when
ε < 0, medium-tailed when ε = 0, and heavy-tailed when
ε > 0. In special cases, ε = 0 and ε = 1, the GPD reduces
to exponential and uniform distributions, respectively.

Several estimation techniques have been proposed for
estimating the parameters of the GPD such as maximum
likelihood (ML), probability weighted moments, and ele-
mental percentile. For large sample sizes, [12] showed that
the ML estimator (MLE) is asymptotically the best. How-
ever, the MLE is known to pose computational difficulties
and convergence problems [13, 14]. In addition, it does not
exist when ε > 1 [15] and provides nonfeasible estimates if
ε < −0 5 [13, 16].

To address these problems of the MLE, [15] proposed
the likelihood moment estimators (LME). This estimator
shows high efficiency for small sample sizes. However, [17]
reports that it performs poorly if ε ≥ 2 and tends to overesti-
mate the shape parameter for larger values of the scale
parameter. Also, the LME again is computationally intensive
and slow. Hence, [18, 19] proposed an empirical Bayesian
method to solve the computational intensiveness of the
LME. The resulting estimators of the tail index from this
method showed better performance for ε ∈ −0 5,1 Despite
this advantage, the authors use all available data in the compu-
tation of the estimates of the parameters of the GPD.However,
it is known that for GPD-based models, the inclusion of small
to moderate observations introduces bias [11, 20].

In this paper, we propose two estimators of the tail index
of the generalized Pareto distribution using the idea of the
shrinkage principle. The estimators are a combination of
the likelihood-based approach and that of the empirical
Bayesian methods. The performance of the proposed
method is evaluated in conjunction with the existing estima-
tors in a simulation.

The rest of the paper is organized as follows. Review of
the existing estimators and proposed two new estimators
are in Section 2. The performances of the estimators are

examined via an extensive simulation study in Section 3. A
practical application of these estimators on two datasets is
demonstrated. Finally, Section 5 provides concluding
remarks.

2. Estimation of the Parameters of the
Generalized Pareto Distribution

Assuming F is a GPD with scale and shape parameters σ and
ε, respectively, the following methods can be used to obtain
the estimators of the parameters, maximum likelihood [13],
likelihood moment [15], profile likelihood with empirical
Bayesian [18], and improved profile likelihood with empiri-
cal Bayesian [19] methods. In the next subsections, we pres-
ent a brief description of each of these methods.

2.1. Maximum Likelihood Estimator (MLE). The maximum
likelihood principle involves finding the set of parameters that
maximize the likelihood function L Y , θ evaluated on the
sample from the distribution, F, of the random variable, Y :

L Y ; ε, σ =
n

i=1
f yi , 5

where f is the density function associated with F.
Many studies have shown that the estimators based on

the maximum likelihood estimator are usually better in the
case of large samples (see, e.g., [11, 12, 21, 22]), among
others. In addition, its asymptotic properties including nor-
mality are easily found compared with other estimation
methods.

In the case of statistics of extremes, and in particular the
GPD, [11, 13, 21], among others, show that for small sample
sizes, the maximum likelihood performs poorly. Also, the
numerical algorithm may fail to converge to the maxima.
[21] suggests reparametrization of (ε, σ) to (ε, θ) of which
θ is of the form ε/σ and σ is estimated as σ = ε/θ , with

l∗ θ, ε = n log θ

ε
+ 1

ε
− 1 〠

n

i=1
log 1 − θYi ,

1 − ε = n

∑n
i=1 1 − θYi

−1

6

Hence,

ε = n−1 〠
n

i=1
log 1 − θYi , 7

l θ = 1 − n

∑n
i=1 1 − θYi

−1 + n−1 〠
n

i=1
log 1 − θYi = 0, θ < 1/Yn,n,

8

where Y1,n ≤⋯≤ Yn,n are the order statistics associated with

Y Maximising (8) leads to the MLE estimator θMLE, and the
corresponding MLE of σ and ε are obtained as
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εMLE = −n−1 〠
n

i=1
log 1 − θMLEYi ,

σMLE =
εMLE

θMLE

9

With this reparametrization, the MLE becomes asymp-
totically efficient. However, the computational issues per-
sist such as nonconvergence and, thus, the search for
solutions including the likelihood moment estimation
technique.

