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The purpose of this paper is to investigate the valuation of equity-linked death benefit contracts and the multiple life insurance on
two heads based on a joint survival model. Using the exponential Wiener process assumption for the stock price process and a K,
distribution for the time until death, we provide explicit formulas for the expectation of the discounted payment of the guaranteed
minimum death benefit products, and we derive closed expressions for some options and numerical illustrations. We investigate
multiple life insurance based on a joint survival using the bivariate Sarmanov distribution with K, (i.e., the Laplace transform of
their density function is a ratio of two polynomials of degree at most) marginal distributions. We present analytical results of the

joint-life status.

1. Introduction

Most classical insurance and bank products have experienced
decrease in interest rates. This situation, due to the financial
crisis, has led investors to give prominent attention in high-
return products in spite of the high risks involved. Conse-
quently, banks and insurance companies have to innovate by
offering attractive products that can yield high rates or allow
investors to participate in some underlying asset’s benefits.
To avoid unwanted market declines, this alternative can be
used by stock market investors. As a result, products linked
or indexed to a specific value have emerged in the insurance
and banking sectors (for instance, variable annuities, guaran-
teed minimum death benefit (GMDB), and guaranteed mini-
mum living benefit (GMLB)). Although these products are
more attractive and meet the expectations of most investors,
their valuations are difficult and require an in-depth knowl-
edge of actuarial and financial techniques. In response, [1] pro-
posed a new valuation methodology based on decomposing a
liability into two parts (the actuarial or model part and the
financial or market part) and then valuing each part individu-
ally. Assuming that the underlying stock price follows an expo-

nential Brownian motion, [2] analysed the valuation of GMDB
using discounted payments to death. Additionally, they
assumed that the time to death follows an exponential distribu-
tion. Analytical formulas for options such as lookback options
and surrenders based on the assumption of independence
between stock price and time of death were developed.
Although their results are interesting, they are less attractive
from a practical perspective, because the assumptions underly-
ing their model (e.g., the exponential Brownian motion process
and exponential distribution assumptions) are merely used to
simplify the model rather than to ensure its accuracy. Gerber
et al. [3] improved their model by adding a jump in the diffu-
sion process and examining their results for equity-linked
death benefits. Liang et al. [4] used the same argument as [2]
to estimate guarantee equity-linked contracts. Another study
looked at term insurance products with equity-linked or
inflation-indexed exercise periods. In addition, an analysis of
parameter sensitivities has been incorporated. Deelstra and
Hieber [5] approximated the distribution of the remaining
lifetime by either a series of Erlang’s distributions or a Laguerre
series expansion to study death-linked contingent claims pay-
ing a random financial return at a random time of death in the
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general case where financial returns follow a regime-switching
model with two-sided phase-type jumps. The literature on
GMBDB valuation contains several other extensions of the pio-
neering work of [2, 3] in other direction. For instance, the
regime-switching jump volatility was considered in ([6-8])
and the references therein.

Multiple researchers have proposed different distributions
due to the difficulty of finding a corresponding distribution to
the time until death. For example, [9] addressed this problem
by proposing a Laguerre expansion, which was also applied to
the valuation of equity-linked death benefits. Results obtained
were more accurate when compared to the results of the exist-
ing literature. Phase-type distributions to model human life-
times were used when phase-type jump is incorporated into
the diffusion process by [10]. In terms of matrix representation,
they derived a closed analytic expression for price. Because
dependency modelling is a key concept in financial and actuar-
ial modelling, we are interested in equity-linked death benefits
for multiple life scenarios. In Kim et al’s [11] study, phase-
type distributions are applied to joint-life products and to group
risk ordering and pricing within a pool of insureds by exploring
the properties of phase-type distributions. Moutanabbir and
Abdelrahman [12] utilised the bivariate Sarmanov distribution
with phase-type marginal distributions to model dependence
between lifetimes. The phase-type distributions are used in
[13] to model human mortality. Recently, [14] considered
mixed exponential distribution and studied the problem of
GMDB valuation for married couple.

In thi paper, we study the problem of GMDB by consid-
ering the mixture of Erlang’s distributions for time until
death and model the underlying stock price process by expo-
nential Wiener process, on the one hand, and the problem to
valuing equity-linked death benefits on multiple life based
on a joint survival using the bivariate Sarmanov distribution
with K, marginal distributions, on the other hand.

The structure of this paper is as follows: the model is pre-
sented in Section 2. Section 3 describes the Erlang stopping
of a Wiener process. Section 4 provides a valuation of basic
options. In Section 5, multiple life insurance is discussed,
followed by some numerical results in Section 6.

2. The Model

Consider the problem of GMDB rider that guarantees to the
policyholder, max (S(T,), K), where T is the time until death
random variable for a life aged x and K is the minimum
guaranteed amount. Because max (S(T,), K) = S(T,) + max
[K-S(T,)],, where max [K - §(T,)], =max (K -S(T,),0),
the problem of valuing the guarantee becomes the problem of
valuing a K-strike put option that is exercised at time T',.. Since
T, is a random variable, the put option is of neither the Euro-
pean style nor the American style. It is a life-contingent put
option. Thus, we are interested in evaluating the expectation

E[e " b(S(T.)], (1)

where § denotes a constant force of interest and b(s) is an
equity-indexed death benefit function. Let f . denote the prob-
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ability density function of T . Under the assumption that T is
independent of the stock price {S(¢)}, the above expectation is

[ Tb(s(r)] = | (e )RSy (a2

0

In this paper, T, is assumed to follow K,, distributions.
The class of K, n € N, distributions is the family of prob-
ability distributions whose Laplace transform is given by

7o) = A, +sB(s)
O e Ay ?)

where A, =[]/ A for A,>0,i=1,2,--,n, and B(s) = Y1}
B;s' is a polynomial of degree n — 2 or less. If 7 is an arbitrary
K, random variable, then the mean and variance of the inter-

claim time random variables are given by

respectively. The class of K,, distributions is widely used in
applied probability applications (see for instance [15, 16]).

