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The purpose of this paper is to investigate the valuation of equity-linked death benefit contracts and the multiple life insurance on
two heads based on a joint survival model. Using the exponential Wiener process assumption for the stock price process and a Kn
distribution for the time until death, we provide explicit formulas for the expectation of the discounted payment of the guaranteed
minimum death benefit products, and we derive closed expressions for some options and numerical illustrations. We investigate
multiple life insurance based on a joint survival using the bivariate Sarmanov distribution with Kn (i.e., the Laplace transform of
their density function is a ratio of two polynomials of degree at most) marginal distributions. We present analytical results of the
joint-life status.

1. Introduction

Most classical insurance and bank products have experienced
decrease in interest rates. This situation, due to the financial
crisis, has led investors to give prominent attention in high-
return products in spite of the high risks involved. Conse-
quently, banks and insurance companies have to innovate by
offering attractive products that can yield high rates or allow
investors to participate in some underlying asset’s benefits.
To avoid unwanted market declines, this alternative can be
used by stock market investors. As a result, products linked
or indexed to a specific value have emerged in the insurance
and banking sectors (for instance, variable annuities, guaran-
teed minimum death benefit (GMDB), and guaranteed mini-
mum living benefit (GMLB)). Although these products are
more attractive and meet the expectations of most investors,
their valuations are difficult and require an in-depth knowl-
edge of actuarial and financial techniques. In response, [1] pro-
posed a new valuation methodology based on decomposing a
liability into two parts (the actuarial or model part and the
financial or market part) and then valuing each part individu-
ally. Assuming that the underlying stock price follows an expo-

nential Brownian motion, [2] analysed the valuation of GMDB
using discounted payments to death. Additionally, they
assumed that the time to death follows an exponential distribu-
tion. Analytical formulas for options such as lookback options
and surrenders based on the assumption of independence
between stock price and time of death were developed.
Although their results are interesting, they are less attractive
from a practical perspective, because the assumptions underly-
ing their model (e.g., the exponential Brownianmotion process
and exponential distribution assumptions) are merely used to
simplify the model rather than to ensure its accuracy. Gerber
et al. [3] improved their model by adding a jump in the diffu-
sion process and examining their results for equity-linked
death benefits. Liang et al. [4] used the same argument as [2]
to estimate guarantee equity-linked contracts. Another study
looked at term insurance products with equity-linked or
inflation-indexed exercise periods. In addition, an analysis of
parameter sensitivities has been incorporated. Deelstra and
Hieber [5] approximated the distribution of the remaining
lifetime by either a series of Erlang’s distributions or a Laguerre
series expansion to study death-linked contingent claims pay-
ing a random financial return at a random time of death in the
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general case where financial returns follow a regime-switching
model with two-sided phase-type jumps. The literature on
GMDB valuation contains several other extensions of the pio-
neering work of [2, 3] in other direction. For instance, the
regime-switching jump volatility was considered in ([6–8])
and the references therein.

Multiple researchers have proposed different distributions
due to the difficulty of finding a corresponding distribution to
the time until death. For example, [9] addressed this problem
by proposing a Laguerre expansion, which was also applied to
the valuation of equity-linked death benefits. Results obtained
were more accurate when compared to the results of the exist-
ing literature. Phase-type distributions to model human life-
times were used when phase-type jump is incorporated into
the diffusion process by [10]. In terms of matrix representation,
they derived a closed analytic expression for price. Because
dependency modelling is a key concept in financial and actuar-
ial modelling, we are interested in equity-linked death benefits
for multiple life scenarios. In Kim et al.’s [11] study, phase-
type distributions are applied to joint-life products and to group
risk ordering and pricing within a pool of insureds by exploring
the properties of phase-type distributions. Moutanabbir and
Abdelrahman [12] utilised the bivariate Sarmanov distribution
with phase-type marginal distributions to model dependence
between lifetimes. The phase-type distributions are used in
[13] to model human mortality. Recently, [14] considered
mixed exponential distribution and studied the problem of
GMDB valuation for married couple.

In thi paper, we study the problem of GMDB by consid-
ering the mixture of Erlang’s distributions for time until
death and model the underlying stock price process by expo-
nential Wiener process, on the one hand, and the problem to
valuing equity-linked death benefits on multiple life based
on a joint survival using the bivariate Sarmanov distribution
with Kn marginal distributions, on the other hand.

The structure of this paper is as follows: the model is pre-
sented in Section 2. Section 3 describes the Erlang stopping
of a Wiener process. Section 4 provides a valuation of basic
options. In Section 5, multiple life insurance is discussed,
followed by some numerical results in Section 6.

2. The Model

Consider the problem of GMDB rider that guarantees to the
policyholder,max ðSðTxÞ, KÞ, where Tx is the time until death
random variable for a life aged x and K is the minimum
guaranteed amount. Because max ðSðTxÞ, KÞ = SðTxÞ +max
½K − SðTxÞ�+, where max ½K − SðTxÞ�+ = max ðK − SðTxÞ, 0Þ,
the problem of valuing the guarantee becomes the problem of
valuing a K-strike put option that is exercised at time Tx. Since
Tx is a random variable, the put option is of neither the Euro-
pean style nor the American style. It is a life-contingent put
option. Thus, we are interested in evaluating the expectation

E e−δTxb S Txð Þð Þ
h i

, ð1Þ

where δ denotes a constant force of interest and bðsÞ is an
equity-indexed death benefit function. Let f Tx

denote the prob-

ability density function of Tx. Under the assumption that Tx is
independent of the stock price fSðtÞg, the above expectation is

E e−δTxb S Txð Þð Þ
h i

=
ð+∞
0

E e−δt
� �

E b S tð Þð Þ½ �f Tx
tð Þdt: ð2Þ

In this paper, Tx is assumed to follow Kn distributions.
The class of Kn, n ∈ℕ, distributions is the family of prob-

ability distributions whose Laplace transform is given by

~f sð Þ = λ⋆ + sβ sð ÞQn
i=1 s + λið Þ , ð3Þ

where λ⋆ =
Qn

i=1λi, for λi > 0, i = 1, 2,⋯, n, and βðsÞ =∑n−2
i=1

βis
i is a polynomial of degree n − 2 or less. If τ is an arbitrary

Kn, random variable, then the mean and variance of the inter-
claim time random variables are given by

E τ½ � = 〠
n

i=1

1
λi

−
β 0ð Þ
λ⋆

,

Var τ½ � = 〠
n

i=1

1
λ2i

−
2β′ 0ð Þλ⋆ − β2 0ð Þ

λ2⋆
,

ð4Þ

respectively. The class of Kn distributions is widely used in
applied probability applications (see for instance [15, 16]).

Under the assumption that Tx is independent of the
stock price process fSðtÞg, the problem of approximating
the expectation (1) reduces to that of evaluating

E e−δτb S τð Þð Þ
h i

, ð5Þ

where τ is an arbitrary Kn, random variable independent of
fSðtÞg.

