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Gumboro disease is a viral poultry disease that causes immune suppression on the infected birds leading to poor production,
mortality, and exposure to secondary infections, hence a major threat in the poultry industry worldwide. A mathematical
model of the transmission dynamics of Gumboro disease is developed in this paper having four compartments of chicken
population and one compartment of Gumboro pathogen population. The basic reproduction number Rog is derived, and the
dynamical behaviors of both the disease-free equilibrium (DFE) and endemic equilibrium are analyzed using the ordinary
differential equation theory. From the analysis, we found that the system exhibits an asymptotic stable DFE whenever Rog < 1
and an asymptotic stable EE whenever Rog > 1. The numerical simulation to verify the theoretical results was carried out using
MATLAB ode45 solver, and the results were found to be consistent with the theoretical findings.
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1. Introduction

Infectious bursal disease (IBD) popularly known as Gum-
boro is a viral poultry diseases that cause high morbidity
and mortality, hence a major threat to the poultry industry
due to high economic losses associated with it worldwide.
Gumboro disease is associated with clinical disease symp-
toms such as depression, watery diarrhea, ruffled feathers,
and dehydration [1].

Gumboro disease affects mostly young chickens around
3–6 weeks of age. Gumboro virus is extremely difficult to
eradicate as it is hardy and can live in a great range of envi-
ronmental conditions, and it is transmitted from one bird to
another through feacal–oral route [2].

Generally, the poultry sector plays an important role in the
growth of the economy as well as in poverty reduction.
According to the Agricultural Sector Development Strategy

2010, in Kenya, each year, about 20 tonnes of poultry meat
worth 3.5 billion Kenyan shillings and 1.3 billion eggs worth
9.7 billion Kenyan shillings are produced. This increased pro-
duction of poultry is necessitated by the increased demand
for quality protein especially in developing countries [3].

The IBD virus was observed 40 years ago with Kenya’s
first case reported in 1991 in commercial birds on the Ken-
yan coast; the disease has remained to be a great threat to the
commercial poultry industry not only in Kenya but also in
the whole world [4].

Mathematical modeling over the years has become a very
important tool that is used in the prediction, assessment, and
control of various outbreaks. A number of these models that
describe the impacts of preventive and control strategies on
the transmission dynamics of various poultry infectious
diseases have been developed. A study to investigate the
impacts of quarantine and vaccination in controlling avian
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influenza disease was done by [5], and the results established
that combining quarantine with vaccination is an effective
strategy for control of the disease.

A mathematical model of Newcastle disease with opti-
mal control having five compartments was formulated by
[6]. The findings of the study showed that in the absence
of control measures, the number of infected bird increased
significantly and reduced significantly in the presence of
control measure implying that the control measures were
effective methods of controlling the disease.

Several mathematical models have been done to describe
the dynamics of Gumboro disease; for instance, [7] formu-
lated a model to investigate the impact of the environment
in the spread of Gumboro infections while [8] described a
model to describe the effects of vaccination and biosecurity
measures in controlling Gumboro infection.

Although several Gumboro models have been developed,
to the best of our knowledge, a Gumboro model with path-
ogen compartment has not been developed. In this paper,
we formulate a Gumboro model capturing the pathogen
compartment to study the dynamics of Gumboro disease.

2. Model Formulation

A model with Gumboro pathogen population Ng and the
chicken population Nc is developed in this research. Thus,
the total population at a given time t is N t =Nc t +
Ng t . Gumboro pathogen population Ng has one compart-
ment consisting of concentration of Gumboro virus in the
environment CV . The chicken population Nc is grouped into
four compartments which consist of susceptible chicken S,
birds that are at early stages of infection with Gumboro Eg,
birds that are in acute stages of infection with Gumboro Ig
, and those that will recover from Gumboro disease in both
early and acute stages of infections simultaneously R. The
model assumes that the bird population recruitment rate to
the susceptible compartment will be Λ. The susceptible birds
are infected with Gumboro at the rate of ωCV /τ2 + CV .
Where ω is the contact rate of susceptible birds with an
IBD virus-contaminated environment, τ2 is the IBD virus
concentration in the environment with a 50% probability
of Gumboro infections. All bird populations experience nat-
ural death at the rate η. Additionally, they die from Gum-
boro at the rate of μ. The Gumboro-infected birds in both
stages of infection shed the virus to the environment at the
rates ω1−2 which die at the rate α2, while σg and δg are
recovery rates for birds at both early and acute stages of
infection. Birds at the early stages of Gumboro infections
move to the acute stages of infection at the rates ϕg.