Under the assumption that T, is independent of the
stock price process {S(t)}, the problem of approximating
the expectation (1) reduces to that of evaluating

SECONE )

where 7 is an arbitrary K,,, random variable independent of

{s(1)}.

If A, Ay, -++, A, are distinct, then using partial fractions,

L, seC, (6)

0
~
—
»n
S~—
Il
M=
1N

where

L =ABEN)) ,
l H?:1,j;ei()‘j_)\i) 7

This gives

fin=Yaet =Yy ZeM 0, (8)
i=1 i

i=17%

which is the density function of a mixture of exponential
distributions, with weights a;/A;, i=1,---, n.
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We can use the factorization

=E [[E [e’&b(S(T))} H

- J:""[E[ef&b<s<t>>}ff<r>dr

E [e"”b(S(r))}

Hence, the derivation formulas for

E*[b(S(7:))] (10)

are referred to as discounted density functions; in the case
of negative §, the adjective inflated might be more
appropriate.

Consider the process {X(t) =ut +oW(t),t >0}, where
W (t) is a standard Brownian motion and y and ¢ > 0 are con-
stants. The process X(¢) is stopped at time 7;. Unless stated
otherwise, in this paper, «; and 8, are two real numbers, which
are the solutions of the following quadratic equation:

npt+pp = (8+A)=0,n=—, (12)

where o is defined as the volatility per unit of time of the pro-
cess {X(t),t>0}.
Let A? = 1/n(A; + (8 + y?/47)). We have

H
are essential. a;=—A; - >
Let M(7;) denote the running maximum of the Lévy g
process {X(¢)} up to time 7;. As shown in [2, 3] and [17], A y
the random variables M(7;) and X(7;) — M(t;) are indepen- R (13)
dent (which is still true if 8 = 0 (even though M(¢) and [M(¥) _aA
— X(t)] are not independent)). Bi—
The functions i=1,2
5 0 ot
xy)=| e X, tydt,t;~T 11
Fx)m) (%) JO xwan) (B0 (Odb T~ T (11) Proposition 1. As in [2], for each t > 0,
Fxn(®) = = ! Gttt ——z—oo<x<oo
X(t) 2 \/TW 1 >
1 2 t 1 2
— —(x—ut)"/ant _ ‘M 1yl Y /" In—(x—ut)*/4nt
Fau(%¥) ZWQ # p e \/2”7’1> + —ZWeW” # ,y20, (14)
2 - 2y’
Fxwmen (%) = 2\;77;36(” (2= 2y~ /Zt)/zq,y > max (0, x).

The proof can be found in books such as [18, 19].

The pdf of an inverse Gaussian (IG) random variable
W with parameters b, (b>0), and v, (v >0), ie, (W ~IG

(b,v)), is

be?” 1(b
fW(‘x) = \/27_[7 exp { E <_ v x) }1{x>0}’ (15)

and its nth moment is

E(W") = (i)nehv\/?lg_m(bv), (16)

where KP is the modified Bessel function of the third kind.

/ - (n+ k
1/2) Z K!(n

(Zx) kvneN, (17)



K_,(x) =K,(x). (18)

If instead some of the A, A,, -,
then using partial fractions

A, are not distinct,

TIL AT +5P(s)

Fo = R

(19)

where A, A,, -+, A are distinct, A, = H’f n. =n.

i=1""1

which is the density function of a mixture of the Erlang dis-
tributions, with weights ai’j//\f, i=1,-kand j=1,--,n

We have

E[e " b(s()] =E[ [e*bis(e)) 7] ] = J;m[E [ b(s(e)) ] (e

n; a;; +00 (5 +Ax_)jtj—lef(8+)t,)t
2y XL B S ——Gyr

k le —(0+A,
B a; (A
=2 Doy SEN(0 = =Gy ——e20
(23)
Hence, this paper will derive formulas for
E*b(S(7:))); (24)

where we will be looking at an Erlang stopping time ;.

(n+k=2)le o (Bima)y
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Then using partial fractions,

a;

H,1,+sﬁ<s>=§"* i o)

h [ Gs+A)" & E+A)

where
1 A% KA +sB(s
i | [ I
(ni_])' ! m=1,m#i(s+ m) Y
This gives
t]*lefA,t
j_l)!,tzo,z—l Skj=1,-n, (22)

3. Erlang Stopping of Exponential
Wiener Process

Let S(¢) denote the time price at time ¢ of a share of stock or
unit of a mutual fund. We assume that

S(t) = S(0)X ™, (25)

where X(t) =yt + cW(t), where p represents the drift per
unit of time, ¢ is the volatility per unit of time, and W(#)
is the Wiener process.