If λ1, λ2,⋯, λn are distinct, then using partial fractions,

~f τ sð Þ = 〠
n

i=1

ai
s + λi

, s ∈ℂ, ð6Þ

where

ai =
λ⋆ − λiβ −λið Þð ÞQn
j=1,j≠i λj − λi

À Á : ð7Þ

This gives

f τ tð Þ = 〠
n

i=1
aie

−λi t = 〠
n

i=1

ai
λi
λie

−λi t , t ≥ 0, ð8Þ

which is the density function of a mixture of exponential
distributions, with weights ai/λi, i = 1,⋯, n.
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We can use the factorization

E e−δτb S τð Þð Þ
h i

= E E e−δτb S τð Þð Þ
h i���τh i

=
ð+∞
0

E e−δtb S tð Þð Þ
h i

f τ tð Þdt

= 〠
n

i=1
ai

ð+∞
0

E b S tð Þð Þ½ �e− δ+λið Þtdt

= 〠
n

i=1

ai
δ+λi

ð+∞
0

E b S tð Þð Þ½ � δ + λið Þe− δ+λið Þtdt

= 〠
n

i=1

ai
δ + λi

E∘ b S τið Þð Þ½ �,

f ∘τi tð Þ = δ + λið Þe− δ+λið Þt , t ≥ 0:

ð9Þ

Hence, the derivation formulas for

E∘ b S τið Þð Þ½ � ð10Þ

are essential.
Let MðτiÞ denote the running maximum of the Lévy

process fXðtÞg up to time τi. As shown in [2, 3] and [17],
the random variables MðτiÞ and XðτiÞ −MðτiÞ are indepen-
dent (which is still true if δ = 0 (even though MðtÞ and ½MðtÞ
− XðtÞ� are not independent)).

The functions

f δX τið Þ,M τið Þ x, yð Þ =
ð∞
0
e−δt f X tð Þ,M tð Þ x, yð Þf τi tð Þdt, τi ~ Txi

ð11Þ

are referred to as discounted density functions; in the case
of negative δ, the adjective inflated might be more
appropriate.

Consider the process fXðtÞ = μt + σWðtÞ, t ≥ 0g, where
WðtÞ is a standard Brownian motion and μ and σ > 0 are con-
stants. The process XðtÞ is stopped at time τi. Unless stated
otherwise, in this paper, αi and βi are two real numbers, which
are the solutions of the following quadratic equation:

ηρ2 + μρ − δ + λið Þ = 0, η = σ2

2 , ð12Þ

where σ is defined as the volatility per unit of time of the pro-
cess fXðtÞ, t ≥ 0g.

Let Δ2
i = 1/ηðλi + ðδ + μ2/4ηÞÞ. We have

αi = −Δi −
μ2

2η ,

βi = Δi −
μ2

2η ,

βi − αi = 2Δ,
i = 1, 2,⋯, n:

ð13Þ

Proposition 1. As in [2], for each t > 0,

The proof can be found in books such as [18, 19].

The pdf of an inverse Gaussian (IG) random variable
W with parameters b, ðb > 0Þ, and ν, ðν > 0Þ, i.e., ðW ~ IG
ðb, νÞÞ, is

f W xð Þ = bebνffiffiffiffiffiffiffiffiffiffi
2πx3

p exp −
1
2

b2

x
+ ν2x

 !( )
1 x>0f g, ð15Þ

and its nth moment is

E Wnð Þ = b
ν

� �n

ebν
ffiffiffiffiffiffiffiffi
2bν
π

r
Kn−1/2 bνð Þ, ð16Þ

where Kp is the modified Bessel function of the third kind.

Kn− 1/2ð Þ xð Þ =
ffiffiffiffiffi
π

2x

r
e−x 〠

n−1

k=0

n + k − 1ð Þ!
k! n − k − 1ð Þ! 2xð Þ−k,∀n ∈ℕ, ð17Þ

f X tð Þ xð Þ = 1
2 ffiffiffiffiffiffiffi

πηt
p e− x−μtð Þ2/4ηt , η = σ2

2 ,−∞ < x <∞,

f M tð Þ x, yð Þ = 1
2 ffiffiffiffiffiffiffi

πηt
p e− x−μtð Þ2/4ηt −

μ

η
eμy/ηΦ

−y − μtffiffiffiffiffiffiffiffiffiffi2πηtp
� �

+ 1
2 ffiffiffiffiffiffiffi

πηt
p eμy/η− x−μtð Þ2/4ηt , y ≥ 0,

f X tð Þ,M tð Þ x, yð Þ = 2y − x

2
ffiffiffiffiffiffiffiffiffiffiffi
πη3t3

p e μx− 1/2ð Þμ2t− 2y−xð Þ2/2tð Þ/2η, y ≥max 0, xð Þ:

ð14Þ
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K−p xð Þ = Kp xð Þ: ð18Þ

If instead some of the λ1, λ2,⋯, λn are not distinct,
then using partial fractions

~f τ sð Þ =
Qk

i=1λ
ni
i + sβ sð ÞQk

i=1 s + λið Þni
, ð19Þ

where λ1, λ2,⋯, λk are distinct, λ⋆ =
Qk

i=1ni = n.

Then using partial fractions,

~f τ sð Þ =
Qk

i=1λ
ni
i + sβ sð ÞQk

i=1 s + λið Þni
= 〠

k

i=1
〠
ni

j=1

ai,j
s + λið Þj

, ð20Þ

where

ai,j =
1

ni − jð Þ!
dni−j
dsni−j

Yk
m=1,m≠i

λ⋆ + sβ sð Þ
s + λmð Þnm

�����
s=−λi

: ð21Þ

This gives

which is the density function of a mixture of the Erlang dis-
tributions, with weights ai,j/λ

j
i , i = 1,⋯, k and j = 1,⋯, ni:

We have

E e−δτb S τð Þð Þ
h i

= E e−δτb S τð Þð Þ
���τh ih i

=
ð+∞
0

E e−δtb S tð Þð Þ
h i

f τ tð Þdt

= 〠
k

i=1
〠
ni

j=1

ai,j
δ + λið Þj

×
ð+∞
0

E b S tð Þð Þ½ � δ + λið Þjt j−1e− δ+λið Þt

j − 1ð Þ! dt

= 〠
k

i=1
〠
ni

j=1

ai,j
δ + λið Þj

E∘ b S τið Þð Þ½ �,f ∘τi tð Þ =
δ + λið Þjt j−1e− δ+λið Þt

j − 1ð Þ! , t ≥ 0:

ð23Þ

Hence, this paper will derive formulas for

E∘ b S τið Þð Þ½ �, ð24Þ

where we will be looking at an Erlang stopping time τi.

3. Erlang Stopping of Exponential
Wiener Process

Let SðtÞ denote the time price at time t of a share of stock or
unit of a mutual fund. We assume that

S tð Þ = S 0ð ÞeX tð Þ, ð25Þ

where XðtÞ = μt + σWðtÞ, where μ represents the drift per
unit of time, σ is the volatility per unit of time, and WðtÞ
is the Wiener process.

Theorem 2. Assuming τi is the Erlang distributed, i.e., τi ~
Erlangðn, λiÞ, the distribution of the pair ðXðτiÞ,MðτiÞÞ is

where αi and βi are given by (13).

Proof.

f δX τið Þ,M τið Þ x, yð Þ =
ð∞
0
e−δt f X tð Þ,M tð Þ x, yð Þf τi tð Þdt

=
ð∞
0

2y − x

2
ffiffiffiffiffiffiffiffiffiffiffi
πη3t3

p e μx− 1/2ð Þμ2t− 2y−xð Þ2/2tð Þ/2η λni tn−1e− δ+λið Þt

n − 1ð Þ! 1 y≥max 0,xð Þf gdt

= λni e
μx/2η

η n − 1ð Þ!
ð∞
0

2y − xð Þ/ ffiffiffiffiffi2ηpffiffiffiffiffiffiffiffiffi
2πt3

p tn−1e−1/2
μ2
2η+2 δ+λið Þ
À Á

t+ 2y−xð Þ2
2ηt

Â Ã
1 y≥max 0,xð Þf gdt:

ð27Þ

Let b = ð2y − xÞ/ ffiffiffiffiffi2ηp
and ν =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4ηðδ + λiÞ

p
/ ffiffiffiffiffi2ηp

:
Then,

μx
2η − bν = μx

2η + x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4η δ + λið Þp

2η −
2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 + 4η δ + λið Þp

2η

= −αix − βi − αið Þy:

