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The complex behavior of shape memory alloys (SMAs), characterized by hysteresis and nonlinear dynamics, results in complex
constitutive equations. To circumvent the complexity of solving these equations, a black box neural network (NN) has been
employed in this research to model a rotary actuator actuated by an SMA wire. Considering the historical dependence of the
pulley’s rotational angle on the applied voltage, a recurrent neural network (RNN) is suitable for capturing past information.
Specifically, a long short-term memory (LSTM) neural network is selected due to its ability to address issues encountered in
standard recurrent networks. There are major drawbacks with modelling hysteresis with NNs that do not account for historical
behavior. Traditional NNs, characterized by a one-to-one mapping, struggle to capture hysteresis loops wherein system
behavior varies during loading and unloading cycles. Therefore, a single-tag data is used to determine the loading or unloading
state, but tag signal causes discontinuity in network and omits various aspects of hysteresis in SMA, particularly within minor
loops. In contrast, NNs incorporating past data to predict hysteresis behavior alleviate the need for tag data. However, such
networks tend to have complex structures with a substantial number of neurons to effectively capture the inherent nonlinearity
in SMAs. The long short-term memory (LSTM) neural network employed in this research, characterized by a simpler
structure, achieves high accuracy in predicting hysteresis in SMAs without the need for tag data. In the proposed LSTM model,
data related to the pulley’s rotational angle and the wire’s applied voltage from the current moment and the two previous
moments serve as input. The data passes through a layer comprising three LSTM cells, and the output from the last LSTM cell
is fed into a fully connected layer to predict the pulley’s rotational angle for the next moment. Training data are obtained by
applying voltage at various frequencies and formats to the SMA wire while simultaneously recording the pulley’s angle with an
encoder. Evaluation of the LSTM model is conducted in two configurations: online prediction (one-step ahead) and offline
prediction (multistep ahead). In the online configuration where the model uses encoder data as angular inputs, the root mean
square error (RMSE) of predictions for various input voltages is significantly low at about 0.1 degrees where the maximum
rotational angle of pulley is 8 degrees. In the offline configuration when using the model’s predictions as angular inputs instead
of encoder data, the RMSE rises to 0.3 degrees. To provide a clear demonstration of the LSTM model’s ability in this particular
configuration, a comparison has been conducted between LSTM model and a rate-dependent Prandtl-Ishlinskii (RDPI)
hysteresis model for predicting the pulley’s angle. The LSTM model outperforms the RDPI model by 70% in terms of accuracy.
Overall, the LSTM model demonstrates capability in effectively modeling SMA hysteresis in both online and offline
configurations.

1. Introduction

Shape memory alloys (SMAs) are a class of materials that
exhibit the unique shape memory effect (SME) due to their

crystalline structure. SME allows the alloy to recover its
strain when its temperature is changed, which induces a
phase change between the austenite and martensite crystal
structures [1]. This shape memory property along with high
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force-to-mass ratio, biocompatibility, and silent operation
makes SMA ideal for various applications requiring signifi-
cant force and movement [2, 3].

SMAs exhibit nonlinear dynamics coupled with hystere-
sis behavior, resulting in complex material characteristics.
The complexity is further heightened by the dependence of
this behavior on factors such as applied stress, transforma-
tion temperature, the percentage of martensite and austenite
at any given moment, and constituent elements of the alloy
making modeling such alloys even more challenging.
Researchers have introduced various modeling approaches
to predict SMA behavior, including constitutive models,
hysteresis models, and those trained by machine learning
(ML) methods.

Constitutive models of SMAs attempt to describe the
behavior of these alloys as a function of variables including
stress, strain, temperature, and time rate of them. The
Tanaka model is one of the earliest constitutive models pro-
posed for SMAs, introduced in 1986 [4]. In this model,
strain, temperature, and the volume fraction of martensite
phase are considered as state variables, and stress is calcu-
lated as a function of these variables. Additionally, the phase
transformation kinetics is expressed exponentially and is a
function of stress and temperature. Liang and Rogers [5]
built upon Tanaka’s research to introduce a novel set of
empirical equations for phase transformation kinematics.
Their approach involves a simplified kinetic relation, repre-
sented by a cosine function, to describe the martensitic
phase fraction. While the Tanaka and Liang-Rogers models
successfully describe the phase transformations between
martensite and austenite, they are limited in that they do
not account for the detwinning of martensite that produces
the SME at lower temperatures [6]. The Brinson model [7]
was utilized to solve this problem. In the Brinson model,
the martensite volume fraction is separated into stress-
induced and temperature-induced components. There are
also modified versions of the Brinson model [8], but the
complexity of the equations increases along with the model’s
accuracy in predicting SMA behavior.