Theorem 2. Assuming t; is the Erlang distributed, i.e., T; ~
Erlang(n, A;), the distribution of the pair (X(t;), M(1;)) is

k=0
27

s
fX(T,),M(r,)(x’y) =

’fZ)t"
0% 2K(n = 1)Ik!(n — k — 2) k1

2y—x n—k-1
( ~ ) X Lyomax (0071 €N\ {0, 1},

(26)

Let b=(2y-x)/\/2n and v=/p?+45(8+A,)/\/2n.
Then,

p _ 2 :
BX o Bx xS+ ) 2y +4n(d+ ) (28)
2n 2n 21 21

=—ax—(f;—a;)y.

i —ax—(B— .
e x—(; a’>y1{y2max (0,x)}>1f” =1,
where a; and B, are given by (13).
Proof.
r)w xy :‘ e fX(r ).M(t) (x2)f ()d
_ ‘ - (12)t-(2y=x)? 126 ) 21 At @rht 1 dat
\/7_[—’13}'3 (n 1) {yzmax (0.x)}
A"e#xlzwj (2y-x /\/_‘tnl -12[ (42(04) ) 14252 h{y)max 0t
V2t

(27)

O

We have
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where W ~ IG(b, v). Using Equation (16), for n € N — {0, 1},
we get
/ b\"" . [2bv
S i —a;x— (B~ b
Fxaymey (%)) = me sy (;) e’ 7Kn7(3/2)(bv)l{y2max (0.x)} (30)
Substituting Equation (17) in Equation (30), we get the 2, B
result for n€ N -{0,1}. For n=1, E(W"!')=1, and the S ([gi_“i)oze ©x20,
result follows. Xz (%) =
¢ ", x<0, (33)
Theorem 3. Assuming v, is the Erlang distributed, i.e., T; ~ (Bi—a;)o
Erlang(n, A;), ff((r‘) andf%r) are given, respectively, by the s 24 4,
following: Py () == ;02 e
(1) For ne N-{0,1}, Remark 4. For n=1, the results of Theorem 3 are those
obtained in [2]. The mixture of the Erlang distributions is
. a dense family of distributions, which makes our results
n-2 n—k-1 r
Y (k) ((Bi = :“i/Z)x) >0, more general.
5 _ k=0 r=0 :
X(ry (%) = 2 w1 (=B, - a)12)%)" Proof. Assume ne€ N —{0,1}. According to the expression
&g Y clmk) N SO ) iven by Theorem 2, we h
part o rl X(1,),M(1;) given by eorem 2z, we nave
n-2n-k—1 _ n—k —By r
9 = 20" Jk (ﬁz ai) € }L’ ) 0 5
M) (X) = 29; k; Z c(mk){ = (—ay)" T 7! Ix(,) (%) = Fxym (6 2)dy
max (0,x)
n-2
where Sy r+ k- 2) (34)
S 0" R 2k (n — 1)K (n — k = 2) vkl
S2n-1 nik-2 k 00 L
9= —s5c(nk) = B—ay [( . )(1— n_l)}rk (32) = XJ e—aix—(ﬁ,—af)y(zy_x)n k ldy.
i~ i max (0,x)
O
(2) Forn=1, By changing the change of variables technique, we have
Y ging g q
n—k=1 ,~(a;+p;)(x/2) oo
287HJ w" e du, x > 0,
JOO efa[xf(ﬁroc,)y(zy _ x)n—k—ldy _ (ﬁx - 06,-) (Bi—a;)(x/2) (35>
max (0,x) 2"”"13’(“:*;;,)("/2) 00 1
7”’"] u" e du, x < 0.
(B; = o) (B (x12)
With the incomplete Gamma function, we have
x» _[® k1w g _ (> wklew e B W (B - ) (x12))" —(Bat)(x )nfkfl((ﬁi‘“i/z)x)y
I(n-k(B-a)3) = J(M')(X/Z)u ¢ “du=TI(n- k)J(;;fu,m) g =Tk ; & =(n-k-1)le 12 zo L

r=0

i~ %i

’ k-1 r
[X) W du = (= k- 1)lelBra)) z (=(B; — a;/2)x) '
—(Bi~a;)(x/2)

rl

(36)



4. Valuation of Options

As in Section 3, we denote by S(t) the time #’s price of a
share of stock or unit of a mutual fund. We assume