ð28Þ

We have

f τ tð Þ = 〠
k

i=1
〠
ni

j=1
ai,j

t j−1e−λit

j − 1ð Þ! = 〠
k

i=1
〠
ni

j=1

ai,j

λj
i

λj
i
t j−1e−λit

j − 1ð Þ! , t ≥ 0, i = 1,⋯, k, j = 1,⋯, ni, ð22Þ

f δX τið Þ,M τið Þ x, yð Þ =
〠
n−2

k=0

2λni
σ2

n + k − 2ð Þ!e−αix− βi−αið Þy

2k n − 1ð Þ!k! n − k − 2ð Þ!νn+k−1
2y − x
σ

� �n−k−1
× 1 y≥max 0,xð Þf g,∀n ∈ℕ \ 0, 1f g,

2λi
σ2 e

−αix− βi−αið Þy1 y≥max 0,xð Þf g, if n = 1,

8>>><
>>>:

ð26Þ
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where W ~ IGðb, νÞ. Using Equation (16), for n ∈ℕ − f0, 1g,
we get

Substituting Equation (17) in Equation (30), we get the
result for n ∈ℕ − f0, 1g. For n = 1, EðWn−1Þ = 1, and the
result follows.

Theorem 3. Assuming τi is the Erlang distributed, i.e., τi ~
Erlangðn, λiÞ, f δXðτiÞ and f δMðτiÞ are given, respectively, by the
following:

(1) For n ∈ℕ − f0, 1g,

f δX τið Þ xð Þ =
e−βixφn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αi/2ð Þxð Þr
r!

, x ≥ 0,

e−αixφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi − αið Þ/2ð Þxð Þr
r!

, x ≤ 0,

8>>>>><
>>>>>:

f δM τið Þ xð Þ = 2φn
i 〠

n−2

k=0
〠

n−k−1

r=0
c n, kð Þ βi − αi

2

� �n−k e−βiy

−αið Þn−k−r
yr

r!
,

ð31Þ

where

φi =
λi
σ2 ; c n, kð Þ = 22n−1

βi − αið Þ2n−1
n + k − 2

k

 !
1 −

k
n − 1

� �" #
2−k: ð32Þ

(2) For n = 1,

f δX τið Þ xð Þ =

2λi
βi − αið Þσ2 e

−βix, x ≥ 0,

2λi
βi − αið Þσ2 e

−αix, x ≤ 0,

8>>><
>>>:

f δM τið Þ xð Þ = −
2λi
αiσ

2
e−βiy:

ð33Þ

Remark 4. For n = 1, the results of Theorem 3 are those
obtained in [2]. The mixture of the Erlang distributions is
a dense family of distributions, which makes our results
more general.

Proof. Assume n ∈ℕ − f0, 1g. According to the expression
of f δXðτiÞ,MðτiÞ given by Theorem 2, we have

f δX τið Þ xð Þ =
ð∞
max 0,xð Þ

f δX τið Þ,M τið Þ x, yð Þdy

= 〠
n−2

k=0

2λni
σn−k+1

n + k − 2ð Þ!
2k n − 1ð Þ!k! n − k − 2ð Þ!νn+k−1

= ×
ð∞
max 0,xð Þ

e−αix− βi−αið Þy 2y − xð Þn−k−1dy:

ð34Þ

By changing the change of variables technique, we have

With the incomplete Gamma function, we have

f δX τið Þ,M τið Þ x, yð Þ = λni
η n − 1ð Þ! e

−αix− βi−αið Þy b
ν

� �n−1
ebν

ffiffiffiffiffiffiffiffi
2bν
π

r
Kn− 3/2ð Þ bνð Þ1 y≥max 0,xð Þf g: ð30Þ

ð∞
max 0,xð Þ

e−αix− βi−αið Þy 2y − xð Þn−k−1dy =

2n−k−1e− αi+βið Þ x/2ð Þ

βi − αið Þn−k
ð∞

βi−αið Þ x/2ð Þ
un−k−1e−udu, x > 0,

2n−k−1e− αi+βið Þ x/2ð Þ

βi − αið Þn−k
ð∞
− βi−αið Þ x/2ð Þ

un−k−1e−udu, x < 0:

8>>>><
>>>>:

ð35Þ

Γ n − k, βi − αið Þ x2
� �

=
ð∞

βi−αið Þ x/2ð Þ
un−k−1e−udu = Γ n − kð Þ

ð∞
βi−αið Þ x/2ð Þ

un−k−1e−u

Γ n − kð Þ du = Γ n − kð Þ 〠
n−k−1

r=0

e− βi−αið Þ x/2ð Þ βi − αið Þ x/2ð Þð Þr
r!

= n − k − 1ð Þ!e− βi−αið Þ x/2ð Þ 〠
n−k−1

r=0

βi − αi/2ð Þxð Þr
r!

,

ð∞
− βi−αið Þ x/2ð Þ

un−k−1e−udu = n − k − 1ð Þ!e βi−αið Þ x/2ð Þ 〠
n−k−1

r=0

− βi − αi/2ð Þxð Þr
r!

:

ð36Þ
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To have ðnote thatβi − αi = 2ν/σÞ

f δX τið Þ xð Þ =
e−βix

λni
σ2n

〠
n−2

k=0

n + k − 2ð Þ!22n−k−1 n − k − 1ð Þ
n − 1ð Þ!k! βi − αið Þ2n−1 〠

n−k−1

r=0

βi − αi/2ð Þxð Þr
r!

, x ≥ 0,

e−αix
λni
σ2n

〠
n−2

k=0

n + k − 2ð Þ!22n−k−1 n − k − 1ð Þ
n − 1ð Þ!k! βi − αið Þ2n−1 〠

n−k−1

r=0

− βi − αi/2ð Þxð Þr
r!

, x ≤ 0:

8>>>>><
>>>>>:

ð37Þ

Since

n + k − 2ð Þ!
n − 1ð Þ!k! = n + k − 2ð Þ!

n − 1ð Þ n − 2ð Þ!k! =
1

n − 1
n + k − 2

k

 !
,

ð38Þ

we obtain

f δX τið Þ xð Þ =
e−βixφn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αi/2ð Þxð Þr
r!

, x ≥ 0,

e−αixφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi − αi/2ð Þxð Þr
r!

, x ≤ 0:

8>>>>><
>>>>>:

ð39Þ

φi and cðn, kÞ are given by (32).
We also have

f δM τið Þ yð Þ =
ð∞
max 0,xð Þ

f δX τið Þ,M τið Þ x, yð Þdx

= 〠
n−2

k=0

2λni
σn−k+1

n + k − 2ð Þ!
2k n − 1ð Þ!k! n − k − 2ð Þ!νn+k−1

×
ðy
−∞

e−αix− βi−αið Þy 2y − xð Þn−k−1dx,

ð40Þ

with

To finally have

f δM τið Þ yð Þ = 〠
n−2

k=0
〠

n−k−1

r=0

2λni
σn−k+1

n + k − 2ð Þ! n − k − 1ð Þ
2k n − 1ð Þ!k!νn+k−1

e−βiy

−αið Þn−k
−αiyð Þr
r!

= 〠
n−2

k=0
〠

n−k−1

r=0

n + k − 2

k

 !
1 − k

n − 1

� � 2λni
2kσn−k+1νn+k−1

e−βiy

−αið Þn−k−r
yr

r!

