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This paper provides asymptotic expansions for large values of n of tangent Tμ
nðzÞ and Apostol-tangent Tμ

nðz ; λÞ polynomials of
complex order. The derivation is done using contour integration with the contour avoiding branch cuts.

1. Introduction

The tangent Tμ
nðzÞ and Apostol-tangent Tμ

nðz ; λÞ polyno-
mials of complex order μ and complex argument z are
defined by the relations

2
e2w + 1

� �μ

ewz = 〠
∞

n=0
Tμ
n zð Þw

n

n!
, 2wj j < π, ð1Þ

2
λe2w + 1

� �μ

ewz = 〠
∞

n=0
Tμ
n z ; λð Þw

n

n!
, wj j < 1

2 log −1
λ

� �����
����,
ð2Þ

where λ ∈ℂ \ f0g and log is taken to be the principal
branch.

When μ = 1 and μ = λ = 1, (1) and (2) reduce to the clas-
sical tangent polynomials, respectively (see [1]).

It is worth mentioning that results obtained in [2, 3] may
have potential applications in mathematics and physics.
More precisely, the numerical values of the zeros of the
tangent polynomials may represent important values in
engineering and physics while the twisted q-analogue of
tangent polynomials may be used in quantum physics, par-
ticularly in the study of quantum groups and their represen-
tation theory.

Ryoo [4] introduced a variation of tangent numbers and
polynomials, known as twisted tangent numbers and poly-
nomials, associated with the p-adic integral on ℤp. Through
his work, Ryoo presented intriguing findings and established
connections related to these concepts. In addition, Ryoo [5]
explored differential equations arising from the generating
functions of generalized tangent polynomials and derived
explicit identities for them. Furthermore, Ryoo [6] investi-
gated the symmetry property of the deformed fermionic
integral on ℤp, which is a mathematical structure defined
over a prime field. Specifically, he focused on establishing
recurrence identities for tangent polynomials and alternating
sums of powers of consecutive even integers within this con-
text. These discoveries expand our knowledge and under-
standing of this specialized area of mathematics, providing
insights into its unique properties and potential applications
across different domains. Moreover, a study by Corcino et al.
[7] obtained the Fourier expansion of tangent polynomials
of integer order.

In this paper, the same method described by Lόpez and
Temme ([8], p. 4) has been followed in deriving the asymp-
totic expansion which only gives a first-order approxima-
tion. C. Corcino and R. Corcino ([9], p. 2) describe a
similar method and provide a first-order and second-order
approximations.

Hindawi
Journal of Applied Mathematics
Volume 2023, Article ID 9917885, 8 pages
https://doi.org/10.1155/2023/9917885

https://orcid.org/0000-0003-1634-9605
https://orcid.org/0000-0003-1681-1804
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9917885


2. Asymptotic Expansions

In this section, the asymptotic expansions for large values of
n of tangent Tμ

nðzÞ and Apostol-tangent Tμ
nðz ; λÞ polyno-

mials of complex order are derived.

2.1. Tangent Polynomials of Complex Order μ. Applying
Cauchy’s integral formula for derivatives to (1), we have

Tμ
n zð Þ = n!

2πi

þ
C

2
e2w + 1

� �μ

ewz
dw
wn+1 , ð3Þ

where C is a circle about 0 with radius <π/2.
We observe in (3) that the singularities at ±πi/2 are the

sources for the main asymptotic contributions. We integrate
around a circle C1 about 0 with radius π avoiding the branch
cuts running from ±πi/2 to +∞ (see Figure 1). Denote the
loops by L+ and L− and the remaining part of the circle
C1 by C∗. Then, we have

n!
2πi

þ
C1

f wð Þ dw = n!
2πi

ð
C∗
f wð Þ dw +

ð
L+

f wð Þ dw +
ð
L−

f wð Þ dw
 !

,

ð4Þ

where f ðwÞ is the integrand on the right-hand side of (3). By
the principle of deformation of paths,

n!
2πi

þ
C1

f wð Þ dw = n!
2πi

þ
C
f wð Þ dw = Tμ

n zð Þ: ð5Þ

Then, (4) and (5) yield

Tμ
n zð Þ = n!

2πi

ð
C∗
f wð Þ dw +

ð
L+

f wð Þ dw +
ð
L−

f wð Þ dw
 !

:

ð6Þ

The following lemma gives the contribution from the
circular arc C∗.

