
Research Article
The Significance of Stochastic CTMC Over Deterministic Model in
Understanding the Dynamics of Lymphatic Filariasis With
Asymptomatic Carriers

Mussa A. Stephano ,1,2 Jacob I. Irunde ,2 Maranya M. Mayengo ,1

and Dmitry Kuznetsov 1

1Department of Applied Mathematics and Computational Science, The Nelson Mandela African Institution of Science
and Technology, P.O. Box 447, Arusha, Tanzania
2Department of Mathematics, Physics and Informatics, Mkwawa University College of Education, P.O. Box 2513, Iringa, Tanzania

Correspondence should be addressed to Mussa A. Stephano; stephanom@nm-aist.ac.tz

Received 26 October 2023; Revised 9 April 2024; Accepted 17 April 2024; Published 4 May 2024

Academic Editor: Arvind Kumar Misra

Copyright © 2024 Mussa A. Stephano et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Lymphatic filariasis is a leading cause of chronic and irreversible damage to human immunity. This paper presents deterministic
and continuous-time Markov chain (CTMC) stochastic models regarding lymphatic filariasis dynamics. To account for
randomness and uncertainties in dynamics, the CTMC model was formulated based on deterministic model possible events. A
deterministic model’s outputs suggest that disease extinction is feasible when the secondary threshold infection number is
below one, while persistence becomes likely when the opposite holds true. Furthermore, the significant contribution of
asymptomatic carriers was identified. Results indicate that persistence is more likely to occur when the infection results from
asymptomatic, acutely infected, or infectious mosquitoes. Consequently, the CTMC stochastic model is essential in capturing
variabilities, randomness, associated probabilities, and validity across different scales, whereas oversimplification and
unpredictability of inherent may not be featured in a deterministic model.
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1. Introduction

The nematode family of microfilarial parasites transmitted
by mosquito-vector causing lymphatic filariasis commonly
results in the chronic manifestation known as elephantiasis
[1]. This disease is prevalent in tropical regions, especially
in developing countries, where it often receives insufficient
attention [2, 3]. Lymphatic system weakening, physical
deformities, and long-term disability significantly impact
the quality of life of affected individuals [4, 5].

Humans and mosquitoes serve as the definitive-primary
and intermediate hosts of the parasites, respectively [4, 6]. In
definitive-primary host, it presents three different stages,
namely, asymptomatic carriers, acute, and chronic infected
as illustrated in Figure 1. The asymptomatic stage exhibits
nonvisible symptoms of infection, yet the parasites can still

cause an impact on the immunity, facilitating the infection.
In the acute stage, adenolymphangitis, a localized inflamma-
tion of lymph nodes and vessels, accompanied by skin prob-
lems is characterized. In the chronic stage, it progresses to
hydrocele, lymphedema, compromised mental well-being,
and elephantiasis [1, 4].

Lymphatic filariasis is a global health concern, exhibit-
ing varying prevalence rates across different regions. It is
transmitted by different mosquito vectors depending on
the nematode species involved. The World Health Organi-
zation (WHO) in collaboration with governments recom-
mended the implementation of mass drug administration
(MDA) programs targeting both infected populations and
those at risk [1]. Despite these efforts, the persistent preva-
lence of the disease emphasizes an urgent need for compre-
hensive research on its transmission dynamics to support
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eradication initiatives, aligning with Sustainable Development
Goal 3 and the roadmap for eliminating neglected tropical
diseases by 2030.

Mathematical modelling has been used to address lym-
phatic filariasis in different aspects. The key and fundamen-
tal studies include Mwamtobe et al. [7], who introduced a
model on humans and mosquitoes and concluded that treat-
ment is more effective than quarantine. Jambulingam et al.
[8] worked on a statistical model with a hypothesis on
MDA with respect to the burden in India, highlighting that
theMDA duration is proportional to the endemicity baseline.
Michael et al. [9] addressed the MDA efficacy and control
with albendazole and diethylcarbamazine in combination.
Swaminathan et al. [10] worked on challenges with the aspect
of prospects targeting the elimination of the disease, and
Cromwell et al. [11] developed a geospatial distribution
between 2000 and 2018.