= 2 λi
σ2

� �n

〠
n−2

k=0
〠

n−k−1

r=0
c n, kð Þ βi − αi

2

� �n−k e−βiy

−αið Þn−k−r
yr

r!
:

ð42Þ

For n = 1,

f δX τið Þ xð Þ = 2λi
σ2

ð∞
max 0,xð Þ

e−αix− βi−αið Þydy

= 2λi
σ2 βi − αið Þ e

−αix− βi−αið Þ max 0,xð Þ,f δM τið Þ yð Þ

= 2λi
σ2

ðy
−∞

e−αix− βi−αið Þydx = −
2λi
αiσ

2 e
−βiy:

ð43Þ

4. Valuation of Options

As in Section 3, we denote by SðtÞ the time t’s price of a
share of stock or unit of a mutual fund. We assume

S tð Þ = S 0ð ÞeX tð Þ, ð44Þ

where XðtÞ = μt + σWðtÞ. It is easy to show that EðSðtÞÞ =
Sð0Þevt, t ≥ 0, and v = μ + ðσ2/2Þ.

In this section, we evaluate the expected discounted
value of the payoff bðSðτiÞÞ,

E e−δτi b S τið Þð Þ
h i

, ð45Þ

for various payoff or benefit functions bðsÞ. Under the
assumption that the random variable τi is independent of
the process SðtÞ, the expectation (45) is

E e−δτi b S τið Þð Þ
h i

=
ð∞
−∞

b S 0ð Þexð Þf δX τið Þdx: ð46Þ

Since we know that τi ~ Erlangðn, λiÞ, we have

E e−δτi b S τið Þð Þ
h i

=
φn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

ð∞
0
b S 0ð Þexð Þxre−βixdx, x ≥ 0,

φn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi−αið Þð Þr
2rr!

ð0
−∞

b S 0ð Þexð Þxre−αixdx, x ≤ 0:

8>>>>><
>>>>>:

ð47Þ

ðy
−∞

e−αix− βi−αið Þy 2y − xð Þn−k−1dx = e− βi−αið Þy
ðy
−∞

e−αix 2y − xð Þn−k−1dx = e− βi+αið Þy
ð∞
y
eαit tn−k−1dt = e− βi+αið Þy

−αið Þn−k
ð∞
−αiy

e−uun−k−1du

= e− βi+αið Þy

−αið Þn−k
n − k − 1ð Þ!eαiy 〠

n−k−1

r=0

−αiyð Þr
r!

= e−βiy

−αið Þn−k
n − k − 1ð Þ! 〠

n−k−1

r=0

−αiyð Þr
r!

:

ð41Þ
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In the special case where bðsÞ = s, Equation (47) becomes

E e−δτi b S τið Þð Þ
h i

=
S 0ð Þφn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

ð∞
0
xre− βi−1ð Þxdx, x ≥ 0,

S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi−αið Þð Þr
2rr!

ð0
−∞

xre− αi−1ð Þxdx, x ≤ 0:

8>>>>><
>>>>>:

ð48Þ

Remark 5. If v = δ, it is straightforward to show that E½e−δτi
SðτiÞ� = Sð0Þ which is the result in the risk-neutral pricing
framework, where δ represents the risk-free interest rate in
the complete market.

4.1. Out-of-the-Money All-or-Nothing Call Option. The pay-
off function is

b sð Þ = sm1 s>Kf g: ð49Þ

Here, m is a real number; m = 0 and m = 1 are two spe-
cial cases of particular interest. The constant K is greater
than Sð0Þ; the term “out-of-the-money” means that the
option, if exercised now, is worth nothing. Let

θ = ln K
S 0ð Þ
� �

, ð50Þ

which is positive since K > Sð0Þ.

Theorem 6. If βi ≥m, then

E e−δτi Sm τið Þ1 S τið Þ>Kf g
���S 0ð Þ < K

h i
= Sm 0ð Þφn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0

βi − αið Þr
2r βi −mð Þr−p+1

× 1
p!

S 0ð Þ
K

� �βi−m

ln K
S 0ð Þ
� �p

:

ð51Þ

Proof.

E e−δτi Sm τið Þ1 S τið Þ>Kf g
���S 0ð Þ < K

h i
= φn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

×
ð∞
θ

b S 0ð Þexð Þxre−βixdx,
ð52Þ

with

ð∞
θ

b S 0ð Þexð Þxre−βixdx = Sm 0ð Þ
ð∞
θ

xre− βi−mð Þxdx

= Sm 0ð Þ
βi −mð Þr+1

ð∞
βi−mð Þθ

ure−udu, if βi ≥m

= Sm 0ð Þ
βi −mð Þr+1 r!e

− βi−mð Þθ 〠
r

p=0

βi −mð Þpθp
p!

, if βi ≥m:

ð53Þ

4.2. At-the-Money All-or-Nothing Call Option. For K = Sð0Þ,
we have

E e−δτi Sm τið Þ1 S τið Þ>Kf g
���S 0ð Þ = K

h i

= Sm 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2r βi −mð Þr+1 :

ð54Þ

4.3. Out-of-the-Money Call Option. The payoff function is

b sð Þ = s − Kð Þ+ = s1 s>Kf g − K1 s>Kf g: ð55Þ

Here, K > Sð0Þ because the option is out-of-the-money.
By applying (51) with m = 1 and m = 0, we have

E e−δτi S τið Þ − Kð Þ1 S τið Þ>Kf g
���S 0ð Þ < K

h i

= φn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0

βi − αið Þr
2r

Sβi 0ð Þ
Kβi−1

× 1
p!

ln K
S 0ð Þ
� �p 1

βi − 1ð Þr−p+1
−

1
βr−p+1
i

" #
:

ð56Þ

4.4. At-the-Money Call Option. The payoff function is

b sð Þ = s − S 0ð Þð Þ+, ð57Þ

which is (55) with K = Sð0Þ. Thus, it follows from (54) that

E e−δτi S τið Þ − S 0ð Þð Þ+
���S 0ð Þ = K

h i

= S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2r × 1

βi − 1ð Þr+1 −
1

βr+1
i

" #
:

ð58Þ

4.5. Out-of-the-Money All-or-Nothing Put Option. The pay-
off function is

b sð Þ = sm1 s<Kf g: ð59Þ

Here, m is the real number, and K < Sð0Þ because the
option is out-of-the-money. Since θ = ln ðK/Sð0ÞÞ < 0, it fol-
lows from the following.

Theorem 7. If αi ≤m, then,

E e−δτi Sm τið Þ1 S τið Þ<Kf g
���S 0ð Þ > K

h i

= −Sm 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0

− βi − αið Þð Þr
2r αi −mð Þr−p+1

× 1
p!

S 0ð Þ
K

� �αi−m

ln K
S 0ð Þ
� �p

:

ð60Þ
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Proof.

E e−δτi Sm τið Þ1 S τið Þ<Kf g
���S 0ð Þ > K

h i

= Sm 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi − αið Þð Þr
2rr!

×
ðθ
−∞

xre− αi−mð Þxdx,

ð61Þ

with

ðθ
−∞

xre− αi−mð Þxdx = −
1

αi −mð Þr+1
ð∞

αi−mð Þθ
ure−udu, αi

≤m = −
r!

αi −mð Þr+1
S 0ð Þ
K

� �αi−m

Á 〠
r

p=0

αi −mð Þθð Þp
p!