2.2. Likelihood Moment Estimator. The likelihood moment
estimator (LME) was proposed by [15] to solve the compu-
tational complexities, efficiency, and convergence problems
of the MLE. LME is reported to be efficient and robust, yet
it is computationally intensive. The LME is estimated with
the log-likelihood

l∗ θ, ε = n log θ/ε + 1/ε − 1 〠
n

i=1
log 1 − θYi , 10

and the moment estimators as

εmom = Y2/s2 − 1
2 ,

σmom =
Y Y2/s2 + 1

2

11

It should be noted that for any constant r satisfying
1 + rε > 0, the E 1 − θY r = 1 + rε −1 of which the sam-
ple version is equivalent to

n−1 〠
n

i=1
1 − θYi

r − 1 + rε −1 /r = 0 12

Using some conditions on ε and r for the existence of
the MLE estimator of the tail index, [15] obtains

εLME = −n−1 〠
n

i=1
log 1 − θLMEYi ,

σLME =
εLME

θLME
,

θLME =
1
n
〠
n

i=1
1 − Yi

p − 1 − r −1

13

Here, p = rn / ∑n
i=1 log 1 − θYi , r < 1 and θ = ε/σ

[15] depicts that when r = ε, the asymptotic variances of
LME and MLE are the same. Even though the choice of
threshold is an important issue in the estimation of the
GPD, it was not considered by the authors. Also, [23] states
that the LME is less sensitive than other estimators to the
choice of threshold. In general, the LME estimator performs

poorly if ε ≥ 2 and tends to overestimate the shape parameter
for large values of the scale parameter [17].

2.3. The Profile Likelihood with Empirical Bayesian Method
(PB). This estimation method was proposed by [18] to
improve the MLE and also solve the computational difficul-
ties of the LME method. It borrows ideas from empirical
Bayesian method where ε and σ are reparameterized as ε
and θ, of which θ is of the form ε/σ

The authors defined their estimator as

θPB =
θ · π θ L θ d θ

π θ L θ d θ
, 14

where l θ = n log θ/ε + ε − 1 is the profile log-likelihood
function and π · is a data-driven “prior” density function
for θ

The integral in (14) is computationally difficult for most
priors; hence, a simplified numerical version was proposed as

θPB = 〠
m

j=1
w θj · θj, 15

where

θj =
1

Y n
+ 1 − m/j − 0 5

3Y⋆ , 16

with Y⋆ = Y n/4 +0 5 as the first quartile of the sample data,

m = 20 + n , j = 1,⋯,m and w θj = 1/∑m
t=1e

l θt −l θ j The
shape and scale parameters are obtained as

ε = −n−1 〠
n

i=1
log 1 − θPBYi ,

σ = εPB

θPB

17

However, this method is reported to be sensitive to the
shape of the prior distribution but performs well when −1
≤ ε ≤ 0 5 Also, it is reported to have very poor performance
for extremely heavy-tailed distributions and efficient for only
small sample sizes [19].

Since this estimation method is in the peaks-over thresh-
old framework, the selection of a suitable threshold is critical
as it leads to bias-variance trade-offs. However, the authors
did not consider this in their simulation study.

2.4. Improved Profile Likelihood with Empirical Bayesian
Method (IPB). [19] proposed a refinement of the estimator
in [18] with the aim of obtaining improved estimators of
the tail index in the case of heavy-tailed distributions. In
order to achieve this, a better data-driven prior distribution
was proposed.
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In this case, a GPD with scale σ⋆ and shape ε⋆ was cho-
sen as the prior distribution for

n − 1
n + 1Y

−1
n − θ 18

Here, ε⋆ is chosen as negative to ensure that Y−1
n is pos-

itive and finite.
Similar to the estimator in Section 2.3, the modified esti-

mators of ε and σ are obtained as

ε IPB = −n−1 〠
n

i=1
log 1 − θ IPBYi ,

σ IPB =
ε IPB

θ IPB

19

Here,

θ IPB = 〠
m

j=1
w θ∗j · θ∗j , 20

with the computation of θ∗j as

n − 1
n + 1Y

−1
n −

σ∗

ε∗
1 − j − 0 5

m

ε

, j = 1,⋯,m 21

However, this method is reported to be sensitive to the

estimation of the scale parameter and has poor performance
for light-tailed distributions [9, 24]. In addition, this estima-
tor is not valid for ε < 0 5 [22]. Furthermore, the authors did
not consider the effect of the number of exceedances, k, on
their proposed estimator.