Regarding the convolution of the life cycle of the micro-
filarial parasites in both two hosts, modelling the interaction
and spread mode is of significant importance when includ-
ing stochasticity. Nevertheless, the existing models did not
incorporate stochastic behavior in dynamics. The signifi-
cance of the CTMC model is that it captures variabilities
and uncertainties that arise due to environmental variations
and demographics and also predicts the probabilities of
extinction or outbreak in finite time and studies the random
sample path solutions near disease-free and endemic equi-
libria [12–15]. This paper presents a stochastic CTMC
model based on the modified existing deterministic models
of lymphatic filariasis dynamics.

2. Model Formulation

2.1. A Deterministic Model. The formulation of the model
that depicts the dynamics of lymphatic filariasis in both
definitive-primary and intermediate hosts is based on
assumptions that the vertical transmission is not accounted
for by the exclusion of immigration considerations, adher-
ence to the mass action principle for the rate of infection
[17], and the occurrence of induced mortality in the class
of infected chronic only. Figure 2 visually represents the
dynamic modification of the work by Jambulingam et al.
[8], Mwamtobe et al. [7], Stolk et al. [18], and Swaminathan
et al. [10].

The human population is divided into five groups: sus-
ceptible S1 t , exposed E1 t , asymptomatic A t , infected
in the acute state I1 t , and infected in the chronic state I2
t . Similarly, the mosquito population comprises suscepti-
ble S2 t , exposed E2 t , and infected I3 t .

S1 t recruited at a rate π1, move to E1 t being bitten by
I3 t at a rate β. A considerable number of individuals prog-
ress to A t at a rate α, while the remaining proportion prog-
ress to either I1 t at a rate ψ or I2 at a rate ρ. Moreover,
A t progress to either I1 t at a proportion of ξ or I2 t at
a rate ϕ. I1 t progress to I2 t at a rate σ. I2 t induce death
at a rate δ, and humans die naturally at a rate of μh.

π2 is the recruitment rate of S2 t , exposed to lymphatic
filariasis with either A t , I1 t , or I2 t defined by general
rate (Equation (1)):

λ = β1A + β2I1 + β3I2 1

Acute status

Adenolymphangitis

Physical and clinical
manifestation

Chronic status

Elephantiasis Hydrocele Lymphoedema

Damages on:
Lymph, kidney and

immune system

Asymptomatic
carriers

Figure 1: The life cycle of parasites, clinical manifestations, and physical condition [1, 4, 16, 17].
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where β1, β2, and β3 are transmission rates for S2 from A t ,
I1 t , and I2, respectively. E2 t progress to I3 t at a pace ω,
and the natural mortality rate of mosquitoes is μm.

Model (2) represents the epidemiological interactions
and transitions using a nonlinear system from Figure 2.

dS1 t
dt

= π1 − βI3S1 − μhS1

dE1 t
dt

= βI3S1 − α + ρ + ψ + μh E1

dA t
dt

= αE1 − ξ + ϕ + μh A

dI1 t
dt

= ψE1 + ξA − σ + μh I1

dI2 t
dt

= ρE1 + ϕA + σI1 − δ + μh I2

dS2 t
dt

= π2 − λS2 − μmS2

dE2 t
dt

= λS2 − ω + μm E2

dI3 t
dt

= ωE2 − μmI3

2

Bounded by
S2 0 > 0, E10 ≥ 0, A 0 ≥ 0, I1 0 ≥ 0, I2 0 ≥ 0, S1 0

> 0, E2 0 ≥ 0, and I3 0 ≥ 0

2.2. Model Analysis. The dynamical system described by
Equation (2) is subjected to evaluate its mathematical well-
posedness and biological feasibility within the region S1,
E1, A, I1, I2, S2, E2, I3 ∈ℝ8

+ .