, αi ≤m:

ð62Þ

4.6. At-the-Money Put Option. For K = Sð0Þ, we have

E e−δτi Sm τið Þ1 S τið Þ<Kf g
���S 0ð Þ = K

h i

= −Sm 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi − αið Þð Þr
2r αi −mð Þr+1 :

ð63Þ

4.7. Out-of-the-Money Put Option. The payoff function is

b sð Þ = K − sð Þ+ = K1 s<Kf g − s1 s<Kf g: ð64Þ

By applying (60) with m = 0 and m = 1, we have

E e−δτi K − S τið Þð Þ1 S τið Þ<Kf g
���S 0ð Þ > K

h i

= −φn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0

− βi − αið Þð Þr
2r

Sαi 0ð Þ
Kαi−1

× 1
p!

ln K
S 0ð Þ
� �p 1

αr−p+1i

−
1

αi − 1ð Þr−p+1
" #

:

ð65Þ

4.8. At-the-Money Put Option. The payoff function is

b sð Þ = S 0ð Þ − sð Þ+: ð66Þ

By (63), we have

E e−δτi S 0ð Þ − S τið Þð Þ1 S τið Þ<Kf g
���S 0ð Þ = K

h i

= −S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi − αið Þð Þr
2r

× 1
αr+1i

−
1

αi − 1ð Þr+1
" #

:

ð67Þ

4.9. In-the-Money Put and Call Options

Theorem 8.

E e−δτi K − S τið Þð Þ+
���S 0ð Þ < K

h i

= −S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

− βi − αið Þð Þr
2r

1

αr+1i

−
1

αi − 1ð Þr+1
" #

+ φn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0
−1ð Þr−p βi − αið Þr

2r
1
p!

ln K
S 0ð Þ
� �� �p

× K1−βi

S 0ð Þð Þ−βi

1

−βið Þr−p+1
−

1

1 − βið Þr−p+1
" #

,

E e−δτi S τið Þ − Kð Þ+
���S 0ð Þ > K

h i

= S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2r

1

βi − 1ð Þr+1
−

1

βr+1
i

" #

+ φn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0
−1ð Þr−p − βi − αið Þð Þr

2r
1
p!

× ln K
S 0ð Þ
� �� �p K1−αi

S 0ð Þð Þ−αi
1

−αið Þr−p+1 −
1

1 − αið Þr−p+1
" #

:

ð68Þ

Proof.

E e−δτi K − S τið Þð Þ+
���S 0ð Þ < K

h i
= E e−δτi K − S τið Þð Þ1 S τið Þ<Kf g

���S 0ð Þ < K
h i

=
ð0
−∞

K − S 0ð Þexð Þf δX τið Þdx +
ðθ
0
K − S 0ð Þexð Þf δX τið Þdx

= E e−δτi K − S τið Þð Þ+
���S 0ð Þ = K

h i
+
ðθ
0
K − S 0ð Þexð Þf δX τið Þdx:

ð69Þ
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We have

ðθ
0
S 0ð Þex f δX τið Þdx = S 0ð Þφn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

ðθ
0
xre− βi−1ð Þxdx

= S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

Á 1
1 − βið Þr+1

ð 1−βið Þθ

0
ureudu

= S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

1
1 − βið Þr+1

× e 1−βið Þθ 〠
r

p=0
−1ð Þr−p r!

p!
1 − βið Þθð Þp

= S 0ð Þφn
i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

1
1 − βið Þr+1

× K
S 0ð Þ
� �1−βi

〠
r

p=0
−1ð Þr−p r!

p!
1 − βið Þ ln K

S 0ð Þ
� �� �p

,

K
ðθ
0
f δX τið Þdx = Kφn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0

βi − αið Þr
2rr!

1
−βið Þr+1

× K
S 0ð Þ
� �−βi

〠
r

p=0
−1ð Þr−p r!

p!
−βið Þ ln K

S 0ð Þ
� �� �p

:

ð70Þ

Hence,

ðθ
0
K − S 0ð Þexð Þf δX τið Þdx = φn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0
−1ð Þr−p

Á βi − αið Þr
2r

1
p!

ln K
S 0ð Þ
� �� �p

× k1−βi

S 0ð Þð Þ−βi

1
−βið Þr−p+1 −

1
1 − βið Þr−p+1

" #
,

E e−δτi S τið Þ − Kð Þ+
���S 0ð Þ > K

h i
=
ð0
θ

S 0ð Þex − Kð Þf δX τið Þdx

+
ð∞
0

S 0ð Þex − Kð Þf δX τið Þdx

= E e−δτi S τið Þ − Kð Þ+
���S 0ð Þ = K

h i
+
ð0
θ

S 0ð Þex − Kð Þf δX τið Þdx:

ð71Þ

To finally have

ðθ
0
S 0ð Þex − Kð Þf δX τið Þdx = φn

i 〠
n−2

k=0
c n, kð Þ 〠

n−k−1

r=0
〠
r

p=0
−1ð Þr−p − βi − αið Þð Þr

2r
1
p!

× ln K
S 0ð Þ
� �� �p K1−αi

S 0ð Þð Þ−αi
1

1 − αið Þr−p+1 −
1

−αið Þr−p+1
" #

:

ð72Þ

5. Multiple Life Insurance on Two Heads

In this section, we apply Kn distributions in the context of
joint-life modelling. The survival of the two lives is referred
to as the status of interest or simply the status. There are two
common types of status: the joint-life and the last survival
status. Consider two random variables Tx and Ty which
are assumed to be dependent. The random variables denote
the future lifetimes of a life aged x and y, respectively. The
dependence can be introduced using copulas or a common
shock model. In this paper, we use the bivariate Sarmanov
distribution which is given by

h s, tð Þ = f x sð Þf y tð Þ 1 + ωΨ sð ÞΨ tð Þ½ �, ð73Þ

where f x and f y are the marginal probability distribution
functions of the future life random variables Tx and Ty ,
respectively. The kernel function fΨ, i = x, yg is assumed to
be bounded and nonconstant such that E½ΨiðTiÞ� = 0. The
dependence parameter ω is a real number such that

1 + ωΨ sð ÞΨ tð Þ ≥ 0, ð74Þ

for all s, t ∈ℝ \ f0g. If ω = 0, then we have achieved indepen-
dence. The choice of a suitable kernel function is very
important. In the literature, the most commonly used kernel
functions are as follows (see [20] for details):

(i) Farlie-Gumbel-Morgenstern (FGM) copula case:
ΨiðtÞ = 1 − FiðtÞ, where FiðtÞ is the cumulative dis-
tribution function associated to Ti

(ii) Exponential kernel case: ΨiðtÞ = eγi t − E½eγit�
(iii) The marginal kernel case: ΨiðtÞ = ef iðtÞ − E½ef iðtÞ�
Define νi =

Ð +∞
0 sΨiðÞf iðsÞds for i = x, y; then, the covari-

ance and correlation coefficient are given by

Cov Tx, Ty

À Á
= ωνxνy,

Cor Tx, Ty

À Á
=

ωνxνy
Var Txð ÞVar Ty

À Á : ð75Þ

The maximum attainable correlation for a bivariate Sar-
manov distribution is discussed in [21] for the different mar-
ginal distributions. In this paper, it is assumed that both Tx
and Ty are following Kn with

f Tx
tð Þ = 〠

kx

i=1
〠
lxi

j=1
axi,j

t j−1e−λ
x
i t

j − 1ð Þ! ,

f Ty
tð Þ = 〠

ky

i=1
〠
lyi

j=1
ayi,j

t j−1e−λ
y
i t

j − 1ð Þ! :
ð76Þ

In the rest of the paper, we will be using the Erlang-type
kernel function.
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gq tð Þ = 〠
mq−1

r=0

γqt
� �r

r!
e−γqt , q = x, y: ð77Þ

Then, the joint distribution of Tx and Ty is given as

h s, tð Þ = f x sð Þf y tð Þ 1 + ωcxcy
À Á

− ωcy f x sð Þgx sð Þf y tð Þ
− ωcx f x sð Þgy tð Þf y tð Þ + ωf x sð Þgx sð Þf y tð Þgy tð Þ,

ð78Þ

or in a compact form

h s, tð Þ = f x sð Þf y tð Þ + ω〠
1

k,l
Ckl f x sð Þgk

x sð Þf y tð Þgly tð Þ, ð79Þ

with g0i ðsÞ = 1 for i = x, y and for all s with

Ckl = −1ð Þk+1C1−k
1 C1−l

2 for l and k in 0, 1f g: ð80Þ

If both Tx and Ty follow a bivariate Sarmanov distribu-
tion, we have the following:

h u, vð Þ = 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
axix ,jx a

y
iy ,jy

ujx−1vjy−1e−λ
y
i v−λ

x
i u

jx − 1ð Þ! jy − 1
� �

!