2.1. Model Assumptions. The model assumptions are as
follows:

1. The bird species that are infected with Gumboro is
chicken.

2. Chickens are recruited into the system by birth or
immigration.

2.2. Model Flow Chart and Equations. From Figure 1, the fol-
lowing equations are developed:

dS
dt

=Λ −
ωCv

τ2 + Cv
+ η S

dEg

dt
= ωCv

τ2 + Cv
S − σg + ϕg + η + μ Eg

dIg
dt

= ϕgEg − δg + η + μ Ig

dR
dt

= σgEg + δgIg − ηR

dCV

dt
= ω1Eg + ω2Ig − α2CV

1

3. Basic Properties of the Model

In this section, we discuss the positivity and boundedness of
the solutions of the model.

3.1. Positivity of the Solutions of the Model

Theorem 1. There exists a nonnegative solution set S, Eg,
Ig, R, CV t of model (1) for all t > 0 given that the initial
conditions S 0 > 0, Eg 0 ≥ 0, Ig 0 ≥ 0 R 0 ≥ 0, CV 0 ≥
0 in ℝ5

+ have nonnegative values.

Proof 1. From the first equation of system (1), we have

ds
dt

=Λ − γg + η S where γg =
ωCv

τ2 + Cv
2

Equation (2) can be expressed as

ds
dt

> − γg + η S 3

Separating the variables, we obtain

ds
s
> − γg + η dt 4

Integrating on both sides of Equation (4), we have ln
S > − γg + η t + c1 or

S t > ce− γg+η t 5

From Equation (5), it is clear that S 0 = c for t = 0.
Therefore, S t > S 0 e− γg+η t and as t⟶∞, we have

S t > 0∀t > 0.
Also from the second equation of system (1)

dEg

dt
= γgS+− σg + ϕg + η + μ Eg
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we have

dEg

dt
≥ − σg + ϕg + η + μ Eg

Solving the above equation by separation of variables, we
have

dEg

Eg
≥ − σg + ϕg + η + μ dt

Upon integrating on both sides, we have ln Eg t ≥
− σg + ϕg + η + μ t + c:

⇒ln Eg t > ce− σg+ϕg+η+μ t 6

Clearly for t = 0, c = Eg 0 .
Thus, Equation (6) becomes

E t ≥ Eg 0 e− σg+ϕg+η+μ t

and as t⟶∞, we have
Applying the same method to other equations of the sys-

tem (1), we get

dIg
dt

≥ − δg + η + μ Ig ⇒ Ig t ≥ Ig 0 e− δg+η+μ t ≥ 0

dR
dt

≥ −ηR⇒ R t ≥ R 0 e−ηt ≥ 0

dCV /dt ≥ −α2CV ⇒ CV t > CV 0 e−α2t ≥ 0. Thus S 0
> 0, Eg 0 ≥ 0, Ig 0 ≥ 0, R 0 ≥ 0, CV 0 ≥ 0 for all t > 0.

3.2. Boundedness of the Solutions of the Model. Let Ω = ΩC
∪ΩCV

⊂ℝ5
+ be a feasible region in which the solutions of

the total population are bounded, where ΩC is the feasible
region of the solutions of the bird population and that of
the Gumboro pathogen population is given by ΩCV

. We
show that the solutions of the system (1) are bounded in
the feasible region.

