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In the realm of game theory, a range of mathematical approaches exists for the representation of game data, with the extensive
form (depicted as a game tree) and the normal form (illustrated as a payoff matrix) standing out as the most prevalent.
However, a significant drawback associated with these approaches is their limited scalability. As the number of players or their
strategic options increases, these techniques progressively lose their feasibility and become less practical for meaningful
analysis. The present work proposes an alternative approach that significantly enhances the representation of data in two- or
three-player games. Within this framework, the conventional payoff matrix is substituted with a payoff coordinate system,
employing a coordinate plane for two-player games and a coordinate space for three-player games. This approach offers
numerous advantages when compared to other methods. For instance, the Nash equilibrium can be readily identified within a
game without requiring an extensive duration to exhaustively examine all strategies for its determination. By employing this
approach, the representation of game data becomes more convenient and efficient, making it easier to analyze and
comprehend the underlying strategies employed by players.

1. Introduction

In 1944, Von Neumann and Morgenstern published the The-
ory of Games and Economic Behavior [1], a groundbreaking
book that laid the groundwork for game theory as we know
it today. Since then, this theory has undergone extensive devel-
opment, and it has applications in a wide range of fields such
as economics, computer science, security, political science,
military applications, and biology [2–11].

Various approaches exist for formalizing a game [12,
13], such as the extensive form being one of them (game
tree) [14]. This approach, originally suggested by Von Neu-
mann and Morgenstern [1] and further developed by Kuhn
[15], becomes increasingly complex to illustrate as the num-
ber of strategies is expanded, making it difficult to represent.
Another commonly employed and practical approach is
referred to as the normal form (payoff matrix). The purpose
of introducing this method was to enable the representation

of a game using an array that displays the players’ payoffs
based on their strategies [16]. Theoretically, arrays of any
dimension can be imagined, with each dimension represent-
ing a player. However, in practice, only two-dimensional
arrays are easily understood. This limitation reveals that
payoff matrices are primarily applicable to two-player
games. Consequently, even in recent books and articles
related to game theory, we predominantly encounter exam-
ples restricted to two players, each having distinct strategies.
Recognizing this limitation, Özkaya et al. [17] brought the
concept of 3D matrices in decision and game theories, effec-
tively expanding the analytical scope and allowing for a
more comprehensive analysis.

The Nash equilibrium is one of the essential concepts in
game theory, which serves as a significant point of reference.
Determining this equilibrium using the 2D or 3D matrix
methods requires checking all strategies one by one, which
can be quite impractical. However, by employing the payoff
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coordinate system, we can directly identify the Nash equilib-
rium, offering a more efficient way to analyze strategic rela-
tionships (see Section 4.2 for further elaboration). This
paper is aimed at presenting an alternative approach that
outperforms existing methods in terms of simplicity and
clarity of results in both two-player and three-player games.
We will use a coordinate plane in two-player games and a
coordinate space in three-player games. By adopting this
approach, the analysis and understanding of the strategies
employed by players become significantly easier and more
comprehensible. In summary, the most important contribu-
tions of this research are as follows:

(i) Our approach notably enhances data representation
in two-player or three-player games

(ii) It simplifies the visualization of game data, render-
ing it more accessible

(iii) It facilitates a more profound comprehension of the
fundamental strategies employed by players

(iv) Additionally, it substantially streamlines the analy-
sis of these strategies

The rest of this paper is organized as follows. Section 2
reviews the most recent critical studies in the literature. In
Section 3, we present some classic notions of game theory.
Then, the payoff coordinate plane and the payoff coordinate
space, respectively, are introduced in Sections 4 and 5. More-
over, a comparative study was carried out between the clas-
sical method (payoff matrix) and the payoff coordinate
system. Section 6 concludes the paper.

2. Related Works

Over time, game theory has undergone extensive develop-
ment, and many previous researchers have paid attention
to this theory in their works, whether through traditional
or evolutionary game paradigms.