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0

× γrxx γ
ry
y axix ,jx a

y
iy ,jy

urx+jx−1vry+jy−1e− γy+λ
y
ið Þv− γx+λxið Þu

rx!ry! jx − 1ð Þ! jy − 1
� �

!
:

ð81Þ

Theorem 9. The CDF and survival functions follow

H s, tð Þ = 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1

axix ,jx a
y
iy ,jy

λxið Þjx λyi
À Ájy 1 − e−λ

x
i s 〠

jx−1

qx=0

λxi sð Þqx
qx!

" #

Á 1 − e−λ
y
i t 〠

jy−1

qy=0

λyi t
À Áqy
qy!

2
4

3
5 + ω〠

1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0

Á
γrxx γ

ry
y axix ,jx a

y
iy ,jy

γx + λxið Þrx+jx γy + λyi

� �ry+jy ×
rx + jx − 1

rx

 !

Á
ry + jy − 1

ry

0
@

1
A 1 − e− γx+λxið Þs 〠

rx+jx−1

qx=0

γx + λxið Þs½ �qx
qx!

" #

× 1 − e− γy+λ
y
ið Þt 〠

ry+jy−1

qy=0

γy + λyi

� �
t

h iqy
qy!

2
4

3
5,

ð82Þ

�H s, tð Þ = 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1

axix ,jx a
y
iy ,jy

λxið Þjx λyi
À Ájy e−λxi s−λyi t 〠

jx−1

qx=0
〠
jy−1

qy=0

Á λxi sð Þqx
qx!

λyi t
À Áqy
qy!

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0

Á
γrxx γ

ry
y axix ,jx a

y
iy ,jy

γx + λxið Þrx+jx γy + λyi

� �ry+jy
×

rx + jx − 1

rx

 !
ry + jy − 1

ry

0
@

1
Ae− γx+λxið Þs− γy+λ

y
ið Þt

× 〠
rx+jx−1

qx=0
〠

ry+jy−1

qy=0

γx + λxið Þs½ �qx
qx!

γy + λyi

� �
t

h iqy
qy!

:

ð83Þ
Proof.

H s, tð Þ =ℙ Tx < s, Ty < t
Â Ã

=
ðs
0

ðt
0
h u, vð Þdudv: ð84Þ

(i) Computing of h1ðs, tÞ =
Ð s
0
Ð t
0u

jx−1vjy−1e−λ
y
i v−λ

x
i ududv

By the Fubini theorem, we have

h1 s, tð Þ =
ðs
0
ujx−1e−λ

x
i udu

ðt
0
vjy−1e−λ

y
i vdv: ð85Þ

Let w = λxi u; we have

ðs
0
ujx−1e−λ

x
i udu = 1

λxið Þjx
ðλxi s
0
wjx−1e−wdw

= 1
λxið Þjx

Γ jxð Þ − Γ jx , λxi sð Þ½ �

= jx − 1ð Þ!
λxið Þjx

1 − e−λ
x
i s 〠

jx−1

qx=0

λxi sð Þqx
qx!

" #
:

ð86Þ

Hence,

h1 s, tð Þ =
jx − 1ð Þ! jy − 1

� �
!

λxið Þjx λyi
À Ájy 1 − e−λ

x
i s 〠

jx−1

qx=0

λxi sð Þqx
qx!

" #

Á 1 − e−λ
y
i t 〠

jy−1

qy=0

λyi t
À Áqy
qy!

2
4

3
5:

ð87Þ

(ii) Computing of h2ðs, tÞ =
Ð s
0
Ð t
0u

rx+jx−1vry+jy−1

e−ðγy+λ
y
i Þv−ðγx+λxi Þududv
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h2 s, tð Þ =
ðs
0
urx+jx−1e− γx+λxið Þudu

ðt
0
vry+jy−1e− γy+λ

y
ið Þvdv: ð88Þ

Put w = ðγx + λxi Þu; we have
ðs
0
urx+jx−1e− γx+λxið Þudu = 1

γx + λxið Þrx+jx
ð γx+λxið Þs

0
wrx+jx−1e−wdw

= 1
γx + λxið Þrx+jx

Γ rx + jxð Þ − Γ rx + jx, γx + λxið Þsð Þ½ �

= rx + jx − 1ð Þ!
γx + λxið Þrx+jx

1 − e− γx+λxið Þs 〠
rx+jx−1

qx=0

γx + λxið Þs½ �qx
qx!

" #
:

ð89Þ

Thus,

h2 s, tð Þ =
rx + jx − 1ð Þ! ry + jy − 1

� �
!

γx + λxið Þrx+jx γy + λyi

� �ry+jy
Á 1 − e− γx+λxið Þs 〠

rx+jx−1

qx=0

γx + λxið Þs½ �qx
qx!

" #

× 1 − e− γy+λ
y
ið Þt 〠

ry+jy−1

qy=0

γy + λyi

� �
t

h iqy
qy!

2
4

3
5:

ð90Þ

(iii) Computing of Hðs, tÞ

H s, tð Þ = 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
axix ,jx a

y
iy ,jy

1
jx − 1ð Þ! jy − 1

� �
!

Á
ðs
0

ðt
0
ujx−1vjy−1e−λ

y
i v−λ

x
i ududv

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

Á 1
rx!ry! jx − 1ð Þ! jy − 1

� �
!

×
ðs
0

ðt
0
urx+jx−1vry+jy−1e− γy+λ

y
ið Þv− γx+λxið Þududv

= 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
axix ,jx a

y
iy ,jy

1
jx − 1ð Þ! jy − 1

� �
!
h1 s, tð Þ

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

Á 1
rx!ry! jx − 1ð Þ! jy − 1

� �
!
× h2 s, tð Þ,

ð91Þ

which gives (82). For Equation (83), we have

�H s, tð Þ = ℙ Tx > s, Ty > t
Â Ã

=
ð+∞
s

ð+∞
t

h u, vð Þdudv: ð92Þ

(iv) Computing of �h1ðs, tÞ =
Ð +∞
s

Ð +∞
t ujx−1vjy−1e−λ

y
i v−λ

x
i u

dudv

By the Fubini theorem, we have

�h1 s, tð Þ =
ð+∞
s

ujx−1e−λ
x
i udu

ð+∞
t

vjy−1e−λ
y
i vdv: ð93Þ

Let w = λxi u; we have

ð+∞
s

ujx−1e−λ
x
i udu = 1

λxið Þjx
ð+∞
λxi s

wjx−1e−wdw

= 1
λxið Þjx

Γ jx, λxi sð Þ

= jx − 1ð Þ!
λxið Þjx

e−λ
x
i s 〠

jx−1

qx=0

λxi sð Þqx
qx!

:

ð94Þ

Hence,

�h1 s, tð Þ =
jx − 1ð Þ! jy − 1

� �
!

λxið Þjx λyi
À Ájy e−λ

x
i se−λ

y
i t 〠

jx−1

qx=0

λxi sð Þqx
qx!

〠
jy−1

qy=0

λyi t
À Áqy
qy!