The total bird population is NC given by

NC = S t + Eg t + Ig t + R t

dNC

dt
= dS

dt
+
dEg

dt
+
dIg
dt

+ dR
dt

Thus, from system (1), we have

dNC

dt
=Λ − η S t + Eg t + Ig t + R t − μEg + μIg

7

When the birds are not infected, Equation (7) reduces to

dNC

dt
≤Λ − ηNc 8

Upon solving Equation (8), we get

Nc t ≤
Λ

η
+ Nc 0 −

Λ

η
e−ηt 9

And taking limits as t⟶∞, we have

Nc ≤
Λ

η
10

Thus, the bird population is bounded in

ΩC = S t , Eg t , Ig t , R t ∈ℝ4
+ Nc ≤

Λ

η

EgS Ig

R

CV

Λ

𝜂

𝜂

𝜂 + 𝜇 𝜂 + 𝜇

𝛼2

ω1 ω2

ωCv

τ2+Cv g

δgσg

Figure 1: Flow chart.
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Considering the last equation of system (1), that is Equa-
tion (10), we have

dCV

dt
= ω1Eg + ω2Ig − α2CV 11

Upon reduction of Equation (11), we have

dNg

dt
≤
Λ ω1 + ω2

η
− α2Ng 12

By using the integrating factor, we solve Equation (12)
to get

Ng ≤
Λ ω1 + ω2

ηα2
+ Ng 0 −

Λ ω1 + ω2
ηα2

e−α2t 13

Taking the limit of Equation (13), as t tends to infin-
ity, gives Ng ≤Λ ω1 + ω2 /ηα2. Thus, the Gumboro popu-
lation is bounded in the region

ΩCV
= CV t ∈ℝ1

+ Ng ≤
Λ ω1 + ω2

ηα2

Since the bird population and Gumboro pathogen
population are bounded, then the model will be analyzed
in a suitable feasible region

Ω = S, Eg, Ig, R ∈ℝ4
+ ; CV ∈ℝ+ ; S > 0

Eg, Ig, R, CV ≥ 0 ;Nc ≤
Λ

η

Ng ≤
Λ ω1 + ω2

ηα2

4. Analysis of the Model

4.1. Disease-Free Equilibrium (DFE) Point. The DFE of the
system (1) is computed by letting S = S∗, Eg = E∗

g = 0, Ig =
I∗g = 0, R = R∗ = 0, and CV = C∗

V = 0 and setting the right-
hand side of the equations of the system (1) equal to zero,
then solving the resulting system of equations. Hence, we get

DFE =E∗ = S∗, E∗
g , I∗g , R∗, C∗

V = Λ

η
, 0, 0, 0, 0

4.2. Reproduction Number for Gumboro Model. The repro-
duction number R0g is described as the average number of
secondary cases that result from an average initial case in a
completely susceptible population in [9]. In our situation,
the reproduction number R0g is the average number of sec-
ondary cases resulting from a typical Gumboro infection
case in a completely uninfected population. R0g is found
using the Next Generation Matrix approach by [10]. Let
the rates of new infections in class j be denoted by f j, while
the rates of chicken transfers into and out of class j are rep-

resented by vj. The Next Generation Matrix is given by FV−1,
where F and V are the Jacobian matrices of the vectors f j and
vj, respectively, at E

∗
g. The following equations capture the

infected population.

dEg

dt
= ωCv

τ2 + Cv
S − σg + ϕg + η + μ Eg

dIg
dt

= ϕgEg − δg + η + μ Ig

dCV

dt
= ω1Eg + ω2Ig − α2CV

14

From the system (14), we have

f i =

ωCV

τ2 + CV
S

0
0

Also, from the system (14), we have

vi =
σg + ϕg + η + μ Eg

−ϕgEg + δg + η + μ Ig

−ω1Eg − ω2Ig + α2CV

By definition of F and V , we have

F =
0 0 ωΛ

τ2η

0 0 0
0 0 0

and V =
σg + ϕg + η + μ 0 0

−ϕg δg + η + μ 0
−ω1 −ω2 α2

where
c2 = σg + ϕg + η + μc5 = δg + η + μ

Using Mathematica software, the inverse of V is given by

V−1 =

1
σg + ϕg + η + μ

0 0

ϕg

σg + ϕg + η + μ δg + η + μ

1
δg + η + μ

0

δg + η + μ ω1 + ϕgω2

σg + ϕg + η + μ c5α2

ω2
δg + η + μ α2

1
α2
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Thus

FV−1 =

ωΛ δg + η + μ ω1 + ϕgω2

τ2η σg + ϕg + η + μ δg + η + μ α2

ωΛω2
τ2η δg + η + μ α2

ωΛ

τ2ηα2

0 0 0
0 0 0

which implies that the basic reproduction number, R0g, for
the Gumboro model is given by