Lemma 1. The integral along C∗ is OððπÞ−nÞ. That is,
ð
C∗
f wð Þ dw =O πð Þ−nð Þ: ð7Þ

Proof. Taking the modulus of the integral, we have

ð
C∗
f wð Þ dw

����
���� ≤ 2

e2w + 1

� �μ ewz

wn+1

����
���� · π = 2

e2w + 1

� �μ

ewz
����

���� · π−n,

ð8Þ

for all w ∈ C∗. Since C∗ does not pass any singularity, e2w + 1
is not zero. Thus,

2
e2w + 1

� �μ

ewz
����

���� ≤ A, ð9Þ

for some positive number A. So that,

ð
C∗
f wð Þ dw

����
���� ≤ A π−nð Þ: ð10Þ

This proves the lemma.

Remark 2. Lemma 1 shows that, for large values of n (as
n⟶∞), the contribution from the circular arc C∗ is
exponentially small with respect to the main contributions.

For the contributions from the loops, let I+ and I− be the
integrals along L+ and L−, respectively. We first compute
the integral I+:

I+ =
n!
2πi

ð
L+

2μewz
e2w + 1ð Þμ

dw
wn+1 : ð11Þ

Let w = πi/2es. Then, dw = πi/2esds and

I+ =
n!
2πi

ð
C+

2μeπiesz/2
eπies + 1ð Þμ

2n+1
πiesð Þn+1

πies

2 ds

= n!2n
2πi

ð
C+

2μeπiesz/2
eπies + 1ð Þμ

ds
πiesð Þn ,

ð12Þ

where C+ is the image of L+ under the transformation
w = πi/2es. C+ is the contour that encircles the origin in
the clockwise direction. Multiplying the last array by

0 𝜋/2–𝜋/2

C
⁎

𝜋i—2

𝜋i—2

𝜋i

–𝜋 𝜋

–

–𝜋i

Figure 1: Contour for (3).
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e−πiz/2eπiz/2ðπiÞμðπiÞ−μ and since eπi = −1,

I+ =
n!2n
2πi

ð
C+

2μeπiesz/2e−πiz/2eπiz/2 πið Þμ πið Þ−μ
e−πi eπies e−πi − 1ð Þð Þμ

ds
πiesð Þn

= n!eπi z/2+μð Þ

2πi
2n+μ
πið Þn+μ

ð
C+

eπi e
s−1ð Þz/2 πið Þμ

eπi es−1ð Þ − 1
À Áμ ds

esn

= n!eπi z/2+μð Þ

2πi
2
πi

� �n+μð
C+

πi
e2η − 1

� �μ

eηze−snds,

ð13Þ

where η = πiðes − 1Þ/2. Multiplying the last array by s−μsμ,

I+ =
n!eπi z/2−μð Þ

2πi
2
πi

� �n+μð
C+

g sð Þs−ue−nsds, ð14Þ

where

g sð Þ = πis
e2η − 1

� �μ

eηz: ð15Þ

To obtain an asymptotic expansion, we apply Watson’s
lemma for loop integrals (see [10], p. 120). We expand

g sð Þ = 〠
∞

k=0
gks

k: ð16Þ

Substituting (16)–(14), I+ becomes

I+ =
n!eπi z/2+μð Þ

2πi
2
πi

� �n+μð
C+

〠
∞

k=0
gks

ks−ue−nsds

= n!eπi z/2+μð Þ

2πi
2
πi

� �n+μ
〠
∞

k=0
gk

ð
C+

sk−ue−nsds ~ n!eπi z/2+μð Þ

Á 2
πi

� �n+μ
〠
∞

k=0
gkFk,

ð17Þ

where

Fk =
1
2πi

ð
C+

sk−μe−nsds, ð18Þ

with C+ extended to +∞. That is, the path of integration starts
at +∞ with arg s = 2π, encircles the origin in the clockwise
direction, and returns to +∞, now with arg s = 0.

Now, we evaluate Fk. First, we turn the path by writing
s = eπit:

Fk =
1
2πi

ð
D+

eπit
À Ák−μ

ent −dtð Þ = eπi k−μð Þ −1
2πi

ð
D+

t− μ−kð Þentdt,

ð19Þ

where D+ is the image of C+ under the transformation
s = eπit. D+ is the contour that starts at −∞ with arg

t = +π, encircles the origin in clockwise direction, and
returns to −∞ with arg t = −π.