2.2.1. Positivity. To demonstrate the positivity of model solu-
tions for all t ≥ 0, let t > 0 S1 > 0, E1 > 0, A > 0, I1 > 0, I2 >
0, S2 > 0, E2 > 0, I3 > 0 , N1 = S1 + E1 + A + I1 + I2, and N2 =
S2 + E2 + I3.

From the equation governing susceptible humans in
Model (2),

dS1 t
dt

= π1 − βI3S1 − μhS1

Assuming S1 0 > 0 and ∃t = t0 > 0, where S1 t0 = 0, d
S1 t0 /dt < 0, E1 t0 ≥ 0, A t0 ≥ 0, I1 t0 ≥ 0, I2 t0 ≥ 0, S2
t0 > 0, E2 t0 ≥ 0, and I3 t0 ≥ 0, it follows:

dS1 t0
dt

= π1 − βI3 t0 S1 t0 − μhS1 t0 = π1 > 0 3

This contradicts the assumption, hence S1 t > 0 for all
t > 0. Applying a similar method as used to get Equation
(3), then Model (2) is positive invariant ∀t > 0.

2.2.2. Boundedness. By considering the total population of
humans and mosquitoes separately, we have

dN1
dt

≤ π1 − μhN1

dN2
dt

≤ π2 − μmN2

4

From Equation (4), the first population using integration
techniques leads

N1 t ≤
π1
μh

+ N1 0 −
π1
μh

e−μht 5

S1
�1

�hS1

�S1I3
E1

�hE1

�hA

�mI3

I1

I2

I3

�mE2 �mS2

E2
� (A, I1, I2)S2

(
�
h  + �)

I2

S2
�E2

A

�hI1

�E1

�E1

�I1�E1
�A

�A

�2

Figure 2: Compartments and CTMC possible events of interactions and transitions.
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Applying the standard comparison theorem [19], when
N1 0 > π1/μh and N1 0 < π1/μh, we obtain

π1
μh

≤N1 t ≤
π1
μh

+ N1 0 −
π1
μh

e−μht and

π1
μh

+ N1 0 −
π1
μh

e−μht ≤N1 t ≤
π1
μh

6

With time approaching to infinity, it follows that

0 ≤N1 t ≤
π1
μh

0 ≤N2 t ≤
π2
μm

7

Consequently, Model (2) is bounded within the region
S1, E1, A, I1, I2, S2, E2, I3 ∈ℝ8

+ .

2.3. Filariasis Free Equilibrium E0 and Basic Reproduction
Number R0

2.3.1. Filariasis Free Equilibrium. The context involves the
extinction of parasites from populations, leading to a
disease-free equilibrium denoted as E0, which signifies the
absence of lymphatic filariasis.

E0 =
π1
μh

, 0, 0, 0, 0, π2
μm

, 0, 0 8

2.3.2. Basic Reproduction Number R0. The computation of
R0, with the help of the next-generation matrix technique
evaluated at E0, is given by

R0 =
1
μm

ωβπ1π2
μh

R01 +R02 +R03 + αβ2η3
η1η2η3η4η5

9

whereby

η1 = α + ρ + ψ + μh , η2 = ξ + ϕ + μh

η3 = σ + μh , η4 = δ + μh , η5 = ω + μm

R01 = β1α ξσ + ϕη3

R02 = η2 σψ + ρη3

R03 = η4 β3αξ + ϕη2

where R0 represents the threshold value of infections after
initial states generated by one infection in susceptible indi-
viduals throughout the period of infection [20].

2.3.3. Global Stability of E0

Theorem 1. The filariasis-free equilibrium E0 is globally
asymptotically stable when R0 < 1 and unstable otherwise.