(44)
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To have (note that 8, — a; = 2v/0) we obtain
B nz c(n k nzk“l ((B; — i/2)x)" £>0
ae ME (k= 2)122 R (0 k- 1) & (B - if2)x)” - ! e
eh Z Z x=0 5 =0
R T - T A Frie) )= (39)
ff((r)(x) = e %Xl S l (ﬁx _‘xilz)x)y
i e,ax/\xng(""'k 2)|22nk1(n k- l)nkl( (ﬁ—ai/Z)x)’ <o Z nk ;} ﬁ,xgo.
= e = r T
(37) ¢; and c(n, k) are given by (32).
We also have
Since 00
ffw(fi) )= ff((‘r,) M(T) (%, y)dx
ax (0.%)
n—2 n
(n+k-2)!  (n+k-2)! 1 [n+k-2 —Z 24 (n+k-2)! (40)
-1k~ (n-1)(n-2)k  n-1 v ) 50" 28 (n = 1)Mk! (n — k = 2) k!
y
(38) X J e o (Bra)y (2 — x)" K 1dx,
—-00
with
y y 00 e~ (Bira)y oo
J e—alx—(ﬁf—ai)y(zy _x)nfkfldx — e—(ﬁ‘—(xl-)yJ. e—zx(-X(zy _x)nfkfldx — e—(ﬁi+a1)yJ. ea,ttn—k—ldt — "_kJ e—uun—k—ldu
—00 —00 y (_ai) —ay <41)
~(B+a;) n—k=1,_  \r -B; n—k=1,_ . \T
S k- e Y L “;y) _ ke Y )
(o) = (o) =
To finally have where X(t) = ut + oW(t). It is easy to show that E(S(¢)) =
S(0)e"™, >0, and v=p + (c%/2).
f8 ”i”il 20! (n+k=-2)(n-k-1) P’ (—ay) In this section, we evaluate the expected discounted
M 5 5 omk ok - 1)lklymkt gk r value of the payoff b(S(t;)),
n2n-k-1/n+k—-2 k 2/\;‘ e By V'
= ];) rzo < B > <1 - m) 2k gn-k+lyn+k-1 (_(xi)nfkfrﬁ o
n n=2n—k-1 n—k e’ﬁJ’ yy E |:€ Yb(S(Tl)):| 4 (45)
( > 2 % ( ) (cay el
(42) . '
for various payoff or benefit functions b(s). Under the
For n=1, assumption that the random variable 7, is independent of
the process S(t), the expectation (45) is
S 2Ai 0 —a;x—(B—a;)y
X(‘ri)( )= o2 € dy
max (0,x) 5, 00 S
L pamong o) E[eomb(s(e)] = [ bSO hode (6)
o*(B; - ;) v M)
20 ae(a 2 g
= ?J e (Bl dx = _oc~—alze Fy Since we know that 7; ~ Erlang(n, A,), we have
(¢e] 1

n-2 n— 1 r 00
kz(;c Z{; 2’r‘ [0 (S(0)e*)x"e P*dx, x > 0,
E|eb(S(r,))| = -
[e ( <T’))] n-2 nk-1 Y
@'Y c(nk Z — J b(S(0)e*)x"e **dx, x < 0.
k=0 r=0 2 r -0

(47)
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In the special case where b(s) = s, Equation (47) becomes

n-2 n—k-1 )
S(O)(P,n kZ: c(n, k) Z(; (ﬂlerJ 1) JO B 1)xdx’x> 0
E[e"b(s()] - oy
091 3 etnk) 3 CETE[ et an <o
(48)

Remark 5. If v =4, it is straightforward to show that E[¢™"
S(t;)] = S(0) which is the result in the risk-neutral pricing
framework, where § represents the risk-free interest rate in
the complete market.

4.1. Out-of-the-Money All-or-Nothing Call Option. The pay-
off function is

b(S) :Sm1{5>1<}. (49)

Here, m is a real number; m =0 and m =1 are two spe-
cial cases of particular interest. The constant K is greater
than S(0); the term “out-of-the-money” means that the
option, if exercised now, is worth nothing. Let

6=1n (%) (50)

which is positive since K > S(0).
Theorem 6. If 3, > m, then

n—-k-1 r r

S(0 N k)
(0)<K| = <0><p;7n ZPZ”3 m,w

Xp'( )

E [9761’ S (7)1 {S(r))>K}

(51)
Proof.
[E{ oS (r)1, >K}‘s <K]—¢,:Z:: n,k i 2;7)7 (52)
x :Oh(S(O)e") P dx,
with
J:ob(S(O) )¢ Pdx = §7(0) Ooxe “dx
- (ﬁ,sm S;l ro ¢ tdu,if B, = m
"G 9;)(;; i e

(53)

O

4.2. At-the-Money All-or-Nothing Call Option. For K = §(0),
we have

F [e*”fsmml{s oox)[S(0) = K}
n-2

S"(0)} ).

k=0

y (54)

n—k-1
nk Z r+1

4.3. Out-of-the-Money Call Option. The payoft function is
b(s) = (s - K), =slyoky —Kljopy (55)

Here, K > S(0) because the option is out-of-the-money.
By applying (51) with m =1 and m =0, we have

= K)1se, >K}‘S(0) < K}

n—k-1 r 0)
Z ”kZZ (56)

r=0 p=0
Xll K \?
P s

4.4. At-the-Money Call Option. The payoft function is

E [e-éff (S(t;)

1 1 ]
(ﬁi_l)r—pﬂ ﬂ:—pﬂ :

b(s) = (s =5(0)),» (57)
which is (55) with K = §(0). Thus, it follows from (54) that
E[e(S(r) -

n-2 n—k-1 W\
=s)g; Y enky 3 Bt

k=0 r=0

(0)).|50)=K]

e
B-1" B
(58)

4.5. Out-of-the-Money All-or-Nothing Put Option. The pay-
off function is

b(s) = 5" - (59)
Here, m is the real number, and K < S(0) because the

option is out-of-the-money. Since 6 =1n (K/S(0)) <0, it fol-
lows from the following.