We recall Hankel’s loop integral representation for the
reciprocal gamma function (see [11, 12], p. 48 and p. 153,
respectively):

1
Γ zð Þ =

1
2πi

ð
H
w−zewdw, z ∈ℂ, ð20Þ

where H is the Hankel contour (see Figure 2) that runs from
−∞ with arg w = −π, encircles the origin in positive direc-
tion (that is, counterclockwise), and terminates at −∞,
now with arg w = +π.

Observe that, by deformation of paths, the contour D+ is
the Hankel contour H traversed in the opposite direction. So
that,

Fk = eπi k−μð Þ −1
2πi

ð
−H

t− μ−kð Þentdt = eπi k−μð Þ 1
2πi

ð
H
t− μ−kð Þentdt:

ð21Þ

Let u = nt; du = n dt. Then,

Fk = eπi k−μð Þ 1
2πi

ð
H

u
n

� �− μ−kð Þ
eu
du
n

= eπi k−μð Þ

nk−μ+1
1
2πi

ð
H
u− μ−kð Þeudu

= nμ−k−1e−πiμ
−1ð Þk

Γ μ − kð Þ :

ð22Þ

Moreover,

−1ð Þk
Γ μ − kð Þ = −1ð Þk μ − 1ð Þ μ − 2ð Þ⋯ μ − kð Þ

Γ μð Þ = 1 − μh ik
Γ μð Þ ,

ð23Þ

where hxik = xðx + 1Þ⋯ ðx + k − 1Þ, the rising factorial of x
of degree k. Hence,

Fk = nμ−k−1e−πiμ
1 − μh ik
Γ μð Þ : ð24Þ

Harg w = +𝜋

arg w = –𝜋

Figure 2: The Hankel contour.
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Applying (24)–(17) and noting that i−1 = e−iπ/2, we get

I+ ~ n!eπi z/2+μð Þ 2
πi

� �n+μ
〠
∞

k=0
gk nμ−k−1e−πiμ

1 − μh ik
Γ μð Þ

� �

= n!2n+μnμ−1
πið Þn+μΓ μð Þ e

πiz/2 〠
∞

k=0
gk

1 − μh ik
nk

= n!2n+μnμ−1
πn+μΓ μð Þ eizπ/2e−i n+μð Þπ/2 〠

∞

k=0
gk

1 − μh ik
nk

= n!2n+μnμ−1
πn+μΓ μð Þ ei z−μ−nð Þπ/2½ � 〠

∞

k=0
gk

1 − μh ik
nk

= n!2n+μnμ−1
πn+μΓ μð Þ eiβ 〠

∞

k=0
gk

1 − μh ik
nk

,

ð25Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.
Now, the integral I− along the loop L−,

I− =
n!
2πi

ð
L−

2μewz
e2w + 1ð Þμ

dw
wn+1 ð26Þ

can be obtained similarly. After the substitutionw = ð−πi/2Þes,
we obtain

I− =
n!eπiμ− πi/2ð Þz

2πi
2
−πi

� �n+μð
C−

�g sð Þs−ue−nsds, ð27Þ

where

�g sð Þ = −πis
e−2η − 1

� �μ

e−ηz ,

η = πi
2 es − 1ð Þ:

ð28Þ

We expand �gðsÞ =∑∞
k=0�gks

k and interchange the summa-
tion and integration in (27) and get

I− ~ n!eπiμ− πi/2ð Þz 2
−πi

� �n+μ
〠
∞

k=0
�gkFk, ð29Þ

where Fk ′s are the integrals in (18). Applying (24) and noting
that −i−1 = eπi/2, we obtain

I− ~
n!2n+μnμ−1
πn+μΓ μð Þ e−i z−μ−nð Þπ/2½ � 〠

∞

k=0
�gk

1 − μh ik
nk

= n!2n+μnμ−1
πn+μΓ μð Þ e−iβ 〠

∞

k=0
�gk

1 − μh ik
nk

,
ð30Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.
We observe that �gðsÞ is just the complex conjugate of

gðsÞ (not considering z and μ as complex numbers). So that,

if we write gk = gðrÞk + igðiÞ
k (with gðrÞk , gðiÞk real when z and μ

are real), then �gk = gðrÞk − igðiÞ
k . Hence, by Remark 2 and

applying (25) and (30), we obtain

Tμ
n zð Þ ~ I+ + I− =

n!2n+μnμ−1
πn+μΓ μð Þ eiβ 〠

∞

k=0
gk

1 − μh ik
nk

 !