We decompose System (2) following the Metzler matrix
technique as used in Stephano et al. and Castillo-Chavez
and Song [17, 21]. Let u1 stands for S1, S2 , while u2 stands

for E1,A, I1, I2, E2, I3 . Therefore, Model (2) can be decom-
posed to:

du1
dt

= B1 u1 − E0 + B2u2

du2
dt

= B3u2

10

where

B1 =
−μh 0

0 −μm
, B2 =

0 0 0 0 0 −
βπ1

μh

0
β2π2

μm

β3π2

μm

β1π2

μm
0 0

B3 =

− α + ρ + ψ + μh 0 0 0 0
βπ1

μh

α − ξ + ϕ + μh 0 0 0 0

ψ ξ − σ + μh 0 0 0

ρ ϕ σ − δ + μm 0 0

0
β2π2

μm

β3π2

μm

β1π2

μm
− ω + μm 0

0 0 0 0 ω −μm

Matrix B1 has negative eigenvalues which determine that
matrix B3 is a Metzler matrix. Given that the nondiagonal
components of matrix B3 exhibit positivity, it is clear that
E0 is globally asymptotically stable.

2.4. Filariasis Endemic Equilibrium E∗. In the situation of
persistence of lymphatic filariasis, the nontrivial point is
computed from Model (2). It is denoted by E∗ = S∗1 , E∗

1 , A∗,
I∗1 , I∗2 , S∗2 , E∗

2 , I∗3 ∈ℝ8
+, such that

S∗1 =
π1

βI∗3 + μh
, E∗

1 =
βωμhπ1π2 R2

0 − 1
η1μh βωπ2 + η5μmμh R2

0

A∗ = αωμhβπ2π1 R2
0 − 1

η1η2μh βωπ2 + η5μmμh R2
0
, I∗1 =

ψη2 + ξα βωμhπ2π1 R2
0 − 1

η1η2η3μh βωπ2 + η5μmμh R2
0

I∗2 =
η3 ρη2 + αϕ + σ ψη2 + ξα βωμhπ1π2 R2

0 − 1
η1η2η3η4μh βωπ2 + η5μmμh R2

0
, S∗2 =

π2
Ω + μm

E∗
2 =

Ωπ2
η5 Ω + μm

, I∗3 =
ωπ2μh R2

0 − 1
η5μhR

2
0 + βωπ2

Ω = β2αη3η4 + β1 η3 ρη2 + αϕ + σ ψη2 + ξα + β3 ψη2 + ξα βωμhπ1π2 R2
0 − 1

η1η2η3η4μh βωπ2 + η5μmμh R2
0

2.4.1. The Global Stability Analysis of Endemic Equilibrium E∗

Theorem 2. Model System (2) exhibits a unique endemic
equilibrium E∗ whenever R0 > 1, which is globally asymptot-
ically stable.

Proof 1. We consider vector components Y = S1, E1, A, I1,
I2, S2, E2, I3 ∈ℝ8

+ and define a Lyapunov function G as
follows:
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G = k1 S1 − S∗1 − S∗1 ln
S1
S∗1

+ k2 E1 − E∗
1 − E∗

1 ln
E1
E∗
1

+ k3 A − A∗ − A∗ ln A
A∗ + k4 I1 − I∗1 − I∗1 ln

I1
I∗1

+ k5 I2 − I∗2 − I∗2 ln
I2
I∗2

+ k6 S2 − S∗2 − S∗2 ln
S2
S∗2

+ k7 E2 − E∗
2 − E∗

2 ln
E2
E∗
2

+ k8 I3 − I∗3 − I∗3 ln
I3
I∗3

11

By differentiating Equation (11) with respect to t, we have

dG
dt

= k1 1 − S1
S∗1

S1
dt

+ k2 1 − E1
E∗
1

E1
dt

+ k3 1 − A
A∗

A
dt

+ k4 1 − I1
I∗1

I1
dt

+ k5 1 − I2
I∗2

I2
dt

+ k6 1 − S2
S∗2

S2
dt

+ k7 1 − E2
E∗
2

E2
dt

+ k8 1 − I3
I∗3

I3
dt

12

Let a = S1/S∗1 , b = E1/E∗
1 , c = A/A∗, d = I1/I∗1 , p = I2/I∗2 ,

q = S2/S∗2 , r = E2/E∗
2 , and t = λ/λ∗.