Theorem 7. If a; < m, then,

E [e—‘”rs’” () s(e ek ‘S(O) > K}

oo at N (B )
= -8"(0)g; kZ nk) 2, sz (60)
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Proof.
[E[ oS (1)L <K}’s 0 ]
n-2 n—k-1 r
m n (_(Bi - & )
—s ) Y emky y CEZE )
k=0 r=0 '
0
XJ x"e (@M dx
with

0
J xe (@mx gy = — uedu, a;
00

1 (o]
(o= m)Hl J(ai—m)e

B r! NOMNE
(@mmoy
p=0 P

4.6. At-the-Money Put Option. For K = §(0), we have

E [0 (1) Lis(e ey [S(0) = K]
n-2 n—k-1 r (63)
m n (_(ﬁ B ai))
=-5"(0)g] Y c(mk) Y P
k;) ;) 2" (o = m)™!
4.7. Out-of-the-Money Put Option. The payoft function is

=), = Kljegy = slysery- (64)

By applying (60) with m =0 and m = 1, we have

E&“%K—amﬂgfdﬂam>K}

n-k-1 r Szx
=—<P,Z m k) ZO z Kf—l) (65)

k=0 p=0
xll K\
7 S0y

4.8. At-the-Money Put Option. The payoft function is

1 1
a;—p+l ((xi _ l)r—p+1 !

b(s) = (5(0) - ), (66)
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By (63), we have

E {e‘&i(S(O) - S(Ti))l{S(ri)d(} ‘S(O) = K]

5 nE (- —a))
=-S(0)g! ¥ c(nk) Y. ((527)) o

k=0 r=0
« 1 1
“;'4—1 (‘xi _ 1)1’+1 :

4.9. In-the-Money Put and Call Options

Theorem 8.

Ephm>amxwm<ﬂ
2 kst ( |1 1
~S(O)9! 2 el Z {w”_w,lfi
nn—z n-k-1 r e (Bi—a) 1 K !
o e 1 2B (n ()

k=0 =0 - )™ ) B
n-2 n-k-1 r r
S oy (Z(Bi= ) 1
rof 2 clmk) 2 2 ()T
K\’ K'™ 1 1
X (ln <@)) (8(0))™% L_ai)rpﬂ - (1 i)rp+1:|'
(68)

Proof.

Ele (K = S(),

-E [e_&" (K = S(7:)) Lsr,) <k ’S(O) < K}

(0) < K]

0

0
= | (K-S0 g et | (K500 5

0
=F {e_&i (K-S(1,)), ‘3(0) = K} + JO(K ~ 8(0)€") ¥ (e dx
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We have
0 n-2 n—k-1 ﬁ-—(X» r 0
J S(0)e*f %z, dx = S(0)9} Y e(n, k) ( Izwl) J X' e Bxdx
0 k=0 r=0 ° 0
n-2 n—k—1 r
n (ﬁz B “1)
=S(0)g Y c(mk) Y s
k=0 =0 :
1 (1-8)0
7’“] u'e"du
(1 - /31) 0

n-2

n—k-1 —a r
=S(0)¢} ¥ c(n, k) ZO (Bi— ) !

i 2 (1-p)™

e B0S (1P (1 oy
&8

n-2 n—k-1 r
n (ﬁz - ai) 1
= A N k S
S(O)(Pl 1;:0 C(T’l ) ;7 , 2771 (1 ﬁi)r-v-l

-0 n-2 n—k—1 ﬁ —a r 1
K| fhyx=tigr L etni) 3 Bioe) 1

NI
Fg r! p
“(w) 2ol ()
(70)
Hence,
9 s n-2 n-k-1 r .
[ (k=501 de=gt Y ctmi) Y. Y (-1
k=0 r=0 p=0
—a) »
()

E[e(S(r) - K),[S(0) > K| = L(S(O)f‘ = K)f (s dx

+ [m<8<0>e* K dx

To finally have

Ie(s(o)ex _K)ff((rl)dX:(P? nic(n, k) n_zk_l Zr: (-1)? 4(—([31—7%))’1

|
k=0 r=0 p=0 2 p:

) (1“ (TKM))P <SI<<0>> [(1 —vi)'*f’“ ) ()1” '

o

5. Multiple Life Insurance on Two Heads

In this section, we apply K, distributions in the context of
joint-life modelling. The survival of the two lives is referred
to as the status of interest or simply the status. There are two
common types of status: the joint-life and the last survival
status. Consider two random variables T, and T, which

are assumed to be dependent. The random variables denote
the future lifetimes of a life aged x and y, respectively. The
dependence can be introduced using copulas or a common
shock model. In this paper, we use the bivariate Sarmanov
distribution which is given by

hs, t) = f()f, (D1 + ¥ () ¥ (1)), (73)

where f, and f, are the marginal probability distribution
functions of the future life random variables T, and T,

respectively. The kernel function {¥,i=x, y} is assumed to
be bounded and nonconstant such that E[¥;(T;)] =0. The
dependence parameter w is a real number such that

1+ w¥(s)¥(t) =0, (74)

foralls,t € R\ {0}. If w =0, then we have achieved indepen-
dence. The choice of a suitable kernel function is very
important. In the literature, the most commonly used kernel
functions are as follows (see [20] for details):

(i) Farlie-Gumbel-Morgenstern (FGM) copula case:
Y.(t) =1- F,(t), where F,(t) is the cumulative dis-
tribution function associated to T

(i) Exponential kernel case: ¥;(t) = e¥i — E[e]
(iii) The marginal kernel case: ¥,(t) = ¢/i(*) — E[e/i(¥)]

Define v; = [ **s¥;()f,(s)ds for i = x, y; then, the covari-
ance and correlation coefficient are given by

Cov(T,, T)) = wv,v,,

Yy y
B wv,v, (75)
Cor(To ) = ar T Var(T,)