R0g =
ωΛ c5ω1 + ϕgω2

τ2ηc2c5α2

=
ωΛ δg + η + μ ω1 + ϕgω2

τ2η σg + ϕg + η + μ δg + η + μ α2

4.3. Local Stability of DFE. The DFE E∗
g is locally asymp-

totically stable if all the real parts of the eigenvalues of the
Jacobian matrix of the system (1) at the DFE E∗

g are all
negative.

The Jacobian matrix of the system (1) at the DFE E∗
g is

given by

J E∗
g =

−η 0 0 0 −
ωΛ

τ2η

0 − σg + ϕg + η + μ 0 0 ωΛ

τ2η

0 ϕg − δg + η + μ 0 0
0 σg δg −η 0
0 ω1 ω2 0 −α2

15

From the Jacobian matrix (15), we have the following
characteristic equation:

λ + η 2 λ3 + σg + ϕg + η + μ + δg + η + μ + α2 λ2

+ σg + ϕg + η + μ δg + η + μ + α2 σg + ϕg + η + μ

+ δg + η + μ −
ωΛω1
τ2η

λ + σg + ϕg + η + μ δg + η + μ α2

−
ωΛ δg + η + μ ω1 + ϕgω2

τ2η
= 0

16

In view of Equation (16), λ1 = −η and λ2 = −η are the
eigenvalues of the Jacobian matrix (15). The other three

eigenvalues can be obtained from the following reduced
characteristic equation:

a0λ
3 + a1λ

2 + a2λ + a3 = 0 17

where

a0 = 1

a1 = σg + ϕg + η + μ + δg + η + μ + α2

a2 = σg + ϕg + η + μ δg + η + μ + α2 σg + ϕg + η + μ

+ δg + η + μ −
ωΛω1
τ2η

= δg + η + μ σg + ϕg + η + μ + α2

+
ωΛϕgω2

δg + η + μ τ2η
+ α2 σg + ϕg + η + μ 1 − R0g

a3 = σg + ϕg + η + μ δg + η + μ α2 −
ωΛ δg + η + μ ω1 + ϕgω2

τ2η

It is clear that

a0, a1 > 0

and a2, a3 > 0 if R0g < 1
According to Routh–Hurwitz criteria, Equation (17) has

roots with negative real parts if a0 > 0, a1 > 0, a2 > 0, a3 > 0
and a1a2 − a0a3 > 0. Thus, the DFE of the system of Equa-
tion (1) is locally asymptotically stable if the following theo-
rem holds.

Theorem 2. The DFE of the system of Equation (1) is locally
asymptotically stable when R0g < 1 and unstable otherwise.

4.4. Global Stability of DFE. In this section, we use the
Castillo–Chavez theorem in [11] to analyse the disease-free
state’s global asymptotic stability. To begin, the system (1)
must be expressed in the following format:

dXg

dt
= F Xg,Zg

dZg

dt
=H Xg,Zg ,H Xg, 0 = 0

18

where Xg = S, R and Zg = Eg, Ig, CV . Uninfected indi-
viduals are represented by the components of Xg ∈ℝ, while
infected ones are represented by the components of Zg ∈ℝ.
The system’s DFE now becomes E∗

g = X∗, 0 , X∗
g = Λ/η ,

0 . The following two conditions must be met to provide
global asymptotic stability.