Hysteresis in SMAs refers to the phenomenon where the
material exhibits different behaviors during loading and
unloading cycles so the material’s response is history-depen-
dent, meaning it depends not only on the current input but
also on its previous states. Hysteresis models can be classi-
fied into two main categories: operator-based models like
Preisach [9], Krasnoselskii-Pokrovskii [10], and Prandtl-
Ishlinskii [11] that use play operators and differential
equation-based models [12, 13]. Operator-based models
can accurately predict hysteresis but require complex com-
putations. Differential equation-based models are simpler
but less flexible in modeling complex hysteresis.

Constitutive models for SMAs use complex equations to
describe hysteresis and nonlinear stress-strain-temperature
relationships. Determining these equations is time-
consuming. On the other hand, hysteresis models only con-
sider one input parameter, neglecting others that constitu-
tive models include. To overcome these challenges, ML
methods have been proposed as an alternative to model
SMA behavior.

In recent years, ML methods have been applied to vari-
ous applications in real life. In health care field, ML algo-
rithms have been instrumental in diagnosing diseases and
predicting patient outcomes with greater accuracy [14, 15].
In the finance industry, ML has enabled professionals to pre-
dict financial parameters with precision, leading to better
investment decisions and risk management [16]; in the field
of geology, ML enables professionals to analyze vast
amounts of geological and spatial data to make informed
decisions on environmental planning [17–19] and urban
and rural development [20].

Neural networks (NNs), as a subset of ML, have proven
effective in representing the hysteresis characteristics. NNs
are a viable alternative to traditional modeling approaches
for capturing the complex behavior of SMAs. In a 2003
study [21], researchers used a shallow NN as an open-loop
controller to tracking control of an SMA actuator. The
inputs to the NN were desired outputs and a label indicating
whether the system was in the heating or cooling state. In
another 2010 study [22], researchers used a shallow NN to
estimate the strain of an SMA wire. The inputs to this NN
were the resistance of the wire at each moment and binary
values indicating whether the system was in the heating or
cooling state, but this approach requires the SMA to be only
on major hysteresis loops, meaning SMA should be fully
expanded or fully contracted. This NN was then used in a
proportional-integral-derivative (PID) control algorithm to
estimate the displacement and consequently eliminate the
need for a displacement sensor. In 2011, Zakerzadeh et al.
used an NN to approximate functions that determined the
hysteretic behavior of a numerical Preisach model. The
results demonstrated that NNs for numerical function
approximation provide higher accuracy in predicting hyster-
esis behavior compared to the classical Preisach model and
numerical approaches [23]. In 2013, Wang and Song intro-
duced a new type of recurrent neural network (RNN) that
can predict the hysteresis behavior of an SMA wire at differ-
ent frequencies. The output of this NN was the strain of the
wire in the next moment, and its inputs included the previ-
ous output values of the NN and the given current value of
electrical current [24]. In a 2018 study [25], researchers

Pulley SMA wire 1

Encoder

SMA wire 2

Figure 1: SMA and rotary encoder connected to the pulley.
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predicted the displacement of an SMA spring using an NN.
The NN used in this study was a feedforward network with 3
hidden layers and 11 neurons in the input layer. The inputs