In the realm of traditional game theory, NASA provides
a noteworthy case in point where cooperative game theory
with transferable utilities has been applied effectively within
their PvS libraries [18]. Liu et al. [19] and Zhao et al. [20]
employed cooperative game theory to construct models for
offloading in their respective studies. On the contrary, some
researchers have employed noncooperative game theory
approaches. For example, Liu et al. [21] delved into the
application of edge computing for computational offloading
through a two-step Stackelberg game analysis. Furthermore,
Messous et al. [22] explored the challenge of task computa-
tion offloading in MEC-based UAV networks, aiming to bal-
ance energy consumption, delay, and computational cost. In
2021, Zhou et al. [23] also employed noncooperative game
theory to allocate resources, aiming to strike a balance
between task owners and resource providers. A significant
drawback associated with these approaches is their limited
scalability. In addressing this challenge, Khoobkar et al. [5,
6] have recently turned their attention towards tackling scal-
ability concerns in offloading by employing the evolutionary

game approach and replicator dynamics. Their aim is to
attain a Nash equilibrium between fog and cloud devices.

Additional research has devoted its efforts to expanding
the analytical scope of game theory. Izgi and Özkaya [24]
evaluated the agricultural insurance problem through a
game theory method called the matrix norm approach; they
examined the issue of decision-making using real data in a
zero-sum matrix game against nature. In 2021, Ulansky
and Raza [25] presented a criterion for selecting the optimal
decision in a game against nature as defined in [13], amidst
partial a priori uncertainty. In the same year, Özkaya and
Izgi [26] used game theory to analyze the impact of self-
quarantine measures amid the initial surge of the COVID-
19 pandemic’s first wave. Their research honed in on the uti-
lization of game theory as a tool to elucidate the conse-
quences of quarantine across three distinct stages: the
beginning, spread, and end of a pandemic. In 2022, Vdovyn
et al. [27] addressed the challenges associated with evaluat-
ing, analyzing, and modeling economic systems through
the lens of game theory. Their research encompassed a range
of decision criteria, such as the Hurwicz, Wald, Hodges-Leh-
mann, Bayes-Laplace, Savage, and minimum dispersion
methodologies. In 2023, Özkaya et al. [17] introduced the
innovative concept of 3D matrices within the domains of
decision and game theories. Their primary emphasis was
on adapting and applying well-established criteria such as
Laplace, Wald, Hurwicz, and Savage within a three-
dimensional framework. To achieve this, they built upon
the foundational definitions of 3D matrices as outlined
in [28].

Researchers consistently strive to broaden and simplify
concepts. Within this framework, this paper illustrates the
benefits of representing multiplayer game data in a coordi-
nate system, such as scalability, convenience, and efficiency.

3. Classic Notions of Game Theory

In this section, we start by recalling some classic notions of
game theory that we will use in this work (some references
used [12, 16, 29, 30, 31, 32]).

Definition 1. A dominant strategy is a strategy that provides,
at least, the same utility as all the other player’s strategies
and strictly greater for some strategy.

A strictly dominant strategy is a strategy that always pro-
vides greater utility to the player, ensuring a strictly superior
outcome, no matter what the other player’s strategy is.

Definition 2. A dominated strategy is a strategy that pro-
vides, at best, the same utility as all the other player’s strate-
gies and, in some cases, results in a strictly inferior outcome.

Table 1: A payoff matrix of a two-player game with 2 strategies.

Player 1
Player 2

Chooses strategy 1 Chooses strategy 2

Chooses strategy 1 (3;3) (1;4)

Chooses strategy 2 (4;1) (2;2)
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A strictly dominated strategy is a strategy that consis-
tently results in lower utility for the player, ensuring a
strictly inferior outcome, no matter what the other player’s
strategy is.

Definition 3. A Nash equilibrium is an outcome that no
player wants to unilaterally deviate from their strategy,
regardless of the choices of others.

Example 1. Imagine a situation where player 1 participates in
a game with an undisclosed partner, referred to as player 2,
the payoff matrix is shown in Table 1.

Player 1’s first strategy is strictly dominated because,
regardless of player 2’s choice, player 1 achieves a higher
gain by playing the second strategy. Consequently, the first
strategy is strictly dominated, while the second strategy is
strictly dominant for player 1.

Likewise, it can be confirmed that the first strategy con-
stitutes a strictly dominated strategy for player 2, while the
second strategy emerges as a strictly dominant strategy for
the same player.

Within the game, the only Nash equilibrium emerges at
(2;2), with both players opting for strategy 2. In this equilib-
rium, neither player finds it advantageous to alter their cho-
sen strategy.

4. Payoff Coordinate Plane

In this section, we will introduce the concept of a payoff
point. Following that, we will establish a coordinate plane
dedicated to payoff analysis. Subsequently, by plotting the

payoff points on this coordinate plane, we will conduct a
comparative analysis between our method and the other
method (payoff matrix). The main results are supported by
a practical example.