:

ð95Þ

(v) Computing of �h2ðs, tÞ =
Ð +∞
s

Ð +∞
t urx+jx−1vry+jy−1

e−ðγy+λ
y
i Þv−ðγx+λxi Þududv

�h2 s, tð Þ =
ð+∞
s

urx+jx−1e− γx+λxið Þudu
ð+∞
t

vry+jy−1e− γy+λ
y
ið Þvdv:

ð96Þ

Put w = ðγx + λxi Þu; we have
ð+∞
s

urx+jx−1e− γx+λxið Þudu = 1
γx + λxið Þrx+jx

ð+∞
γx+λxið Þs

wrx+jx−1e−wdw

= 1
γx + λxið Þrx+jx

Γ rx + jx, γx + λxið Þsð Þ

= rx + jx − 1ð Þ!
γx + λxið Þrx+jx

e− γx+λxið Þs 〠
rx+jx−1

qx=0

γx + λxið Þs½ �qx
qx!

:

ð97Þ
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Thus,

�h2 s, tð Þ =
rx + jx − 1ð Þ! ry + jy − 1

� �
!

γx + λxið Þrx+jx γy + λyi

� �ry+jy e− γx+λxið Þse− γy+λ
y
ið Þt

× 〠
rx+jx−1

qx=0

γx + λxið Þs½ �qx
qx!

〠
ry+jy−1

qy=0

γy + λyi

� �
t

h iqy
qy!

q:

ð98Þ

(vi) Computing of �Hðs, tÞ

�H s, tð Þ = 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
axix ,jx a

y
iy ,jy

1
jx − 1ð Þ! jy − 1

� �
!

�h1 s, tð Þ

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

×
�h2 s, tð Þ

rx!ry! jx − 1ð Þ! jy − 1
� �

!
:

ð99Þ

5.1. Joint Status. The joint-life status is one that requires the
survival of both lives. Accordingly, the status terminates
upon the first death of one of the two lives. The joint-
life status of two lives x and y will be denoted by ðxyÞ,
and the moment of death random variable is given by
TðxyÞ =min ðTx, TyÞ.

Theorem 10. The survival function for TðxyÞ is given by

�FT xyð Þ
tð Þ == 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
jx−1

qx=0
〠
jy−1

qy=0

axix ,jx a
y
iy ,jy

λxið Þjx−qx λyi
À Ájy−qy 1

qx!
1
qy!

tqx+qy e− λxi +λ
y
ið Þt

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
〠

rx+jx−1

qx=0
〠

ry+jy−1

qy=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

× 1

γx + λxið Þrx+jx−qx γy + λyi

� �ry+jy−qy
rx + jx − 1

rx

 !

Á
ry + jy − 1

ry

0
@

1
A 1

qx!
1
qy!

× tqx+qy e− γx+λxi +γy+λ
y
ið Þt:

ð100Þ

Using the survival function, we get the following pdf:

f T xyð Þ
tð Þ == 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
jx−1

qx=0
〠
jy−1

qy=0

axix ,jx a
y
iy ,jy

λxið Þjx−qx λyi
À Ájy−qy 1

qx!
1
qy!

Γ qx + qy + 1
� �

× −
tqx+qy−1e− λxi +λ

y
ið Þt

Γ qx + qy
� � + λxi + λyi

À Á t qx+qy+1ð Þ−1e− λxi +λ
y
ið Þt

Γ qx + qy + 1
� �

2
4

3
5

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
〠

rx+jx−1

qx=0
〠

ry+jy−1

qy=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

×
Γ qx + qy + 1
� �

γx + λxið Þrx+jx−qx γy + λyi

� �ry+jy−qy
rx + jx − 1

rx

 !

Á
ry + jy − 1

ry

0
@

1
A 1

qx!
1
qy!

× −
tqx+qy−1e− γx+λxi +γy+λ

y
ið Þt

Γ qx + qy
� �

2
4

+ γx + λxi + γy + λyi

� � t qx+qy+1ð Þ−1e− γx+λxi +γy+λ
y
ið Þt

Γ qx + qy + 1
� �

3
5:

ð101Þ

Proof.

�FT xyð Þ
tð Þ =ℙ Tx > t, Ty > t

Â Ã
=
ð+∞
t

ð+∞
t

h u, vð Þdudv = �H t, tð Þ,

f T xyð Þ
tð Þ = −�F′T xyð Þ

tð Þ:
ð102Þ

Remark 11. Clearly, the above distribution is a combination
of mixture of the Erlang distribution, since

f T xyð Þ
tð Þ == 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
jx−1

qx=0
〠
jy−1

qy=0

axix ,jx a
y
iy ,jy

λxið Þjx−qx λyi
À Á jy−qy

Á 1
qx!

1
qy!

Γ qx + qy + 1
� �

× −Erlang qx + qy, λxi + λyi

� �h
+ λxi + λyi
À Á

Erlang qx + qy + 1, λxi + λyi

� �i

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
〠

rx+jx−1

qx=0
〠

ry+jy−1

qy=0

Á γrxx γ
ry
y axix ,jx a

y
iy ,jy ×

Γ qx + qy + 1
� �

γx + λxið Þrx+jx−qx γy + λyi

� �ry+jy−qy
Á

rx + jx − 1

rx

 !
ry + jy − 1

ry

0
@

1
A 1

qx!
1
qy!

× −Erlang qx + qy, γx + λxi + γy + λyi

� �h
+ γx + λxi + γy + λyi

� �
Erlang

Á qx + qy + 1, γx + λxi + γy + λyi

� �i
:

ð103Þ

Equation (47) can be generalized as follows:
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For x ≥ 0,

E e−δT xyð Þb S T xyð Þ
� �� �h i

= 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
jx−1

qx=0
〠
jy−1

qy=0

Á
axix ,jx a

y
iy ,jy

λxið Þjx−qx λyi
À Ájy−qy 1

qx!
1
qy!

Γ qx + qy + 1
� �

× λxi + λyi
À Á

ΦN+1
1,i 〠

N−1

k=0
c N + 1, kð Þ 〠

N−k

r=0

β1,i − α1,i
À Ár

2rr!

"

−ΦN
1,i 〠

N−2

k=0
c N , kð Þ 〠

N−k−1

r=0

β1,i − α1,i
À Ár

2rr!

#ð∞
0
b S 0ð Þexð Þxre−β1,ixdx

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
〠

rx+jx−1

qx=0
〠

ry+jy−1

qy=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

×
Γ qx + qy + 1
� �

γx + λxið Þrx+jx−qx γy + λyi

� �ry+jy−qy
rx + jx − 1

rx

 !

Á
ry + jy − 1

ry

0
@

1
A 1

qx!
1
qy!

× × γx + λxi + γy + λyi

� �
ΦN+1

2,i 〠
N−1

k=0
c N + 1, kð Þ 〠

N−k

r=0

β2,i − α2,i
À Ár

2rr!

"

−ΦN
2,i 〠

N−2

k=0
c N , kð Þ 〠

N−k−1

r=0

β2,i − α2,i
À Ár

2rr!

#ð∞
0
b S 0ð Þexð Þxre−β2,ixdx:

ð104Þ

For x ≤ 0,

E e−δT xyð Þb S T xyð Þ
� �� �h i

= 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
jx−1

qx=0
〠
jy−1

qy=0

Á
axix ,jx a

y
iy ,jy

λxið Þ jx−qx λyi
À Ájy−qy 1

qx!
1
qy!

Γ qx + qy + 1
� �

× λxi + λyi
À Á

ΦN+1
1,i 〠

N−1

k=0
c N + 1, kð Þ 〠

N−k

r=0

− β1,i − α1,i
À ÁÀ Ár

2rr!