to the NN included the electrical current, force, and temper-
ature at the current moment and two previous moments, as
well as the amplitude and frequency of the SMA electrical
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Figure 2: Data obtained from experimental setup. (a) Input signal v1 t with f = 0 03Hz and τ = 0 008 s (b) Input signal v2 t with f = 0 03
Hz and τ = 0 008 s. (c) Response of SMA-actuated system to v1 t with f = 0 03Hz and τ = 0 008 s. (d) Response of SMA-actuated system to
v2 t with f = 0 03Hz and τ = 0 008 s. (e) Response of SMA-actuated system to v1 t with f = 0 03Hz and τ = 0 008 s versus duty cycle. (f)
Response of SMA-actuated system to v2 t with f = 0 03Hz and τ = 0 008 s versus duty cycle.
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current. In 2020 [26], researchers used two different NNs to
predict the temperature of an SMA wire. The first NN was
a feedforward network with two hidden layers with 32 and
16 neurons, and its inputs were the differential resistance
value, four current values, and a label determining whether
the input voltage was increasing or decreasing. The second
NN used for predicting the temperature of the SMA wire
was a long short-term memory (LSTM) network, and its
inputs were the current values and the differential resistance
values up to three previous moments. The second NN
achieved significantly higher accuracy. In 2022, researchers
used an innovative NN to estimate the displacement of an
SMA actuator consisting of a pair of antagonistic SMA wires
[27]. The NN used in this research consisted of three parts. In
the first part, an LSTM neural network was used, with the
input being the differential resistance values of the wire in
the last 50 moments and the output being the temperature
values of the wire in the last 50 moments. In the second part,
a feedforward network was used to model the static relation-
ship between the temperature value and the martensitic vol-
ume fraction of the SMA wire. In the third part, similar to the
first part, an LSTM network was used, with the inputs being
the martensitic volume fraction values in the last 50 moments
and the output being the displacement value at the current
moment. The results obtained in this study were compared
with the results of a 2-layer LSTM neural network, and it
demonstrated that the designed network in this research pro-
vides better results.

The aim of this research is to construct a model for a
rotary actuator actuated by SMA using LSTM neural net-
works. In contrast to previous works that utilized NNs, using
LSTM network eliminates the need for single-tag data to
determine whether the SMA wire is in a loading or unload-
ing state. Furthermore, LSTM networks demonstrate the
capability to model both major and minor hysteresis loops
[21, 22]. Additionally, owing to time series nature of LSTM
network, there is no requirement for supplemental informa-
tion such as the frequency of the input signal [25]. Using
LSTM network allows to use simpler architecture thereby
circumventing the need for multiple feedback loops to cap-
ture historical relations in hysteresis loops [24].

The paper is structured as follows. Section 2 presents the
experimental setup of the SMA-actuated rotary actuator and
introduces the input signals used to obtain training data for
the LSTM model. In Section 3, the proposed LSTM model is
introduced. Section 4 presents the performance of the pro-
posed model and compares the results with a rate-
dependent Prandtl-Ishlinskii (RDPI) hysteresis model.
Finally, in Section 5, we conclude the outcomes and goals
of the research.

2. Experimental Setup

The test setup shown in Figure 1 consists of a pulley with a
radius of 2 cm and mass of 0.05 kg, actuated by two antago-
nistic SMA wires. SMA wires are connected directly from
the pulley to a fixed base. In each moment, one of SMA wires
is heated through voltage applied to its terminals and the

other wire is initially contracted and serves as a spring, gen-
erating an opposing moment against the first wire.

The SMA wires used in this research are of the Flexinol
type, having a diameter of 0.008 inches and a length of
50 cm. The pulleys can withstand temperatures up to
approximately 200 degrees Celsius. It is worth noting that
the temperature of the SMA wires will never exceed 160
degrees Celsius to prevent damage. A 3600-pulse rotary
encoder (Autonics - E50S Series) measures the rotational
angle of the pulley. To apply current to the SMA wires, an
Arduino control board, a single-channel power supply with
a maximum output of 32 volts and 3 amps, and a motor
driver (LMD5560) which regulates and switches the current
from the power supply to the SMA wires are used.

The input to the system is a pulse-width modulation
(PWM) voltage signal applied to the SMA wire’s terminals.
The output of the system is the angle of rotation of the pulley
sampled at a rate of 20Hz. To better model the behavior of
the SMA wire, we use two types of inputs to obtain the
required NN training data. In the first type (Equation (1)),
the input value reaches zero in each cycle, while in the sec-
ond type (Equation (2)), the input value is nonzero in each
cycle. The two input types are as follows:

v1 t = Ae−τt sin 2πf t − π

2 + 1 , 1

v2 t = Ae−τt sin 2πf t − π

2 + A 2

The input signals have a sinusoidal form that decrease in
amplitude over time with a decay time constant of τ = 0 008.
In this research, parameter A in Equation (1) and Equation
(2) is set to 6V, so the max value of signals v1 t and v2 t
does not exceed 12V. Therefore, the PWM duty cycle ranges
0-100% for 0-12V. The frequency (f ) of the input signal var-
ies from 0.03 to 0.07Hz across trials. Figures 2(a) and 2(b)
display examples of input signals for Equation (1) and Equa-
tion (2), respectively, both with a frequency of 0.03Hz.
Figures 2(c) and 2(d) then show the corresponding system
response to these inputs. Finally, Figures 2(e) and 2(f) illus-
trate the system response versus duty cycle for Equation (1)
and Equation (2) when using the 0.03Hz input signals.