+ n!2n+μnμ−1
πn+μΓ μð Þ e−iβ 〠

∞

k=0
�gk

1 − μh ik
nk

 !

= n!2n+μnμ−1
πn+μΓ μð Þ 〠

∞

k=0
eiβgk

1 − μh ik
nk

+ 〠
∞

k=0
e−iβ�gk

1 − μh ik
nk

 !

= n!2n+μnμ−1
πn+μΓ μð Þ 〠

∞

k=0
eiβgk + e−iβ�gk

� � 1 − μh ik
nk

= n!2n+μnμ−1
πn+μΓ μð Þ 〠

∞

k=0
eiβ + e−iβ
� �

g rð Þ
k + i eiβ − e−iβ

� �
g ið Þ
k

h i 1 − μh ik
nk

= n!2n+μnμ−1
πn+μΓ μð Þ 〠

∞

k=0
2 cos βg rð Þ

k − 2 sin βg ið Þ
k

� � 1 − μh ik
nk

:

ð31Þ

Consequently, we have the following theorem.

Theorem 3. As n⟶∞, μ and z are fixed complex numbers.

Tμ
n zð Þ ~ n!2n+μ+1nμ−1

πn+μΓ μð Þ cos β〠
∞

k=0

1 − μh ikg
rð Þ
k

nk
− sin β〠

∞

k=0

1 − μh ikg
ið Þ
k

nk

" #
,

ð32Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.

Compute the first few values of gðrÞk and gðiÞk using
Mathematica:

g rð Þ
0 = 1,

g ið Þ
0 = 0,

g rð Þ
1 = −

μ

2 ,

g ið Þ
1 = α,

g rð Þ
2 = 1

24 −12α2 − 1 − π2À Á
μ + 3μ2

À Á
,

g ið Þ
2 = 1

2 1 − μð Þα,

g rð Þ
3 = 1

48 −24α2 + 12α2 + 2π2À Á
μ + 1 − π2À Á

μ2 − μ3
À Á

,

g ið Þ
3 = −

1
24 α −4 + 4α2 + 7 − π2À Á

μ − 3μ2
À Á

:

ð33Þ

A first-order approximation is obtained by taking gðrÞ0
and gðiÞ0 for gðrÞk and gðiÞk , respectively, and taking the first
term of the sum. This is given in the following theorem.
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Theorem 4. As n⟶∞, μ and z are fixed complex numbers.

Tμ
n zð Þ ~ n!2n+μ+1nμ−1

πn+μΓ μð Þ cos β +O
1
n

� �� �
, ð34Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.

A second-order approximation is given as follows.

Theorem 5. As n⟶∞, μ and z are fixed complex numbers.

Tμ
n zð Þ ~ n!2n+μ+1nμ−1

πn+μΓ μð Þ 1 + 1 − μð Þg rð Þ
1

n

" #
cos β

(
−

1 − uð Þg ið Þ
1

n

" #
sin β +O

1
n2

� �)

= n!2n+μ+1nμ−1

πn+μΓ μð Þ 1 −
1 − μð Þμ
2n

� �
cos β

�
−

1 − uð Þα
n

� �
sin β +O

1
n2

� ��
,

ð35Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.
2.2. Apostol-Tangent Polynomials of Complex Order μ. We
apply the same method as in the previous subsection.

For convenience, we take λ = e2ξπi, where ξ ∈ℝ and
jξj < 1/2. Then, (2) reduces to

2
e2w+2ξπi + 1

� �μ

ewz = 〠
∞

n=0
Tμ
n z ; e2ξπi
� �wn

n!
, wj j < π

2 − ξj jπ:

ð36Þ

Applying Cauchy’s integral formula for derivative to
(36), we have

Tμ
n z ; e2ξπi
� �

= n!
2πi

þ
C

2
e2w+2ξπi + 1

� �μ

ewz
dw
wn+1 , ð37Þ

where C is a circle about 0 with radius <ðπ/2Þ − jξjπ.
We consider (37) and observe that the singularities at

w0 = ðπi/2Þ − ξπi and w−1 = ð−πi/2Þ − ξπi are the source for
the main asymptotic contribution. We integrate around a
circle C2 about 0 with radius π avoiding the branch cuts run-
ning from ðπi/2Þ − ξπi to +∞ and ð−πi/2Þ − ξπi to +∞ (see
Figure 3). Denote the loops by L∗

+ and L∗
− and the remain-

ing part of the circle C2 by C∗∗. Then, we have

n!
2πi

þ
C2

f wð Þdw = n!
2πi

ð
C∗∗

f wð Þdw +
ð
L∗

+

f wð Þdw +
ð
L∗

−

f wð Þdw
 !