The maximum attainable correlation for a bivariate Sar-
manov distribution is discussed in [21] for the different mar-
ginal distributions. In this paper, it is assumed that both T,
and T are following K, with

k, I i1 -
x i t] 1e /M[
fr,(t) a;i— ;
§ i=1 j=1 V=D
76
ky% ) t]_le_/\’t ( )
fr, ()= @,
y G5 701

In the rest of the paper, we will be using the Erlang-type
kernel function.
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m,—1 r
£ 0
= 1 e
= 7!
Then, the joint distribution of T, and T, is given as

h(s 1) = f(9)f, (1) (1 + weee) —we f(5)g, (s)f, (1)
—wef (5)g, (0, (1) + @f ((5)9.(5)f, (1) g, (1)
(78)

or in a compact form

hs,t) = f(5)f, () + @ ; Cuf ()95 ()f,(1)g,(8), (79)

with g7(s) =1 for i = x, y and for all s with

Cy=(-1)*'Ci*C forland kin {0,1}.  (80)

If both T, and T, follow a bivariate Sarmanov distribu-
tion, we have the following:

Lyjy=1 =X v=Au

i Yyt Je=14)J
wx"tyly

E af.a’f—
= j-

-~
~T=
3
L
3

L

k.l i=1j,=1i,=1j,=1r=0 r,=0
r X y M’C*jxf ytiy—1 (y),+/\) (r+A7)
XYYy 4 4
x olx boly (i —1 1
VU =D

Bk P e Jd x
His0=Y Y Z Z‘*Jif {1—5*‘”5 (A,'s)q}

L) (A gm0

] yx)/)’ t]x ijy X<rx+jx_1>
(Yx + /\;C)’,ﬁr]x (yy + A{) ryti, Ty

.(ry+:‘y—1>{ r+§
y
frevn s (,+4)] %]’

i
4,=0 9y
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EokoE x Y je=1Jy1
x b a; ;a ; x y
2 _ syl st
A=Y zziw = 5§y
i=1j=li=1j=1 ( ) ( ) 4,=0q,=0
Kok, P _1m,-1
ORI RN PSR GRSl
+o) Cy IO
a' g : =
X y kI i,=1j=1i=1j=1r=0 r,=0
T Y X
Y« Yy aix,j(a{,,]}

' X\TxHiy e
(yx+Ai) (Yy+/\i)
rytj, =1

(”x+jx_1> y*i
X

Ty Ty
2 [ (2 4"

| |
== q,!

e~ A)s=(v,+X)t

1ot =1 Tyt~

(83)
Proof.

H(s,t)=P[T <5 T,<t] = Jsjth(u,v)dudv. (84)

0J0

(i) Computing of h, (s, t fof wlyh e kiv-Au qudy

By the Fubini theorem, we have
s M t ¥
hi(s 1) =J uffle’)‘f“duj vh e vy, (85)
0 0

Let w = A7u; we have

s . 1 Afs
J wle Nt du = _ J whleWdw
0 (A7) Jo
1 , .
~ o [[() = T Ai9)] (86)
G Dy )
(A7)™ q,=0 9!

(7)) )
1 e (1)
g0 B

(ii) Computing of _ ﬁ) ﬁ) Uiyl

& M= AU v



Journal of Applied Mathematics

S

e () gy, (88)

t
hy (s, 1) =J u’mfle_(”*”f)“duj A

0 0

Put w = (y, + A})u; we have

s ) ) (v +A7)s .

J~urx+]xfle—(yx+/\;‘)udu: 1 i J o wrﬁ]"ileiwdw

X\ Tyt
0 (e + ) o

1 .
= W[F(’ﬁh)
x i
_ (rx+jx_1)! y+)t V‘i +/\x
"oy |

- F(rx +jx’ (YX + Af)s)}

(89)

Thus,

(re+j, - 1)!(ry+jy— 1)!
e+ 2 (y,+4) "

rx+jx_1 X M
.l1—e<n+kf>s > [(Vx—”f)s]q] (90)

!
9,0 €

!
q,=0 a4

hy(s, t) =

(ili) Computing of H(s, t)

s
X Py AV x
XJ J B R B A (yy+/\i)v (VXJ"\‘)”dudV

11

which gives (82). For Equation (83), we have

+00 +00

(s t)=P[T, >5T,>1] = J J h(u,

t

v)dudv. (92)

(iv) Computing of h (s, ¢
dudv

J“+00 +00 =1y~ le—/\fv—)tfu
By the Fubini theorem, we have
+00 . +00 y
hy(s,t) = J u]X_le‘Af“duJ vlehivdv,  (93)
s t

Let w = Aju; we have

hy L(jo Ais) (94)

Hence,

Ijl ( t) (]x — 1)' (]y — 1)' e ]il (/\;(S)llx ]yz_l (A{t)q}’
S’ = s e— e ! e !
‘ (A () i i 9
(95)

(v) Computing  of
e Y )W(Yﬁ/‘f)udud\,

J"+OO +00ur"+] 1Vry+]y

_ +00 . . +00 X /\}/
hy(s, t)ZJ urx”fle"(h”f)”duj Yt e () vy,

t

(96)
Put w = (y, + A})u; we have
J+Oourx+jx—1 e—(yx#tf)udu — ; J.+OO Wt wdw
xX\Tt
s (Ve + ) S eanys
1 . x
= WF(TX +p (Ve A7)
(v, + A")' i =t o