Substituting equations in Equation (2) into Equation
(12) gives the following expression of each term:

k1 −μhS1 1 − 1
a

2
+ k1βI

∗
3S

∗
1 1 − as 1 − 1

a

k2βI
∗
3S

∗
1 1 + as − b −

as
b

k3αE
∗
1 1 + b − c −

b
d

k4 ψE∗
1 1 + b − d −

b
d

+ ξA∗ 1 + c − d −
c
d

k5 ρE∗
1 1 + b − p −

b
p

+ ϕA∗ 1 + c − p −
c
p

+ σI∗1 1 + d − p −
d
p

k6 −μmS2 1 − 1
q

2
+ λ∗S∗2 1 + t − qt −

1
q

k7λ
∗S∗2 1 + qt − r −

qt
r

k8ωE
∗
2 1 + r − s −

r
s

13

Summing up all expressions in Equation (13) and evalu-
ating the values of ki, i = 1, 2,⋯, 8 gives

k1 = k2 =
1

βI∗3S
∗
1

ξA∗ + ψE∗
1 +

ϕψA∗E∗
1

σI∗1
+ ξψ A∗ 2

σI∗1
+ ψρ E∗

1
2

σI∗1
+ ξρA∗E∗

1
σI∗1

k3 =
1

αE∗
1

ξA∗ + ϕψA∗E∗
1

σI∗1
+ ξψ A∗ 2

σI∗1
, k4 = 1, k5 =

ψE∗
1

σI∗1
+ ξA∗

σI∗1

k6 = k7 =
βI∗3S

∗
1k1

λ∗S∗2
, k8 =

βI∗3S
∗
1k1

ωE∗
2

Back substitution into Equation (13) and adding up
gives

dG
dt

= −k1μhS1 1 − 1
a

2
− k6μmS2 1 − 1

q

2

+ 8 − 1
a
−
as
b

−
b
c
−

c
d
− p −

d
p
−
1
q
+ t −

qt
r
−
r
s

ξA∗

+ 7 − 1
a
−
as
b

−
b
d
− p −

d
p
−
1
q
+ t −

qt
r
−
r
s

ψE∗
1

+ 7 − 1
a
−
as
b

−
b
c
− p −

c
p
−
1
q
+ t −

qt
r
−
r
s

ϕψA∗E∗
1

σI∗1

+ 7 − 1
a
−
as
b

−
b
c
− p −

c
p
−
1
q
+ t −

qt
r
−
r
s

ξϕ A∗ 2

σI∗1

+ 6 − 1
a
−
as
b

− p −
b
p
−
1
q
+ t −

qt
r
−
r
s

ψρ E∗
1

2

σI∗1

+ 6 − 1
a
−
as
b

− p −
b
p
−
1
q
+ t −

qt
r
−
r
s

ξρA∗E∗
1

σI∗1
14

If an algebraic inequality 1 − z ≤ − ln z, for any z > 0,
then we express all terms in Equation (14) as follows:

Considering the third term, we have:

1 − 1
a

+ 1 − 1
q

+ 1 − p + 1 − as
b

+ 1 − b
c

+ 1 − c
d

+ 1 − d
p

+ 1 − qt
r

+ 1 − r
s

− 1 − t ξA∗ ≤ −ln 1
a

− ln 1
q

− ln p − ln as
b

− ln b
c

− ln c
d

− ln d
p

− ln qt
r

− ln r
s

+ ln t ξA∗

= ln a + ln q − ln p − ln a − ln s + ln b − ln b

+ ln c − ln c + ln d − ln d − ln p − ln q − ln t

+ ln r − ln r + ln s + ln t ξA∗ = 0
15

A similar approach is applied to all terms. It is evident
that dG/dt ≤ 0. Moreover, applying the Krasovkii–Lasalle
theorem in Equation (14), dG/dt = 0, if and only if Y = E∗.
Hence, the set consists of the singleton E∗. This concludes
the proof.