3. Modelling

Output of a system that exhibits hysteresis behavior depends
not only on the current input but also on previous inputs—in

Time

X2X1X0

X

y2y1y0

y

h0h
h1

Figure 3: RRN structure unrolled in time.
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other words, the system has a form of memory. As shown in
Figure 3, RNNs have a feedback loop, where the network’s
output is fed back into the network along with the next input.
This allows RNNs to retain information about previous
inputs in their internal memory, which can then be used to
process sequential inputs. In essence, the feedback loop in
RNNs gives them a form of memory derived from persisting
previous inputs.

3.1. Recurrent Cell. RNNs are often built using standard
recurrent cells, such as sigmoid and tanh units. Figure 4
shows a diagram of a typical recurrent sigmoid unit. The
mathematical equation defining this standard recurrent tanh
cell is

ht = tanh Whht−1 +Wxxt + b , 3

yt

Xt

tanh

ht

ht–1

Figure 4: Standard RNN cell.
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Forget
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Input
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Output
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Figure 5: LSTM cell.

Table 1: Errors of LSTM model for different values of d.

Time window size 1 2 3 5 10 20 50

RMSE (deg) 0.0809 0.0571 0.0380 0.0398 0.0435 0.0421 0.0510
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where xt and ht are input and recurrent information at time
t, respectively, Wh and Wx are weights, and b is the bias.
Standard RNNs with conventional recurrent units struggle
with long-term dependencies; the larger the gap between rel-
evant inputs, the harder it is to learn connections between
them. Analyses by Hochreiter and Schmidhuber in [28]
and Bengio et al. in [29] identified key reasons for this
long-term dependency problem: error signals propagating
backward through time tend to either explode or vanish.

The original LSTM was proposed by Hochreiter and
Schmidhuber in 1997 [28] to address the problem of learn-
ing long-term dependencies in sequence data that happens
in standard recurrent cell. The main difference between
LSTM and standard RNN is the structure of the LSTM cell.
Figure 5 illustrates an LSTM cell which contains an input
gate, output gate, and forget gate. The gates act as pathways
to control the flow of information, allowing only relevant
data to pass through.

The mathematical expressions that define the LSTM cell,
as shown in Figure 5, are as follows:

f t = σ Wfhht−1 +Wfxxt + bf , 4

it = σ Wihht−1 +Wixxt + bi , 5

Ct = tanh Wchht−1 +WCxxt + bC , 6

Ct = f t Ct−1 + it Ct , 7

ot = σ Wohht−1 +Woxxt + bo , 8

ht = ot tanh Ct , 9

where operator “.” denotes pointwise multiplication of two
vectors. The forget gate (f t) in particular allows the LSTM
to forget or retain information in the cell state. It assigns
values between 0 and 1 to each element in the cell state,
determining what information to keep or forget. This helps
the LSTM model retain long-term dependencies that are
useful while forgetting irrelevant past data. The input gate
determines whether information should be retained or dis-
carded in the LSTM cell. It consists of two components that

are multiplied together: it and Ct . The previous hidden state
and current input pass through a sigmoid activation (Equa-
tion (5)) to create it , while the previous hidden state and cur-
rent input go through a tanh activation (Equation (6)) to
create Ct . The cell state (Ct) is defined by Equation (7),
where the previous cell state is multiplied by the forget gate
and the result is added to the input gate. The output gate also
has two parts. First, the previous hidden state and input pass
through a sigmoid activation (Equation (8)) to create ot . Sec-
ond, the output is multiplied by the cell state passing
through a tanh activation (Equation (9)).

Xt–2

ht–2

ht–1

ht

Xt–1

Xt

Input layer
(St)

Output layerLSTM layer

64 hidden units

LSTM
cell at t

LSTM
cell at t–2

LSTM
cell at t–1

Figure 6: Architecture of the proposed RNN model.
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Table 2: LSTM network hyperparameters.