2.5. Empirical Review of Some Existing Estimation Methods.
In [18, 19], it has been demonstrated numerically that their
estimators of the tail index are less biased and efficient com-
pared with existing estimators such as the maximum likeli-
hood and likelihood moments. However, a closer look at
the codes implemented for the simulation study reveals that
the number of exceedances (k) is taken as the sample size
(i.e., the whole sample is utilised in the estimation of the
parameters). This is in contrast to the concepts in extreme
value theory relating to the peaks-over threshold (POT)
where emphasis is on the tails of the distributions. There-
fore, in such a simulation study, estimators should be
assessed on their sensitivity to the choice of top order statis-
tics, i.e., number of exceedances. In view of the above, we
present a simulation study to assess the performance of the
proposals in [18, 19] with that of the MLE and the LME of
tail index as a function of the number of top order statistics
or exceedances.

We generate samples of size n = 200 and 1000 from
the GPD with parameters, ε = −0 25, σ = 1 and ε =
0 25, σ = 1 . Figure 1 shows the behaviour of the estima-
tors arising from these estimators of the tail index of the
underlying distributions of the generated datasets.
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Figure 1: Estimators of ε. Leftmost column: ε = −0 25 and rightmost column: ε = 0 25. Topmost row: n = 200 and bottommost row: n =
1000 The solid line is the exact value of ε.
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In the case of the estimation of ε = −0 25, LME tends to
overestimate (show large deviations) the tail index when k is
small. Also, PB and IPB methods underestimate the value of
the tail index for small values of k and are only closer to the
true value as k⟶ n. In addition, for positive values of the
shape parameter, the LME gives very good estimates, i.e.,
closer to the true value. However, the PB and IPB estimators
give good estimates of ε only if k⟶ n. Therefore, the esti-
mators, PB [18] and IPB [19], do not perform well when
the number of exceedances is small compared to the sample
size.

Even though the [18, 19] estimators (i.e., PB and IPB)
show attractive properties in the estimation of the extreme
value index, this small simulation study gives an indication
of their sensitivities to the choice of k Therefore, in this
study, we aim to provide estimators of the tail index that
takes into account the advantages of the [18, 19] estimators
but are less sensitive to the choice of the number of excee-
dances, k.

2.6. The Proposed Method. This estimation technique seeks
to improve the methods proposed by [15] and that of [18,
19]. The proposed method uses the idea of shrinkage estima-
tion which relies on a weighted combination of these
methods.

For convenience, we reparametrize σ and ε of the GPD
as θ and ε, where θ = εσ−1 as done by [21]. This implies that
the shape and scale parameter are estimated, respectively, by

ε and σ = ε θ
−1

by maximizing the log-likelihood for the
sample

l⋆ θ, ε = n log θ

ε
+ 1

ε
− 1 〠

n

i=1
log 1 − θYi 22

For ν ∈ 0, 1 , the first and second proposed shrinkage
estimators of θ are given by

θ
s

1 = νθPB + 1 − ν θLME,

θ
s

2 = νθ IPB + 1 − ν θLME,
23

respectively. The value of ν plays an important role in the
shrinkage estimator: ν⟶ 0 implies that the LME domi-
nates whereas with ν⟶ 1, the empirical Bayesian methods
(PB and IPB) dominate. Also, when ν⟶ 0 5, equal propor-
tion of both estimators is included in the proposed estima-
tors of the tail index.

Therefore,

ε = −n−1 〠
n

i=1
log 1 − θ

s

j Yi , j ∈ 1, 2,

σ = ε

θ
s

j

24

Now, the MSE of θ
s

j is computed as

MSE θ
s

j , θ = E νθq + 1 − ν θLME − θ
2
, q ∈ θPB, θIPB

= E ν θq − θLME − θ − θLME
2

= E ν2 θq − θLME
2
+ θ − θLME

2
− 2ν θq − θLME θ − θLME

= ν2E θq − θLME
2
+ E θ − θLME

2
− 2νE θq − θLME θ − θLME

25

For optimal weight, we minimise the MSE θ
s

j , θ with
respect to ν:

∂MSE θq, θ
∂ν

= 2νE θq − θLME
2
− 2E θq − θLME θ − θLME = 0,

ν =
E θq − θLME θ − θLME

E θq − θLME
2

26

The asymptotic properties of θq (i.e., θPB and θ IPB)
remain an open problem, and hence, we resort to the use of
simulation to find an approximate value for ν. An extensive
simulation was done to choose the value of ν, and in practice,
the findings show that for light-tailed situations, ν ∈
0 4,0 7 provides an appropriate or suitable estimates
whereas for heavy-tailed cases, ν ∈ 0,0 2 gives an optimal
estimates. We provide a few examples as shown in
Figure 2. The rest are available on request from the authors.