2.5. Model Sensitivity Analysis. In this subsection, we utilize
Latin hypercube sampling-partial rank correlation coeffi-
cient (LHS-PRCC) as a tool for sensitivity and uncertainty.
The LHS-PRCC algorithm is robust and particularly suitable
for nonlinear systems with a consistent relationship between
input and output [17]. The algorithm integrates both uni-
form and normal probability density functions. This method
is recognized for its effectiveness in managing nonlinear
ordinary differential equations [22]. Moreover, it quantifies
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the level of the linear relationship between inputs and out-
puts to furnish PRCC indices, following the methodology
described by [23]. The variable I3 t in Model (2) is used
as a showcase to demonstrate the change of PRCC indices
with time.

The findings from the LHS-PRCC analysis offered valu-
able insights into the impact of all parameters against the
chosen variable and associated uncertainties on System
(2). In the context of statistical inference, PRCC indices
close to or equal to zero have no significance. Figure 3(a)
visually represents the PRCC indices, highlighting that π2,
β, and β2 on outputs have strong directly proportion rela-
tionship. Conversely, parameters like μh and μm demon-
strating the relationship in inverse proportionally with the
model outputs. Figure 3(b) provides a comprehensive view
of their sensitivity and illustrates how changes in all
parameters influence Model (2). These findings suggest
the important variables to be considered for effective con-
trol strategies.

2.6. CTMC Stochastic Model Formulation. To assess proba-
bilities of extinction or persistence, the CTMC model was
formulated using the technique of events from the process
of multitype branching. Capturing the real-world phenom-
ena in the dynamics of lymphatic filariasis, incorporating
randomness, is necessary for uncertainties and variabilities
[24, 25]. The disease can vanish even when the threshold
exceeds one, depending on the initial number of infections
available in the population. This study considers individual
movement to be discrete for realistic depiction [13, 14].

The formulation of the CTMC stochastic model is
derived from System (2) events.

If S1, E1, A, I1, I2, S2, E2, and I3 represent discrete ran-
dom variables, then the vector associated is

V = S1, E1, A, I1, I2, S2, E2, I3 T

which follow the Markov chain property and adhere to
homogeneity in time. Moreover, the total event is defined
by

Ψ V = π1 + βI3S1 + μhS1 + αE1 + ρE1 + ψE1 + μhE1 + ξA

+ ϕA + μhA + σI1 + μhI1 + δI2 + μhI2 + π2 + β2AS2
+ β3I1S2 + β1I2S2 + μmS2 + ωE2 + μmE2 + μmI3

16

We define S1 0 = π1/μh and S2 0 = π2/μm, where
infectives of type i, denoted as Ii, give rise to infectives
of type j, denoted as I j. It is assumed that the number
of offspring produced by an individual of type i is inde-
pendent of the number of offspring produced by either
type i or type j, where j ≠ i [14, 26].

This calculation assumes there is initially only one infec-
tious individual at the beginning of the disease outbreak
(I 0 = 1), with all other types being zero (I j = 0).

pi u1, u2,⋯, un = 〠
∞

kn=0
⋯ 〠

∞

k1=0
pi k1, k2,⋯, k6 uk11 ⋯ uk66

17

where pi k1, k2,⋯, kn represents the likelihood that an
infectious individual of type i produces kj individuals of
type j.

Filariasis extinction is defined by probability ℙ0 = ri11
ri22 ⋯ ri6k , where r1, r2,⋯, rk is the unique fixed point of
the offspring pgf, pi r1, r2,⋯, r6 = ri, and 0 < ri < 1 for i = 1,
2,⋯, k, whereas 1 −ℙ0 is an outbreak probability.