Optimization
algorithm

Learning rate Batch size Number of epochs

Adam 0.002 64 40
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Figure 8: Continued.
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3.2. Proposed Model. In this research, an LSTM neural net-
work has been used to model the hysteresis behavior of the
system with an SMA actuator. The input (St) to the LSTM
neural network contains the duty cycle values of the input
voltage signal and the angular pulley rotation for the past
sliding window of time. The output of the model is the pul-
ley angle for the next moment. The number of previous data
points considered for predicting the pulley angle is deter-
mined by the sliding window size. If we consider the sliding
time window size as d, meaning for predicting each output,
we look at the past d system moments, then the NN input
at each moment is a d × 2 matrix which is shown in the
following equations:

St = Xt , Xt−1,⋯, Xt−d−1 , 10

Xt =
vt

θt
, 11

where Xt is a vector consisting of duty cycle of voltage
applied to SMA wire (vt) and angle of pulley (θt).

To determine the optimal time window size, d, the NN
has been trained using different values of d. Prediction errors
on evaluation data have been analyzed, as shown in Table 1.
The results indicate that as d increased from 1 to 3, the pre-
diction error decreases significantly. However, further
increasing d not only stops decreasing the error but slightly
increases it. Given these observations, we can conclude that
the most suitable time window size is d = 3. The architecture
of the proposed model is presented in Figure 6.

At each time step, the model takes the current and previ-
ous 2 time steps of data on the pulley’s rotational angle as
well as duty cycle of the input voltage as input. The input

data passes through 3 LSTM layers, with the output of the
last LSTM layer being the hidden state vector ht . This vector
ht is then fed into a fully connected layer with 64 neurons.
The output from this fully connected layer gives the pre-
dicted rotational angle for the next time step. The network
was trained offline using the neural network toolbox in
MATLAB software. The training and validation losses are
shown in Figure 7, while the remaining hyperparameters of
the network can be found in Table 2.

Once the training of the LSTMmodel with the data spec-
ified in Section 2 is completed, its performance is assessed by
evaluating it on 5 sets of test data that were not used for
training. The inputs for test sets are generated using equa-
tions (12)–(16):

I1 t = Ae−0 008t sin 2π 0 07 t −
π

2 + 1 , 12

I2 t = Ae−0 01t sin 2π 0 07 t −
π

2 + 1 , 13

I3 t = Ae−0 01t sin 2π 0 07 t −
π

2 + A 14

Furthermore, a signal with a variable frequency has been
used as follows:

I4 t = Ae−0 01t sin 2π 0 07 − 0 0002t t − π

2 + 1 15
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Figure 8: Actual and predicted angle by LSTM model in one-step-ahead prediction configuration. (a) I1 as input signal. (b) I2 as input
signal. (c) I3 as input signal. (d) I4 as input signal. (e) I5 as input signal.

Table 3: Errors of LSTM model in one-step-ahead prediction
configuration for five types of inputs.

Input I1 I2 I3 I4 I5
RMSE (deg) 0.0559 0.0668 0.1045 0.1096 0.0490
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Figure 9: Continued.
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Since an ascending signal has not been considered in the
training data, the following equation is used to consider an
ascending sinusoidal signal as the test signal:

I5 t = Ae0 008t sin 2π 0 03 t −
π

2 + 1 16

3.3. One-Step-Ahead Prediction. The system model receives
inputs I1 through I5. The model’s input consists of the pul-
ley’s angle and duty cycle at the current and two previous
moments. This input is updated at each moment with the
actual pulley angle value recorded by the encoder. This
allows the model to predict the pulley’s angle for the next
moment. Figure 8 presents the model’s pulley angle predic-
tions and actual pulley angle values for the different inputs.
Table 3 shows the model’s root mean square error (RMSE)
values for one-step-ahead predictions across the five input
groups I1 to I5.