4.1. Definitions

Definition 4. Let n and m be two integers greater than 2.
Consider a two-player game with n ×m strategies.

We define the payoff points Sij α ; β with i ∈ 1 ; 2 ;⋯
; n and j ∈ 1 ; 2 ;⋯ ;m by the following:

i is the strategy chosen by the first player
j is the strategy chosen by the second player
α is the payoff for player 1 by choosing ith strategy
β is the payoff for player 2 by choosing jth strategy
Sij is the payoff for both players when the first player

chooses the ith strategy and the second chooses the jth

strategy

Definition 5. A payoff coordinate plane is a way of represent-
ing a two-player game as a coordinate plane showing the
players’ payoffs (in the form of payoff points) according to
their respective strategies.

The x-axis will be reserved for the gain of the first player,
and the y-axis will be reserved for the gain of the second
player. The payoff coordinate plane is depicted in Figure 1.

Example 2. Consider a two-player game with three strategies.
The number of points to build is 32 = 9.

–3

–2

–1

1

2

Sij

3

4
P2

P1
0–3–4 –2 –1 1 � 2 3 4

�

Figure 1: A payoff coordinate plane of a two-player game with n strategies.
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Suppose we have the following points: S11 1 ; 2 , S12 0 ; 1 ,
S13 3 ; 1 , S21 1 ; 1 , S22 2 ; 1 , S23 1 ; 2 , S31 0 ; 0 , S32 1 ; 2 ,
and S33 3 ; 3 .

This means that if both players play strategy 1, then the
first player wins 1 and the second wins 2. Similarly, if player
1 plays strategy 1 and player 2 plays strategy 2, then player 1
wins 0 and player 2 wins 1 and so on. The payoff coordinate
plane is depicted in Figure 2.

If we use the normal form (payoff matrix), we get the
data presented in Table 2.

4.2. Advantages. According to the example above, it is clear
that the couple 0 ; 0 is not favorable, neither to the first
player nor to the second. That is, if the first player chooses
the third strategy, then the second player must rationally
choose either the second strategy or the third strategy. Sim-
ilarly, we can notice that the couple 3 ; 3 is a Nash equilib-

rium, and if we compare the two methods (payoff matrix
and payoff coordinate plane), we can conclude the following:

(1) The representation of the payoff points makes it
much easier to read the benefits of each player.
Indeed, it suffices to make the orthogonal projection
of x-axis to know the gain of the first player, and
similarly, we make the orthogonal projection of y
-axis to know the gain of the second player

(2) The Nash equilibrium in pure strategies can be easily
determined in a game. Indeed, if we use the payoff
matrix, we need to check all the couples to determine
the Nash equilibrium; on the other hand, if we use
the payoff coordinate plane, we can determine it
from the first observation, which will be the point
at the top right (S33 in the previous example)

(3) The strategies with the same power can be easily
deduced. Indeed, in our coordinate plane, we can
clearly see that the points S11, S23, and S32 are
merged, and this means that, if both players play
strategy 1, or player 1 plays strategy 2 and player 2
plays strategy 3, or player 1 plays strategy 3 and
player 2 plays strategy 2, then each player’s gain will
not change; on the other hand, it is difficult to make
this kind of remark if we use the payoffmatrix, and it

1 2 3 P1

P2

0–1

1

–1

2
S11 = S23 = S32

3

S12 S21 S22 S13

S31

S33

Figure 2: A payoff coordinate plane of a two-player game with 3 strategies.

Table 2: A payoff matrix of a two-player game with 3 strategies.

Player 1
Player 2

Chooses
strategy 1

Chooses
strategy 2

Chooses
strategy 3

Chooses strategy 1 (1;2) (0;1) (3;1)

Chooses strategy 2 (1;1) (2;1) (1;2)

Chooses strategy 3 (0;0) (1;2) (3;3)
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will be very difficult if the number of strategies
increases

(4) The most beneficial strategy for the first player can
easily be determined. Indeed, in the payoff coordi-
nate plane, it suffices to choose the point on the
extreme right. For example, in Figure 2, if player 1
chooses strategy 2, then the second player will also
prefer to play strategy 2

(5) The most beneficial strategy for the second player
can easily be determined. Indeed, in the payoff coor-
dinate plane, it suffices to choose the highest point

(6) Dominant and dominated strategies can be easily
identified

(7) This method can be extended to three (3) dimen-
sions (i.e., a game with three players). Indeed,
instead of using a coordinate plane, we will use a
coordinate space

5. Payoff Coordinate Space

In this section, we will introduce the concept of a payoff
point in 3D rather than 2D. Following that, we will establish
a coordinate space dedicated to payoff analysis. Subse-
quently, by plotting the payoff points on this coordinate
space, we will conduct a comparative analysis between our
method and the other method (payoff matrix). The main
results are supported by a practical example.