If E1 0 = 1, A 0 = 0, I1 0 = 0, I2 0 = 0, E2 0 = 0, and
I3 0 = 0, the offspring probability generating function for
the infected class E1 is defined as follows:

p1 u1, u2,⋯, u6 = αu2 + ψu3 + ρu4 + μh
α + ϕ + ρ + μh

18

where α/ α + ϕ + ρ + μh stands for the probability of E1 t
progress to the A t , ψ/ α + ϕ + ρ + μh represents the prob-
ability of E1 t progress to I1 t , ρ/ α + ϕ + ρ + μh denotes
the probability of E1 t progress to I2 t , and μh/ α + ϕ +
ρ + μh is the probability of E1 t die before any progress

Using a methodology employed in Equation (18), we
derive the offspring probability-generating functions for
A 0 , I1 0 , I2 0 , E2 0 , and I3 0 as p2, p3, p4, p5, and
p6, respectively. These functions are defined as follows:

p2 u1, u2,⋯, u6 = ξu3 + ϕu4 + μh + β2u2u5
ξ + ϕ + μh + β2

, β2 =
β2π2
μm

p3 u1, u2,⋯, u6 = σu4 + μh + β3u3u5
σ + μh + β3

, β3 =
β3π2
μm

p4 u1, u2,⋯, u6 = β1u4u5 + δ + μh

β1 + δ + μh
, β1 =

β1π2
μm

p5 u1, u2,⋯, u6 = ωu6 + μm
ω + μm

p6 u1, u2,⋯, u6 = βu1u6 + μm

β + μm
, β = βπ1

μh

19

The expectation matrix M = mji computed from the
number of offspring of type j resulted from type i as pre-
sented by evaluating at 1:

M = ∂pi
∂uj u=1

20
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Table 1: Parameter values month−1.

Parameter Baseline Reference Range Normal (mean (μ), std (σ))

π1 20.0000 [16] [10.000030.0000] N 20 0000,2 2048
β 0.0005 [17] [0.000100.0050] N 0 0005,6 2 × 10−4

β1 0.0015 [17] [0.00100.0030] N 0 0015,6 6 × 10−4

β2 0.0035 [17] [0.00150.0045] N 0 0035,7 9 × 10−4

β3 0.00025 [17] [0.000150.00035] N 0 00025,5 0 × 10−4

ρ 0.00032 [17] [0.000250.0075] N 0 00032,1 0 × 10−3

ψ 0.0015 [30] [0.00250.0085] N 0 0015,3 3 × 10−4

δ 0.000015 [9] [0.000010.00003] N 0 000015,3 7 × 10−4

ω 0.0055 [17] [0.00350.0065] N 0 0055,3 32 × 10−4

ϕ 0.00045 [17] [0.00030.0009] N 0 00045,5 0 × 10−4

π2 100,000 [16] [50000150000] N 100000,598 96
μh 0.0142 [15, 17] [0.01000.0200] N 0 0142,1 0 × 10−4

α 0.0200 [9] [0.01000.0500] N 0 02,5 × 10−3

μm 0.050000 [30] [0.01001.5000] N 0 05000,0 0062
ξ 0.00030 [16, 18] [0.00250.0055] N 0 00030,7 905 × 10−4

σ 0.0012 [10] [0.00100.0030] N 0 0012,1 87 × 10−4
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Figure 3: PRCC indices values and dynamics of parameters for I3 t .
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Using Equation (20) in conjunction with Equations (18)
and (19), we derive