"

−ΦN
1,i 〠

N−2

k=0
c N , kð Þ 〠

N−k−1

r=0

− β1,i − α1,i
À ÁÀ Ár

2rr!

#ð∞
0
b S 0ð Þexð Þxre−α1,ixdx

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
〠

rx+jx−1

qx=0
〠

ry+jy−1

qy=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

×
Γ qx + qy + 1
� �

γx + λxið Þrx+jx−qx γy + λyi

� �ry+jy−qy
rx + jx − 1

rx

 !

Á
ry + jy − 1

ry

0
@

1
A 1

qx!
1
qy!

× × γx + λxi + γy + λyi

� �
ΦN+1

2,i 〠
N−1

k=0
c N + 1, kð Þ

"

Á 〠
N−k

r=0

− β2,i − α2,i
À ÁÀ Ár

2rr! −ΦN
2,i 〠

N−2

k=0
c N , kð Þ 〠

N−k−1

r=0

− β2,i − α2,i
À ÁÀ Ár

2rr!

#

Á
ð∞
0
b S 0ð Þexð Þxre−α2,ixdx,

ð105Þ

where

N = qx + qy,

Φ1,i =
λxi + λyi
σ2

,

Φ2,i =
γx + λxi + γy + λyi

σ2
:

ð106Þ

cðN , kÞ is given by (32); α1,i and β1,i are solutions of
Equation (12), with λi replaced by λxi + λyi ; α2,i and β2,i are
also solutions of Equation (12), with λi replaced by γx + λxi
+ γy + λyi .

5.2. The Last-Survivor Status. The other common status
is the last-survivor status. The last-survivor status is
one that ends upon the death of both lives. That is,
the status survives as long as at least one of the compo-
nent members remains alive. The last-survivor status of
two lives x and y will be denoted by ð �xyÞ, and the
moment of death random variable is given by Tð �xyÞ =
max ðTx , TyÞ.

Theorem 12. The CDF and survival functions follow

FT �xyð Þ tð Þ = 〠
kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1

axix ,jx a
y
iy ,jy

λxið Þjx λyi
À Ájy

Á 1 − e−λ
x
i t 〠

jx−1

qx=0

λxi tð Þqx
qx!

" #
1 − e−λ

y
i t 〠

jy−1

qy=0

λyi t
À Áqy
qy!

2
4

3
5

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠

Ámy−1
ry=0

γrxx γ
ry
y axix ,jx a

y
iy ,jy

γx + λxið Þrx+jx γy + λyi

� �ry+jy
×

rx + jx − 1

rx

 !
ry + jy − 1

ry

0
@

1
A

Á 1 − e− γx+λxið Þt 〠
rx+jx−1

qx=0

γx + λxið Þt½ �qx
qx!

" #

× 1 − e− γy+λ
y
ið Þt 〠

ry+jy−1

qy=0

γy + λyi

� �
t

h iqy
qy!

2
4

3
5,

ð107Þ
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and the pdf is also given by

f T xyð Þ
tð Þ = f T �xyð Þ tð Þ = 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
jx−1

qx=0
〠
jy−1

qy=0

axix ,jx a
y
iy ,jy

λxið Þjx−qx λyi
À Ájy−qy

Á 1
qx!

1
qy!

Γ qx + qy + 1
� �

× −
tqx+qy−1e− λxi +λ

y
ið Þt

Γ qx + qy
� � + λxi + λyi

À Á t qx+qy+1ð Þ−1e− λxi +λ
y
ið Þt

Γ qx + qy + 1
� �

2
4

3
5

+ ω〠
1

k,l
Ckl 〠

kx

ix=1
〠
lxi

jx=1
〠
ky

iy=1
〠
lyi

jy=1
〠
mx−1

rx=0
〠
my−1

ry=0
〠

rx+jx−1

qx=0
〠

ry+jy−1

qy=0
γrxx γ

ry
y axix ,jx a

y
iy ,jy

×
Γ qx + qy + 1
� �

γx + λxið Þrx+jx−qx γy + λyi

� �ry+jy−qy
rx + jx − 1

rx

 !

Á
ry + jy − 1

ry

0
@

1
A 1

qx!
1
qy!

× −
tqx+qy−1e− γx+λxi +γy+λ

y
ið Þt

Γ qx + qy
� �

2
4

+ γx + λxi + γy + λyi

� � t qx+qy+1ð Þ−1e− γx+λxi +γy+λ
y
ið Þt

Γ qx + qy + 1
� �

3
5:

ð108Þ

Proof.

FT �xyð Þ tð Þ =ℙ max Tx, Ty

À Á
< t

Â Ã
=ℙ Tx < t, Ty < t
Â Ã

=
ðt
0

ðt
0
h u, vð Þdudv =H t, tð Þ,

f T �xyð Þ tð Þ = F′T �xyð Þ tð Þ = −�F′T xyð Þ
tð Þ = f T xyð Þ

tð Þ: ð109Þ

From Theorem 10 and Theorem 12, we can easily notice
that the distributions ofTðxyÞ andTð �xyÞ have the same form just

with different parameters, and one can deduce E½e−δTð �xyÞbðS
ðTð �xyÞÞÞ� similarly as E½e−δTðxyÞbðSðTðxyÞÞÞ� in Remark 11.

6. Some Numerical Results

This section presents some numerical results for call and put
options.

6.1. Comments. The average age of death calculated with the
values of parameters λi in Table 1 is approximately 71 years.
This age is around 67 in Tables 2–4. Clearly, the higher the

Table 2: Numerical results for call and put option 2.

n = 4 σ = 0:18 μ = 0:001 δ = 0:02
λi 0.015 0.012 0.018 0.017

E e−δτb S τð Þð ÞÂ Ã
Out-of-the-money call option S 0ð Þ = 100 K = 120 20.59528

In-the-money call option S 0ð Þ = 120 K = 100 25.32719

In-the-money put option S 0ð Þ = 100 K = 120 21.06781

Table 1: Numerical results for call and put option 1.

n = 4 σ = 0:18 μ = 0:001 δ = 0:02
λi 0.011 0.014 0.017 0.015

E e−δτb S τð Þð ÞÂ Ã
Out-of-the-money call option S 0ð Þ = 100 K = 120 19.31578

In-the-money call option S 0ð Þ = 120 K = 100 23.69608

In-the-money put option S 0ð Þ = 100 K = 120 19.7145

Table 3: Numerical results for call and put option 3.

n = 4 σ = 0:19 μ = 0:001 δ = 0:02
λi 0.015 0.012 0.018 0.017

E e−δτb S τð Þð ÞÂ Ã
Out-of-the-money call option S 0ð Þ = 100 K = 120 32.4068

In-the-money call option S 0ð Þ = 120 K = 100 39.51472

In-the-money put option S 0ð Þ = 100 K = 120 32.89137
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average age of death, the lower the premium to be paid. This
remains true with the modification of other parameters such
as the expectation μ and the volatility σ. Tables 2 and 3 show
that the premium increases with a slight increase in the vol-
atility. This is similar to that of the expectation μ, but less
sensitive than that of the volatility σ (see Tables 3 and 4).

Therefore, parameter values play an important role in
the applicability of the results.

7. Concluding Remarks

It has provided a contribution to the study of the valuation
of equity-linked death benefits. Under the exponential Lévy
process assumption for the stock price process and Kn distri-
bution for the time until death, explicit formulas are derived
for the discounted payment of the guaranteed minimum
death benefit products. A closed expression is established
for both call and put options. Using a bivariate Sarmanov
distribution with Kn marginal distributions, we analyze mul-
tiple life insurance based on joint survival. Calls and puts are
illustrated numerically. In future work, we plan to investi-
gate the case of death following a matrix exponential
distribution.
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