(97)
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Thus,

. | s |
(re+je— D! (ry tly rl?r] e—(Vﬁ/‘f)Se’(yﬁA{)t
e+ 2 (3, + )"

g e )

I (s, t) =

q.
,=0 qy!
(98)
(vi) Computing of H(s, t)
ok k -
H(s,t) = Ya . a hy (s, t)

5.1. Joint Status. The joint-life status is one that requires the
survival of both lives. Accordingly, the status terminates
upon the first death of one of the two lives. The joint-
life status of two lives x and y will be denoted by (xy),
and the moment of death random variable is given by

T(Xy) = min (Tx, T)/)
Theorem 10. The survival function for T . is given by
A B P ’
1, (1) == ) Z 3 MI I'tq;rqye*()»fw\f)r
(x) Cy Yy Gy by O(AX)JX qx A}’)]y qy q q
1 ke ok 0 ome—1mlrj—114j,1
+wZCklZZZ Z z Z z yx)/)’ tx]X y])
kil i=1j=1i=1j=1r=0 r=0 ¢,=0 q,=0

1 (r + )
(VX + A;c)rﬁjx’qx ()}y + /\,IV) Ty*ly=4y r,

r,+j,—1
. y Ty 11 o 0ty g (v +Aj‘+y},+/\‘:’)t'
T, qx qy

y

(100)
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Using the survival function, we get the following pdf:

1,1

ke I l
' 11
xe Ly,
t) == P e A 1
T, () Z Z Z Zl 470,420 (A7l /V i q,lq)! <q"+qy+ )
l pta, = (KAt t(qﬁqyﬂ)le@,w{)t}
X |- - e —

F(qx +q,+ 1)
=11t =1

iR
y
ZO > v el

4 9,=0

+ (A7 + )

ke E ok P ome-1m-lr,
0

k.l i=1j=1i,=1j=1r=0r,

I'(q,+q,+1 <Tx+jx1>
e (o) T

ry, +jy -1 11 3+~ ef(yx+)ti‘+yy+)tly)t
. RV
g !
r, 9y 9y F(qx+qy)

t(qﬁqﬁl)fl = (yx+)tf+y}+)»f)t‘|

F(qx+qy+1>

X

+<yx+)tj‘+yy+)tf)
(101)

Proof.

00 +00

.
Fp (5)=P [T, >t T, >t]= Jt Jt

fr,, ()= ~F'y (1)

h(u, v)dudv = H(t, t),

(102)
O

Remark 11. Clearly, the above distribution is a combination
of mixture of the Erlang distribution, since

ke Kok B jo1d1 art aX .
infy iply
fr,,, (0)== ) Z N ey
L1 F( +q,+1
4 9T 4 )
qX! y! * 7

X [—Erlang <qx +q, A + /V)
+ (Af + A])Erlang (g

N s

zzzz

i,=1j,;=1i,=1j,=1 r,=0 9,=0

- F<qx+q +1>

VX
“YiYy G i 7
o )x yoly T,+]—q
+Ax Tt q‘(V +A{>) y =y

retic= 1\ (Lol 1
Ty Ty qx'qy‘
X [—Erlang(q)c Yt AT Y, A{)
+ (yx +A Hy, + /\{) Erlang

kg

-(qx+qy+1,yx+/\f+yy+/\{)}.

Equation (47) can be generalized as follows:
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For x>0,

i) - £ 5.3
S, 11

oJy
e () gt g

i

N-1 Nk (g o\
x [(AF+ )N e(N+1,k) z Ll’i “)

k=0 =0 277!
N-2 N-k-1 _ r ..
_(Dll\]i Z C(N’ k) Z M J b(S(O)ex)xrefﬁl,:xdx
= =0 27! 0
1 ke Bk P om—1mylr4j 1741
+‘”ZCHZZZZZ Z YUY e, al
kil i=1j=li=1j=1r=0r=0 q,=0 ¢,=0

<r +]x—1>
roti— r,+j,—q
Yot A ”’”(Yﬁ%’-) Y e

N-1 N-k ﬁ —a )
yx+/\f+yy+)ty>¢>N”2cN+lk %%
par)

X
X
| — |
Z N

fard 27!
-2 _ r
7(D12\’,» ¢(N, k) Z ('82’ - 0:2’) :|J )xre’ﬁlvt"dx.
= =0 27l 0
(104)
For x<0,
ke Lok L j-1joL
8T,
Eleb(s(Te))] = X X X X X
i,=1j.=1 i},:l]y:l 4,70 9,=0
X J
al ] al},]) 1 1
e o)
N-1 N-k _ r
(A + X))y (N+1,k)z( (ﬁ“r ""“))
) =0 27!
N-2 N—k-1(_ o V] oo
q%ZquZ(O%J“)MbMW)’wa
k=0 =0 r 0
1 ko Bk B omeormlrj o1yl
EIXDIDIIDIDND WD WD W L A
Kl i=1j,=1i=1j=17r=0 1,20 4,=0 ,=0

X

qu+qy+1) re+j.—1
. )r},+jy—qy

(e # X570 (4 4

iy =1\ 1
fy qx'qy'

N-1
X X {(yx+)tf+yy+/\{>®§f* D c(N+1,k)
k=0

| Tyl
r= 2'r! k=0 r=0 2'r

JO b(S(0)e")x"e 2% dx,

Zk ﬁZz (XZI)) q)IZ\)TiNizc(N’k) Z ( ([321 aZ’)):|

(105)

13
where
N = qx + qy’
A+ )]
Pri=—— (106)
R
S

¢(N, k) is given by (32); a;; and f,; are solutions of
Equation (12), with A; replaced by A + A; «,; and 3, are
also solutions of Equation (12), with A; replaced by y, + A}
+y, + A

5.2. The Last-Survivor Status. The other common status
is the last-survivor status. The last-survivor status is
one that ends upon the death of both lives. That is,
the status survives as long as at least one of the compo-
nent members remains alive. The last-survivor status of
two lives x and y will be denoted by (xy), and the
moment of death random variable is given by T (xy) =

max (T, T)).