5.1. Definitions

Definition 6. Let n1, n2, and n3 be three integers greater than
2. Consider a three-player game with n1 × n2 × n3 strategies.

We define the payoff points Sijk α ; β ; γ with i ∈ 1 ; 2
;⋯ ; n1 , j ∈ 1 ; 2 ;⋯ ; n2 , and k ∈ 1 ; 2 ;⋯ ; n3 by the
following:

i is the strategy chosen by the first player
j is the strategy chosen by the second player
k is the strategy chosen by the third player
α is the payoff for player 1 by choosing the ith strategy
β is the payoff for player 2 by choosing jth strategy
γ is the payoff for player 3 by choosing kth strategy
Sijk is the payoff of the three players when the first player

chooses the ith strategy, the second chooses the jth strategy,
and the third chooses the kth strategy

Definition 7. A payoff coordinate space is a way of represent-
ing a three-player game as a coordinate space showing the
players’ payoffs (in the form of payoff points) according to
their respective strategies.

The x-axis will be reserved for the gain of the first player,
the y-axis will be reserved for the gain of the second player,
and the z-axis will be reserved for the gain of the third
player. The payoff coordinate space is depicted in Figure 3.

Example 3. Consider a three-player game with two strategies.
The number of points to be constructed is 23 = 8.

Suppose we have the following points: S111 0 ; 3 ; 1 , S112 2
; 1 ; 1 , S121 4 ; 2 ; 3 , S122 1 ; 0 ; 0 , S211 1 ; 0 ; 0 , S212 3 ; 4 ;
2 , S221 0 ; 0 ; 1 , and S222 3 ; 2 ; 4 .

We will compare the classical method (payoff matrix)
and the payoff coordinate space. The payoff coordinate space
related to this example is depicted in Figure 4.

5.2. Advantages. According to the example above, player 3’s
optimal strategy is to choose the second option when both
player 2 and player 1 also select the second strategy. When
both player 1 and player 3 opt for the second strategy, player
2’s optimal move is to select the first option. Similarly, if
player 2 chooses the second strategy and player 3 opts for

Sijk

��

�

x

y

z

Figure 3: A payoff coordinate space of a three-player game with n strategies.

5Journal of Applied Mathematics



the first strategy, then player 1’s optimal move is to select the
first option.

In analogy with the previous section, it becomes evident
that the representation of the payoff points greatly improves
the comprehensibility of the benefits attributed to each
player in both 2D and 3D.

The most beneficial strategy for player 1 is at the extreme
point of the Ox axis.

The most beneficial strategy for player 2 is at the extreme
point of the Oy axis.

The most beneficial strategy for player 3 is at the extreme
point of the Oz axis.

(1) Nash equilibrium is easy to determine in a game

(2) Strategies of the same power are easy to deduce

(3) Dominant and dominated strategies are easy to
deduce

6. Conclusion

In this paper, we have sought to address and overcome one
of the biggest problems with traditional game theory
methods: scalability. Within this context, we presented an
alternative approach that outperforms existing methods in
terms of scalability, convenience, and efficiency. Subse-
quently, a comparative analysis was conducted between the
classical method (payoff matrix) and the payoff coordinate
system, employing practical examples across both two-
player and three-player game scenarios.

In conclusion, based on the aforementioned results, it
can be confidently stated that the payoff coordinate system

approach demonstrates remarkable efficacy in terms of its
simplicity and the clarity of its results, regardless of whether
it is applied to two-player or three-player games.

We believe that the extensions and contributions pre-
sented in this paper have broad applicability across numer-
ous problems. They have the potential to simplify
processes and may indeed play a pivotal role in effectively
modeling complex situations. This is particularly evident in
cases where the number of strategies increases in both two-
player and three-player games. Hence, this paper could
prove to be a valuable point of reference for future investiga-
tions and studies.
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