1. dXg/dt = F Xg, 0 ,Xg is globally asymptotically sta-
ble (GAS)
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2 H Xg,Zg = GZg −H Xg,Zg ,H Xg,Zg

≥ 0∀ Xg,Zg ∈Ω
19

where G =DZg
H X∗

g , 0 is an M-matrix (the off-diagonal

components of G are nonnegative) and Ω represents the
region where the model makes biological sense. The follow-
ing theorem holds if the system (18) meets the aforemen-
tioned two conditions.

Theorem 3. The DFE E∗
g = X∗

g , 0 is a GAS equilibrium of
system (18) provided that R0g < 1 and the assumptions in
Equation (19) are met.

Proof 2. From Theorem 2, the DFE (E∗
g) is locally asymptot-

ically stable when R0g < 1. Consider

dXg

dt
= F Xg,Zg =

Λ −
ωCv

τ2 + Cv
+ η S

σgEg + δgIg+−ηR
⇒ F Xg, 0

=
Λ − ηS

0

dZg

dt
=H Xg,Zg =

ωCv

τ2 + Cv
S − σg + ϕg + η + μ Eg

ϕgEg − δg + η + μ Ig

ω1Eg + ω2Ig − α2CV

20

From Equation (20), we have

G =DZg
H X∗

g , 0

=

0 − σg + ϕg + η + μ 0 0 ωΛ

τ2η

0 ϕg − δg + η + μ 0 0

0 ω1 ω2 0 −α2
21

and it follows that

GZg =

ωCVΛ

τ2η
− σg + ϕg + η + μ Eg

ϕgEg − δg + η + μ Ig

ω1Eg + ω2Ig − α2CV

22

Thus

H Xg,Zg =GZg −H Xg,Zg

=

ωCVΛ

τ2η
− σg + ϕg + η + μ Eg

ϕgEg − δg + η + μ Ig

ω1Eg + ω2Ig − α2CV

−

ωCv

τ2 + Cv
S − σg + ϕg + η + μ Eg

ϕgEg − δg + η + μ Ig

ω1Eg + ω2Ig − α2CV

=

ωCVΛ

τ2η
−

ωCv

τ2 + Cv
S

0

0

Thus, the first and the second conditions in Equation
(19) are satisfied since

dXg

dt
= F Xg, 0

and H Xg,Zg ≥ 0, respectively. Therefore, E∗
g has a global

asymptotic stability

4.5. Existence of the Endemic Equilibrium Point (E∗∗
g )

Theorem 4. There exists a positive endemic equilibrium point
E∗∗

g for the system of Equation (1) provided that R0g > 1.

Proof 3. Letting S = S∗∗, Eg = E∗∗
g , Ig = I∗∗g , R = R∗∗, and CV

= C∗∗
V and setting the right-hand side of the equations of

the system (1) equal to zero, we get

0 =Λ−
ωC∗∗

v

τ2+C∗∗
v

+η S∗∗

0 = ωC∗∗
v

τ2+C∗∗
v

S∗∗ − σg + ϕg + η+μ E∗∗
g

0 = ϕgE
∗∗
g − δg + η+μ I∗∗g

0 = σgE
∗∗
g +δgI∗∗g −ηR∗∗

0 = ω1E
∗∗
g +ω2I

∗∗
g −α2C

∗∗
V

23

Explicitly solving for values of S∗∗,E∗∗
g ,I∗∗g ,R∗∗,C∗∗

V ,
we obtain
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S∗∗ =
R0gτ2η σg + ϕg + η + μ δg + η + μ α2 + τ2ω σg + ϕg + η + μ δg + η + μ α2

ω1 δg + η + μ + ω2ϕg ω ω+η

E∗∗
g =

ητ2α2 δg + η + μ R0g − 1
ω1 δg + η + μ + ω2ϕg ω+η

I∗∗g =
ητ2α2ϕg R0g − 1

ω1 δg + η + μ + ω2ϕg ω+η

R∗∗ =
τ2α2 σg δg + η + μ + δgϕg R0g − 1

ω1 δg + η + μ + ω2ϕg ω+η

C∗∗
V =

ω1 δg + η + μ + ω2ϕg ητ2 R0g − 1

ω1 δg + η + μ + ω2ϕg ω + η

24

Thus, a positive E∗∗
g = S∗∗,E∗∗

g ,I∗∗g ,R∗∗,C∗∗
V exists if

R0g > 1.