3.4. Multi-Step-Ahead Prediction. In this section, we use the
model to predict the system’s response without having its
actual values at each moment. For this purpose, the model’s
predictions are provided as inputs to the system for subse-
quent time steps. In this case, a specific measured angle of
zero degree is used as the initial value. The model is utilized
in this setup to predict all five groups of test data given in
equations (12)–(16). The results are presented in Figure 9.
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Figure 9: Actual and predicted angle by LSTM model in multi-step-ahead prediction configuration. (a) I1 as input signal. (b) I2 as input
signal. (c) I3 as input signal. (d) I4 as input signal. (e) I5 as input signal.

Table 4: Errors of LSTM model in multi-step-ahead prediction
configuration for five types of inputs.

Input set I1 I2 I3 I4 I5
RMSE (deg) 0.1807 0.3509 0.2269 0.2889 0.1518

Table 5: RDPI model parameter values.

RDPI model parameters Values

N 10

C1 13.03

C2 0.02

C3 0.14

C4 -0.99

C5 12.72

C6 0.01

C7 -1.11

C8 1.02

C9 13.46

C10 0.17

q 0.07

a1 16.57

a2 -39.98

a3 26.55

a4 9.87

a5 30.19

a6 26.16

a7 34.2

a8 7.85

a9 -21.83

a10 3.34
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Figure 10: Continued.
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The model’s performance accuracy is lower when mak-
ing multi-step-ahead predictions compared to one-step-
ahead predictions, as seen in Figure 9. This outcome is
expected because error accumulates over time when the
model recursively predicts multiple steps into the future.
Table 4 shows the model’s RMSE values for multistep pre-
dictions across the five input groups I1 to I5.

4. Comparison of the Proposed Model with
RDPI Model

The rate-dependent Prandtl-Ishlinskii (RDPI) model is often
used to model hysteresis behavior in SMAs and other smart
actuators [11, 30]. This model can also incorporate the effect
of excitation frequency in its equations. In this study, we uti-
lized the same data that was previously used to train an NN
to find appropriate coefficients for the Prandtl-Ishlinskii
model as presented in a 2019 paper [11]. The obtained coef-
ficients for the constructed model are shown in Table 5.
Furthermore, the results of this RDPI model for the five pre-
viously mentioned test data groups are compared to the pro-
posed model in multi-step-ahead prediction configuration in
Figure 10, and the results are presented in Table 6.

The results demonstrate that the RDPI model is unable
to accurately capture the system’s response at peak values,
as seen in Figure 10. In contrast, the proposed LSTM model
successfully models these points in its multi-step-ahead pre-
diction mode, providing significantly more accurate results.

Furthermore, when comparing the errors of the two models
in Table 6, it is evident that the LSTM model’s errors are
approximately 70% lower on average than those of the RDPI
model.

5. Conclusion

Modeling the behavior of SMAs is challenging due to their
nonlinear dynamics and hysteresis. This research is aimed
at creating a model for predicting the pulley rotational angle
in an SMA wire-driven rotational actuator. To capture the
hysteresis behavior of the SMA, which depends on current
and previous inputs to the SMA wire, we employ an LSTM
recurrent neural network capable of retaining previous input
information.

The LSTM model developed in this research could effec-
tively predict the nonlinear hysteretic behavior of the SMA
wire actuator with high accuracy. The model takes as input
the SMA wire voltages and pulley angles at the current and
two previous time steps and predicts the pulley angle at the
next time step. In online configuration where encoder data
is available, the LSTM model generates accurate one-step-
ahead predictions. In offline mode without live encoder data,
the LSTM model uses its own predictions as inputs for sub-
sequent time steps. In this configuration, the results of the
LSTM model were compared to a rate-dependent Prandtl-
Ishlinskii model, highlighting the LSTM’s superior accuracy.
The success of the LSTM model in accurately capturing the
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Figure 10: Actual and predicted angle by LSTM model in multi-step-ahead prediction configuration compared with RDPI model. (a) I1 as
input signal. (b) I2 as input signal. (c) I3 as input signal. (d) I4 as input signal. (e) I5 as input signal.

Table 6: Comparison of prediction errors for LSTM and RDPI models across 5 input types.

Input set I1 I2 I3 I4 I5

RMSE (deg)
RDPI model 0.8501 0.9313 0.5734 0.8845 0.8041

LSTM model 0.1807 0.3509 0.2269 0.2889 0.1518
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complex hysteretic dynamics of the SMA wire actuator is the
key outcome of this research.

Data Availability

The LSTM network prediction results used to support the
findings of this study are available from the corresponding
author upon request.
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