3. Simulation Study

In this section, a simulation study is conducted to compare
the performance of the tail index estimation methods dis-
cussed in the previous section. Specifically, the two proposed
estimators are compared with the MLE [13], LME [15], PB
[18], and IPB [19]. We present the simulation design and a
discussion of the results in the next subsubsections.

3.1. Simulation Design. Samples of different sizes are gener-
ated from the GPD with various values of the shape and scale
parameters. The four existing estimators, MLE, LME, PB, and
IPB, and the two proposed estimators, Proposed 1 and Pro-
posed 2, are used to estimate the values of the parameters of
the GPD. Two error metrics are used for comparison of the
estimators, i.e., mean square error (MSE) and bias.

Algorithm 1 outlines the procedure for comparing the
performance of estimators.

We remark that, from Step 2, the estimation ε leads to
concurrent estimates of σ However, our interest is the tail
index (i.e., shape) parameter only.

3.2. Simulation Results and Discussion. The simulation is
implemented in the statistical package R. The codes for
IPB and PB are obtained from [18, 22], respectively. Also,
the codes for LME can be found in the R package POT.
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The results of the simulation on the estimation of the
shape parameter, ε, are presented in Figures 3 and 4 for light
and heavy-tailed distributions, respectively.

First, the results show that the proposed methods
generally have smaller MSE for small values of k (i.e., k
less than 40% of the sample size). As k⟶ n, PB and
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Figure 2: Weight with respect to MSE. First row: ε = −0 5; second row: ε = −1; and third row: ε = 0 5. Leftmost column: n = 100; middlemost
column: n = 200; and rightmost column: n = 500.

Step 1. Generate a sample of size n n = 50,200,500 from a GPD with known shape ε and scale (σ) parameters such that both light
and heavy-tailed distributions are realized.
Step 2. For each number of top order statistic k k = 5,⋯, n − 1 or equivalently threshold value u, compute estimates of εi,k where
i ∈ {MLE, LME, PB, IPB, Proposed 1 and Proposed 2}.
Step 3. In order to compute the bias and mean square error for each estimator, repeat Steps 1 and 2 a large number of times,
R R ≥ 1000 to obtain the estimates, εi,k,r with r = 1,⋯, R
Step 4. Compute the bias

bias ε i,k,r , ε = 1/R∑R
r=1 ε i,k,r − ε

and Mean Square Error(MSE)
MSE ε i,k,r , ε = 1/R∑R

r=1 ε i,k,r − ε 2

at each k

Algorithm 1: Algorithm for comparing the performance of the GPD estimators.
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IPB estimators appear to be the best as their MSEs
approach 0. This is in conformity with what have been
reported in [18, 19] and the results in Section 2.5. Also,
the MLE estimator gives better performance than all other
estimation methods when ε = −1 at n = 50 In general, the
LME overestimates all values of ε < 0 and, hence, performs
poorly.

In addition, Figure 4 shows the MSEs of the six esti-
mators of ε ε ≥ 0 The results indicate that the proposed
methods are competitive with LME as they have smaller
MSEs across most of the values of k Closely following
the sample path of both proposed methods and LME is

the MLE: it has better performance in some cases. Lastly,
the MSEs of the estimators converge to 0 as k⟶ n, and
this shows a sign of empirical consistency.

Therefore, we conclude that the proposed estimators are
competitive with the existing ones, and at worse, it has MSEs
close to that of likelihood-based method (LME).

4. Practical Application

In order to demonstrate the use of the proposed methods,
we consider the estimation of the tail indexes of the underly-
ing distributions of two datasets. First, the monthly mean
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Figure 3: MSE ε with σ = 1. First row: ε = −2; second row: ε = −1 5; third row: ε = −1; and fourth row: ε = −0 5. Leftmost column: n = 50;
middlemost column: n = 200; and rightmost column: n = 500.
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temperature series of Ghana for the period 1901 to 2019
obtained from the climate monitor unit hosted by the Cli-
matic Research Unit, University of East Anglia. The second

data is the Danish fire insurance claims in Denmark for
the period 3 January 1980 to 31 December 1990 and that
was obtained from the EVIR package in R.
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Figure 4: MSE ε with σ = 1. First row: ε = 0; second row: ε = 0 5; third row: ε = 1; and fourth row: ε = 1 5. Leftmost column: n = 50;
middlemost column: n = 200; and rightmost column: n = 500.