Theorem 12. The CDF and survival functions follow

ko Bk OB gxo g
x]xayj)

i=1j=1i :11y:1 ()Lx)jx (Ay)]y

x Jy~1
Nrcewy ROM ]y "
q,=0 qx! q,=0 :

.my—l Yx y}’ i ]Xa;v
( +Ax)r +]x (Vy+Ay>
retj.—1 g+5—1
X
Ty Ty

retjc—1 »
.[I_ew» 3 wm]

yty

9.0 9!
. q
rytjy=1 [( +/\}~’>t} i’
X | 1- e_(yy*"\{)t Zy: )}}/71
- q, ’
q,=0 y

(107)
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TaBLE 1: Numerical results for call and put option 1.
n=4 0=0.18 ©=0.001 6=0.02
A; 0.011 0.014 0.017 0.015
E[e"b(S(7))]
Out-of-the-money call option S(0) =100 K =120 19.31578
In-the-money call option $(0) =120 K =100 23.69608
In-the-money put option $(0) =100 K =120 19.7145
TaBLE 2: Numerical results for call and put option 2.
n=4 0=0.18 ©=0.001 6=0.02
A; 0.015 0.012 0.018 0.017
E[eb(S(7))]
Out-of-the-money call option S(0) =100 K =120 20.59528
In-the-money call option $(0) =120 K =100 25.32719
In-the-money put option $(0) =100 K =120 21.06781
TaBLE 3: Numerical results for call and put option 3.
n=4 0=0.19 ©=0.001 §=0.02
A 0.015 0.012 0.018 0.017
E[e"b(S(1))]
Out-of-the-money call option 5(0) =100 K=120 32.4068
In-the-money call option S(0) =120 K =100 39.51472
In-the-money put option $(0) =100 K =120 32.89137
and the pdf is also given by Proof.
ke Bk P 1]l x “Xj FT(X)/ ( ) ]P[ (T T ) ] IP[TX <t TJ/ < t]
iojs
Fr,0=Fry =2 3> YT 3 T (;/)J) =
1 i=1j,=1i=1j,=1q,=04, J J (u, v)dudv = H(t, t),
qiqi (qx + qy + 1)
q.+q,~1 = (Af+2))t (arta,+1)=1 ~(Af+2])t ! _
[ e Pty 1= F'r ) (0=-F'r, (0=, (0 (109
r (qx + qy)

F(qx+qy+1>
=Ly +j—17,4j,~1

)
> 2 Z yev

y =1
I'<qx+qy+1) retjo—1
X i >r,,+jy—qy

Ty

Y
r, +jy -1 11 t%"‘qy‘le’(?ﬁ’\f*%*"{)‘
. IV
ry qx' qy' (

t(qx+q},+1)—l e—(yx+)tf+yy+)€')t

r qx+qy)

+<yx+)tf+yy+/\f')

e |

(108)

From Theorem 10 and Theorem 12, we can easily notice
that the distributions of T',,) and T xy) have the same form just

with different parameters, and one can deduce [E[eiéT(xy 'b(S
(T(xy)))] similarly as [E[e"aT(xﬁb(S(T(x},)))] in Remark 11. [

6. Some Numerical Results

This section presents some numerical results for call and put
options.

6.1. Comments. The average age of death calculated with the
values of parameters A, in Table 1 is approximately 71 years.
This age is around 67 in Tables 2-4. Clearly, the higher the
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TaBLE 4: Numerical results for call and put option 4.
n=4 0=0.18 u=0.002 6=0.02
A; 0.015 0.012 0.018 0.017
E[e"b(S(7))]
Out-of-the-money call option S(0) =100 K =120 26.12719
In-the-money call option S(0) =120 K =100 31.94692
In-the-money put option $(0) =100 K =120 26.57115

average age of death, the lower the premium to be paid. This
remains true with the modification of other parameters such
as the expectation ¢ and the volatility o. Tables 2 and 3 show
that the premium increases with a slight increase in the vol-
atility. This is similar to that of the expectation y, but less
sensitive than that of the volatility o (see Tables 3 and 4).

Therefore, parameter values play an important role in
the applicability of the results.

7. Concluding Remarks

It has provided a contribution to the study of the valuation
of equity-linked death benefits. Under the exponential Lévy
process assumption for the stock price process and K, distri-
bution for the time until death, explicit formulas are derived
for the discounted payment of the guaranteed minimum
death benefit products. A closed expression is established
for both call and put options. Using a bivariate Sarmanov
distribution with K, marginal distributions, we analyze mul-
tiple life insurance based on joint survival. Calls and puts are
illustrated numerically. In future work, we plan to investi-
gate the case of death following a matrix exponential
distribution.
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