4.6. Local Stability of Endemic Equilibrium. We use the cen-
ter manifold theory as described in [12] to assess the stabil-
ity of the endemic equilibrium, E∗∗

g , because evaluating the
eigenvalues of the Jacobian matrix of system (1) at the
endemic equilibrium is complicated. Theorem 4.1 in [12]
outlines the procedure of analyzing the local stability of
endemic equilibrium in a nutshell. The coefficients, a and
b of the normal form, are two key quantities in expressing
the system’s dynamics on the center manifold theory as
described in Theorem 4.1 in [12]. According to part (iv)
of Theorem 4.1 in [12], if a < 0 and b > 0, the endemic
equilibrium E∗∗

g is locally asymptotically stable for R0g > 1
but close to 1.

Theorem 5. The endemic equilibrium E∗∗
g is locally asymp-

totically stable if R0g > 1

Proof 4. By using the center manifold theory, Theorem 4.1 in
[12], we rename the variables in the system (1) as S = x1,
Eg = x2, Ig = x3, R = x4, and CV = x5 such that X = x1, x2,
x3, x4, x5 T . Further, by using X = x1, x2, x3, x4, x5 T , the
system (1) can be written in the form dX/dt = F X , with
f1, f2, f3, f4, f5

T , as follows:

dx1
dt

= f1 =Λ −
ωx5

τ2 + x5
+ η x1

dx2
dt

= f2 =
ωx5

τ2 + x5
x1 − σg + ϕg + η + μ x2

dx3
dt

= f3 = ϕgx2 − δg + η + μ x3

dx4
dt

= f4 = σgx2 + δgx3 − ηx4

dx5
dt

= f5 = ω1x2 + ω2x3 − α2x5

25

Suppose that ω = ω∗ is a bifurcation parameter when
R0g = 1, solving for ω∗ for R0g = 1 from

R0g =
ωΛ δg + η + κ ω1 + ϕgω2

τ2η σg + ϕg + η + μ δg + η + κ α2
= 1

we have

ω∗ =
τ2η σg + ϕg + η + μ δg + η + μ α2

Λ δg + η + μ ω1 + ϕgω2
26

The Jacobian matrix of the system (25) at E∗
g with ω =

ω∗ is given as

J∗ E∗
g =

−η 0 0 0 −
ω∗Λ

τ2η

0 − σg + ϕg + η + μ 0 0 ω∗Λ

τ2η

0 ϕg − δg + η + μ 0 0
0 σg δg −η 0
0 ω1 ω2 0 −α2

27

The Jacobian matrix (27) has zero eigenvalues close to
ω = ω∗; thus, the center manifold theory is utilized to examine
the dynamics of the system. Let w = w1,w2,w3,w4,w5

T , a
right eigenvector associated with the Jacobian matrix (Equa-
tion (27)), be close to ω = ω∗, then

−η 0 0 0 −
ω∗Λ

τ2η

0 − σg + ϕg + η + μ 0 0 ω∗Λ

τ2η

0 ϕg − δg + η + μ 0 0

0 σg δg −η 0

0 ω1 ω2 0 −α2

w1

w2

w3

w4

w5

=

0

0

0

0

0

⇒

−ηw1 −
ω∗Λ

τ2η
w5 = 0

− σg + ϕg + η + μ w2 +
ω∗Λ

τ2η
w5 = 0

ϕgw2 − δg + η + μ w3 = 0

σgw2 + δgw3 − ηw4 = 0

ω1w2 + ω2w3 − α2w5 = 0
28
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Solving system (28), we get

w1 = −
ω∗Λ ω1 δg + η + μ + ω2ϕg

τ2η
2α2 δg + η + μ

w2 < 0

w2 =w2 > 0

w3 =
ϕg

δg + η + μ
w2 > 0

w4 =
σg δg + η + μ + δgϕg

η δg + η + μ
> 0

w5 =
ω1 δg + η + μ + ω2ϕg

α2 δg + η + κ
w2 > 0

29

Also, let v = v1, v2, v3, v4, v5 T , a left eigenvector associ-
ated with the Jacobian matrix (Equation (27)), be close to
ω = ω∗, such that