,

ð38Þ

where f ðwÞ is the integrand on the right-hand side of (37).
By the principle of deformation of paths,

n!
2πi

þ
C2

f wð Þdw = n!
2πi

ð
C
f wð Þdw = Tμ

n z ; e2ξπi
� �

: ð39Þ

Then, (38) and (39) yield

Tμ
n z ; e2ξπi
� �

= n!
2πi

ð
C∗∗

f wð Þdw +
ð
L∗

+

f wð Þdw +
ð
L∗

−

f wð Þdw
 !

:

ð40Þ

Remark 6. It follows from Lemma 1 that the contribution
from the circular arc C∗∗ is also OððπÞ−nÞ, so that, for large
values of n (as n⟶∞), it is exponentially small with
respect to the main contributions.

We proceed to compute the contributions from the loops
L∗

+ and L∗
−. Let I

∗
+ be the integral along the loop L∗

+. Then,

I∗+ =
n!
2πi

ð
L∗

+

2μewz
e2w+2ξπi + 1
À Áμ dw

wn+1 : ð41Þ

Let w = ððπi/2Þ − ξπiÞes = 2−1ðπi − 2ξπiÞes. Then, dw =
2−1ðπi − 2ξπiÞesds and

I∗+ =
n!
2πi

ð
C∗
+

2μe πi/2ð Þ−ξπið Þesz

e2 πi/2ð Þ−ξπið Þes+2ξπi + 1
À Áμ 2−1 πi − 2ξπið Þesds

2−1 πi − 2ξπið ÞesÀ Án+1
= n!2n+μ
2πi πi − 2ξπið Þn

ð
C∗
+

e πi/2ð Þ 1−2ξð Þesz

eπies−2ξπi es−1ð Þ + 1
À Áμ dsesn ,

ð42Þ

where C∗
+ is the image of L∗

+ under the transformation
w = ððπi/2Þ − ξπiÞes. C∗

+ is the contour that encircles the
origin in the clockwise direction. Multiplying the last array

0 𝜋/2–𝜋/2 𝜋–𝜋

𝜋i—2

𝜋i—2
w0

w–1

C
⁎⁎

𝜋i

–𝜋i

–

Figure 3: Contour for (37) when ξ > 0.
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by eðπi/2Þð1−2ξÞzeð−πi/2Þð1−2ξÞzðπi − 2ξπiÞμðπi − 2ξπiÞ−μ and since
e−πi = −1,

I∗+ =
n!2n+μe πi/2ð Þ 1−2ξð Þz

2πi πi − 2ξπið Þn+μ
ð
C∗
+

e πi/2ð Þ 1−2ξð Þesze −πi/2ð Þ 1−2ξð Þz πi − 2ξπið Þμ
e−πi eπi es−1ð Þ−2ξπi es−1ð Þ − 1
À ÁÀ Áμ ds