M =

0 0 0 0 0 β

β + μh

α

G1

β2
G2

0 0 0 0

ψ

G1

ξ

G2

β3
G3

0 0 0

ρ

G1

ϕ

G2

σ

G3

β1

β1 + μh + δ
0 0

0 β2
G2

β3
G3

β1

β1 + μh + δ
0 0

0 0 0 0 ω

ω + μm

β

β + μh

where G1 = α + ρ + ψ + μh, G2 = ξ + ϕ + μh + β2, and G3 =
σ + μh + β3. From matrix M, it is straightforward to deter-
mine the maximum eigenvalue which represents the stochas-
tic threshold. The correlation between the deterministic and
stochastic thresholds for parasite extinction is expressed as
R0 < 1⇔ ρ M < 1 [27, 28]. If ρ M > 1, there exists the
potential for a microfilarial parasite outbreak or extinction,
contingent upon the number of infectives at the onset of
the disease outbreak [13, 26, 29]. Therefore, when ρ M > 1,
a fixed point r1, r2, r3, r4, r5, r6 ∈ 0, 1 6 is determined from
the offspring-generating functions (Equations (18) and (19)),
which are utilized to compute the probability of disease
extinction [14, 25]. To ascertain this fixed point, the equa-
tions pi r1, r2, r3, r4, r5, r6 = ri for i = 1, 2,⋯, 6 are solved.

r1 =
αr2 + ψr3 + ρr4 + μh

α + ψ + ρ + μh
, r2 =

ξr3 + ϕr4 + μh

ξ + ϕ + μh + β2 1 − r5
, r3 =

σr4 + μh

σ + μh + β3 1 − r5

r4 =
δ + μh

β1 1 − r5 + δ + μh
, r5 =

ω + β 1 − r1 + μm
ω + μm β 1 − r1 + μm

, r6 =
μm

β 1 − r1 + μm

21

The probability-generating functions r1, r2,⋯, r6 exhibit
nonlinearity, rendering them difficult to compute analytically.
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Figure 6: Deterministic (dotted) and CTMC random trajectories for dynamics of lymphatic filariasis in (a) human and (b–d) mosquito
populations.
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Consequently, numerical simulations, as demonstrated by
Stephano et al. [15], are employed for their computation.

3. Model Simulations

In this section, simulations are conducted using both deter-
ministic and CTMC stochastic models to explore the dynam-
ics of lymphatic filariasis. Parameter values, drawn from a
Gaussian distribution, are based on baseline values obtained
from existing literature, as detailed in Table 1. The simula-
tions involve ten thousand sample trajectories, concurrently
depicted with corresponding deterministic solutions to facil-
itate comparison. Euler’s and Gillespie’s algorithms are uti-
lized alongside arbitrary initial conditions.

E1 0 = 200, A 0 = 20, I1 0 = 5, I2 0 = 2, S1 0

= π1
μh

− E1 0 + A 0 + I1 0 + I2 0 , E2 0

= 10000, I3 0 = 1, S2 0 = π2
μm

− E2 0 + I3 0

Figure 4, depicting the solutions of the deterministic
model, corresponds to Figures 5 and 6, showing both deter-
ministic and CTMC stochastic solutions. It is evident that
the count of susceptible individuals decreases following
infections, stabilizing after approximately 100 months. Simi-
larly, the population of susceptible mosquitoes diminishes,
reaching a steady state. The results reveal that both deter-
ministic and CTMC stochastic models exhibit similar
behavior, with stochastic outputs reflecting randomness
and deterministic outputs representing the average trend
observed across CTMC random sample paths. A negative
correlation exists between the susceptible groups and the
acutely infected, chronically infected, and asymptomatic
classes. Initially, the count of exposed humans rises, peak-
ing within the first 60 months, before declining and even-
tually stabilizing after 150 months. Similarly, the numbers
of asymptomatic, acutely infected, and chronically infected
humans also peak before stabilizing.

4. Conclusion

Based on the findings presented in this paper, it is evident
that lymphatic filariasis poses a significant threat to human
health, causing chronic and irreversible damage to the
immune system. Through the development of both deter-
ministic and CTMC stochastic models, this study is aimed
at capturing the complexity of lymphatic filariasis dynam-
ics. The deterministic model highlights the potential for
disease extinction when the secondary threshold infection
number falls below one, contrasting with scenarios where
persistence is more likely to occur. Additionally, the role
of asymptomatic carriers in disease transmission was iden-
tified as significant. These results emphasize the importance
of employing stochastic models, such as CTMC, to capture
variabilities, randomness, and associated probabilities more
accurately, especially considering the limitations of deter-

ministic models in capturing inherent complexities and
unpredictabilities.
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