Table 1: Descriptive statistics of the monthly mean temperature of Ghana.

Data n Min. Max. Mean St. dev. Skewness Shapiro-Wilk

Temperature 1417 24.033 31.134 27.260 1.492 0.350 0.971 (>0.01)
Fire claims 2167 1.000 263.250 3.385 8.507 18.750 0.197 (>0.01)
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4.1. Descriptive Measures. Table 1 shows the main descrip-
tive measures for both monthly mean temperature of Ghana
with 1417 monthly observations and the fire insurance

claims in Denmark with 2167 daily series. Whereas the fire
claim data is heavy-tailed, the distribution of the tempera-
ture data shows a mild positive skewness.
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Figure 5: Plot of the monthly mean temperature of Ghana.
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The P values of the Shapiro-Wilk test for normality
reject the null hypothesis of a normal distribution for both
series, thereby making it appropriate for extreme value
analysis.

From the plots in Figure 5, no obvious trend can be seen
in the temperature data. However, the Danish fire insurance
claim had few outliers. The temperature series is dense in the
range of 25.5 to 27 while the Danish fire claims are denser
from one million to 2 million Danish Krone. The histogram
and the exponential quantile-quantile plots of the two data-
sets indicate that the fire insurance claims have a long tail
(heavy tail) while the temperature series has a shorter tail.

In addition, the mean excess plots show that the temper-
ature data is light-tailed and, hence, indicates a likely nega-
tive value of the tail index, ε, whereas the Danish shows
more of heavy-tailed.

4.2. Estimation of the Tail Index. Figure 6 gives the sample
paths of the estimators of the tail index of the underlying
distribution of the Danish and temperature datasets. The
sample paths of the estimators show that there exist large
variations at smaller values of k and smoother for larger
values of k The former can be explained by the small num-
ber of observations involved in the estimation of the tail
index and, hence, the large variations associated with the
sample paths. On the other hand, the latter can be explained
by the large number of observations involved in the estima-
tion of the tail index and, thus, the less variations associated
with the sample paths.

In addition, the proposed estimators are in between the
sample paths of the likelihood-based and empirical
Bayesian-based estimators as required.

5. Conclusion

The importance of the generalized Pareto distribution can-
not be overemphasized as it has wide applications in finance,
hydrology, and economics, among others. In this paper, we

proposed two estimators of the parameters of the general-
ized Pareto distribution. The estimators are based on the
existing likelihood moment and the empirical Bayesian-
based estimators using the idea of shrinkage. The perfor-
mance of the proposed estimators was assessed using a
large-scale simulation study. The results show that the likeli-
hood moment estimator is not appropriate for negative
values of the shape parameter. Also, the empirical
Bayesian-based estimators use all the available data and
hence defeat the threshold characteristics of the GPD. In
addition, it performs well for only in the case where the
number of exceedances approaches the sample size. The
proposed estimators have competitive MSE for small to
moderate number of exceedances. This is appropriate as
the inclusion of smaller observations (i.e., large number of
exceedances) introduces large bias. Moreover, the proposed
estimators are at worst close to the performance of the
likelihood-based estimator. The estimators were illustrated
using two real datasets from the climate sector representing
light-tailed distributions and the insurance industry repre-
senting heavy-tailed distributions. The asymptotic proper-
ties of the extreme value index estimators in [18, 19]
remain an open problem. Consequently, since our proposed
shrinkage estimators of the extreme value index depend on
these estimators, their asymptotic properties also remain
an open problem. Therefore, these asymptotic properties,
estimation of the scale parameter, and other problems such
as estimation of high quantiles and exceedance probabilities
are the subject of future research.

Data Availability

Data were obtained from the Climate Research Unit and the
EVIR package in R. The temperature data used to support
the findings of this study have been deposited in a git-hub
repository (https://github.com/wilheminapels2/Shrinkage/
blob/main/Temperature.csv).
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Figure 6: (a) Danish fire insurance claims; (b) mean temperature of Ghana.
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