esn

= n!eπiμ+ πi/2ð Þ 1−2ξð Þz

2πi
2

πi 1 − 2ξð Þ
� �n+μð

C∗
+

e πi/2ð Þ 1−2ξð Þ es−1ð Þz πi − 2ξπið Þμ
eπi 1−2ξð Þ es−1ð Þ − 1
À Áμ ds

esn

= n!eπiμ+ πi/2ð Þ 1−2ξð Þz

2πi
2

πi 1 − 2ξð Þ
� �n+μð

C∗
+

πi 1 − 2ξð Þ
e2η − 1

� �μ

eηze−snds,

ð43Þ

where η = ðπi/2Þð1 − 2ξÞðes − 1Þ. Multiplying the last array by
sμs−μ,

I∗+ =
n!eπiμ+ πi/2ð Þ 1−2ξð Þz

2πi
2

πi 1 − 2ξð Þ
� �n+μð

C∗
+

h sð Þs−μe−snds,

ð44Þ

where

h sð Þ = πi 1 − 2ξð Þs
e2η − 1

� �μ

eηz: ð45Þ

We expand hðsÞ =∑∞
k=0hks

k; (49) becomes

I∗+ =
n!eπiμ+ πi/2ð Þ 1−2ξð Þz

2πi
2

πi 1 − 2ξð Þ
� �n+μð

C∗
+

〠
∞

k=0
hks

ks−μe−snds

= n!eπiμ+ πi/2ð Þ 1−2ξð Þz

2πi
2

πi 1 − 2ξð Þ
� �n+μ

〠
∞

k=0
hk

ð
C∗
+

sk−μe−snds

~ n!eπiμ+ πi/2ð Þ 1−2ξð Þz 2
πi 1 − 2ξð Þ
� �n+μ

〠
∞

k=0
hkFk,

ð46Þ

where Fk ′s are the integrals in (18).
Applying (24)–(51) and noting that i−1 = e−iπ/2, we get

I∗+ ~ n!eπiμ+ πi/2ð Þ 1−2ξð Þz 2
πi 1 − 2ξð Þ
� �n+μ

〠
∞

k=0
hk nμ−k−1e−πiμ

1 − μh ik
Γ μð Þ

� �

= n!e−ξπiz2n+μnμ−1
πi 1 − 2ξð Þð Þn+μΓ μð Þ e

i πz/2ð Þ 〠
∞

k=0
hk

1 − μh ik
nk

= n!e−ξπiz2n+μnμ−1
π 1 − 2ξð Þð Þn+μΓ μð Þ e

iπz/2e−iπ/2 n+μð Þ 〠
∞

k=0
hk

1 − μh ik
nk

= n!e−ξπiz2n+μnμ−1
π 1 − 2ξð Þð Þn+μΓ μð Þ e

i z−μ−nð Þπ/2 〠
∞

k=0
hk

1 − μh ik
nk

= n!e−ξπiz2n+μnμ−1
π 1 − 2ξð Þð Þn+μΓ μð Þ e

iβ 〠
∞

k=0
hk

1 − μh ik
nk

,

ð47Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.

Next, let I∗− be the integral along loop L∗
−. Then,

I∗− =
n!
2πi

ð
L∗

−

2μewz
e2w+2ξπi + 1
À Áμ dw

wn+1 : ð48Þ

After the substitution w = ðð−πi/2Þ − ξπiÞes = 2−1ð−πi −
2ξπiÞes, we obtain

I∗− =
n!eπiμ+ πi/2ð Þ −1−2ξð Þz

2πi
2

πi −1 − 2ξð Þ
� �n+μð

C∗
−

f sð Þs−μe−snds,

ð49Þ

where

f sð Þ = πi −1 − 2ξð Þs
e2η − 1

� �μ

eηz ,

η = πi
2 −1 − 2ξð Þ es − 1ð Þ:

ð50Þ

We expand f ðsÞ =∑∞
k=0 f ks

k and interchange the summa-
tion and integration in (49) and get

I∗− ~ n!eπiμ+ πi/2ð Þ −1−2ξð Þz 2
πi −1 − 2ξð Þ
� �n+μ

〠
∞

k=0
f kFk, ð51Þ

where Fk ′s are the integrals in (18). Applying (24) to (51)
and noting that −i−1 = eiπ/2, we get

I∗− =
n!e−ξπiz2n+μnμ−1
π 1 + 2ξð Þð Þn+μΓ μð Þ e

−i z−μ−nð Þπ/2 〠
∞

k=0
f k

1 − μh ik
nk

= n!e−ξπiz2n+μnμ−1
π 1 + 2ξð Þð Þn+μΓ μð Þ e

−iβ 〠
∞

k=0
f k

1 − μh ik
nk

,
ð52Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.
Then, by Remark 6 and applying (47) and (52), we

obtain

Tμ
n z ; e2ξπi
� �

~ I∗+ + I∗− =
n!e−ξπiz2n+μnμ−1
π 1 − 2ξð Þð Þn+μΓ μð Þ e

iβ 〠
∞

k=0
hk

1 − μh ik
nk

+ n!e−ξπiz2n+μnμ−1
π 1 + 2ξð Þð Þn+μΓ μð Þ e

−iβ 〠
∞

k=0
f k

1 − μh ik
nk

= n!e−ξπiz2n+μnμ−1
πn+μΓ μð Þ

× eiβ

1 − 2ξð Þn+μ 〠
∞

k=0
hk

1 − μh ik
nk

 

+ e−iβ

1 + 2ξð Þn+μ 〠
∞

k=0
f k

1 − μh ik
nk

!
:

ð53Þ

Hence, we have the following theorem.
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Theorem 7. As n⟶∞, μ and z are fixed complex numbers.

Tμ
n z ; e2ξπi
� �

~ n!e−ξπiz2n+μnμ−1

πn+μΓ μð Þ

× eiβ

1 − 2ξð Þn+μ 〠
∞

k=0
hk

1 − μh ik
nk

+ e−iβ

1 + 2ξð Þn+μ 〠
∞

k=0
f k

1 − μh ik
nk

 !
,

ð54Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.

Remark 8. When ξ = 0, Theorem 7 reduces to Theorem 3.

Compute for the first few values of hk and f k using
Mathematica:

h0 = 1,

h1 = −
μ

2 + iα 1 − 2ξð Þ,

h2 =
1
24 −12α2 1 − 2ξð Þ2 + μ −1 + 1 − 2ξð Þ2π2 + 3μ

� �� �
+ i
2 α −1 + 2ξð Þ −1 + μð Þ,

ð55Þ
f0 = 1,

f1 = −
μ

2 + iα −1 − 2ξð Þ,

f2 =
1
24 −12α2 1 + 2ξð Þ2 + μ −1 + 1 + 2ξð Þ2π2 + 3μ

� �� �
+ i
2 α 1 + 2ξð Þ −1 + μð Þ:

ð56Þ
A first-order approximation is obtained by taking h0 and

f0 for hk and f k, respectively, and taking the first term of the
sum. This is given in the following theorem.

Theorem 9. As n⟶∞, μ and z are fixed complex numbers.

Tμ
n z ; e2ξπi
� �

~ n!e−ξπiz2n+μnμ−1

πn+μΓ μð Þ
eiβ 1 + 2ξð Þ + e−iβ 1 − 2ξð Þ

1 − 4ξ2
� �n+μ +O

1
n

� �2
64

3
75,

ð57Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.

Remark 10. When ξ = 0, Theorem 9 reduces to Theorem 4.

3. Summary

This paper derives asymptotic expansions for the tangent
polynomials Tμ

nðzÞ and Apostol-tangent Tμ
nðz ; λÞ with com-

plex orders. The primary objective is to approximate these
polynomials effectively when n takes on large values. To
accomplish this, the authors have employed a mathematical
technique known as contour integration. This approach

entails integrating the polynomials along specific paths in
the complex plane, carefully avoiding branch cuts. By utiliz-
ing contour integration, the authors have derived expres-
sions that offer valuable approximations for the tangent
and Apostol-tangent polynomials as n becomes increasingly
large. More precisely, as n⟶∞, μ and z are fixed complex
numbers; the tangent polynomials have the following
asymptotic expansion:

Tμ
n zð Þ ~ n!2n+μ+1nμ−1

πn+μΓ μð Þ cos β〠
∞

k=0

1 − μh ikg
rð Þ
k

nk
− sin β〠

∞

k=0

1 − μh ikg
ið Þ
k

nk

" #
,

ð58Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2. Consequently, the
first-order approximation is obtained given as follows:

Tμ
n zð Þ ~ n!2n+μ+1nμ−1

πn+μΓ μð Þ cos β +O
1
n

� �� �
, ð59Þ

and the second-order approximation is given by

Tμ
n zð Þ ~ n!2n+μ+1nμ−1

πn+μΓ μð Þ 1 + 1 − μð Þg rð Þ
1

n

" #
cos β

(
−

Â 1 − uð Þg ið Þ
1

n

" #
sin β +O

1
n2

� �)

= n!2n+μ+1nμ−1
πn+μΓ μð Þ 1 − 1 − μð Þμ

2n

� �
cos β

�
−

Â 1 − uð Þα
n

� �
sin β +O

1
n2

� ��
:

ð60Þ

On the other hand, the asymptotic expansion for the
Apostol-tangent polynomials is given as follows:

Tμ
n z ; e2ξπi
� �

~ n!e−ξπiz2n+μnμ−1
πn+μΓ μð Þ × eiβ

1 − 2ξð Þn+μ 〠
∞

k=0
hk

1 − μh ik
nk

 

+ e−iβ

1 + 2ξð Þn+μ 〠
∞

k=0
f k

1 − μh ik
nk

!
,

ð61Þ

where β = α − ðnπ/2Þ and α = ðz − μÞπ/2.
These findings contribute to our comprehension of the

behaviors exhibited by these polynomials and can prove
beneficial in various applications that necessitate approxi-
mations for significant values of n.
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