−η 0 0 0 0

0 − σg + ϕg + η + μ ϕg σg ω1

0 0 − δg + η + μ δg ω2

0 0 0 −η 0

−
ωΛ

τ2η

ωΛ

τ2η
0 0 −α2

v1

v2

v3

v4

v5

=

0

0

0

0

0

⇒

−ηv1 = 0

− σg + ϕg + η + μ v2 + ϕgv3 + σgv4 + ω1v5 = 0

− δg + η + μ v3 + δgv4 + ω2v5 = 0

−ηv4 = 0

−
ω∗Λ

τ2η
v1 +

ω∗Λ

τ2η
v2 − α2v5 = 0

30

Solving system (30), we obtain

v1 = 0
v2 = v2 > 0

v3 =
ω2ω

∗Λ

α2τ2η δg + η + μ
v2 > 0

v4 = 0

v5 =
ω∗Λ

α2τ2η
v2 > 0

31

Using the formula described in [12], we compute
a and b:

a = 〠
n

k,i,j=1
vkwiwj

∂2 f k
∂xi∂xj

E∗
g

b = 〠
n

k,i=1
vkwi

∂2 f k
∂xi∂ρ

E∗
g

To get the bifurcation coefficient a, we first obtain
the nonzero partial derivatives of the model system
(25) evaluated at E∗

g , ω∗ . Thus, it is evident that

∂2 f1
∂x1∂x5

= −
ω∗

τ2

∂2 f2
∂x1∂x5

= ω∗

τ2

∂2 f1
∂x25

= 2ω∗Λ

τ22η

∂2 f2
∂x25

= −
2ω∗Λ

τ22η

32

so that

a = −v1w1w5
ω∗

τ2
+ v1w

2
5
2ω∗Λ

τ22η
+ v2w1w5

ω∗

τ2
− v2w

2
5
2ω∗Λ

τ22η

33

Using Equations (29) and (31), Equation (33) can
be written as

Table 1: Parameter description.

Parameter Value Source

Λ 10 [7]

ω 0.000143 (0.000143–0.0143)/day [7]

τ2 0.009/day Assumed

η 0.0001543/day [7]

μ 0.032143/day [7]

ω1 0.008 (0.008–0.08)/day Assumed

ω2 0.009 (0.009–0.09)/day Assumed

α2 0.0900982/day Assumed

θg 0.0039 (0.0039–0.39)/day Assumed

σg 0.0165/day [8]

δg 0.021429/day [7]

ϕg 0.033/day [8]
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a = −v2w
2
2

ω∗2Λ ω1 δg + η + μ + ω2ϕg
2

τ22ηα
2
2 δg + η + μ 2

+ 2ω∗Λ

τ22η

ω1 δg + η + μ + ω2ϕg
α2 δg + η + μ

2

< 0

For the coefficient b, we have the following nonzero
partial derivatives of the model system (25) evaluated at
E∗

g , ω∗ :

∂2 f1
∂x5∂ω∗ = −

Λ

τ2η

∂2 f2
∂x5∂ω∗ = Λ

τ2η

34

Hence,

b = −v1w5
Λ

τ2η
+ v2w5

Λ

τ2η
35

Using Equations (29) and (31), Equation (35) can be
written as

b = v2w2
Λ ω1 δg + η + μ + ω2ϕg

α2 δg + η + μ τ2η
> 0

Since a < 0 and b > 0, it follows that the endemic equi-
librium E∗∗

g is locally asymptotically stable if R0g > 1.

4.7. Global Stability of the Endemic Equilibrium Point

Theorem 6. The endemic equilibrium point E∗∗
g of the system

(1) is GAS if R0g > 1.
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Figure 2: Graphs showing the dynamics of the model when R0g = 0 0737 (a) for susceptible chicken, (b) birds at the early stage of Gumboro
infection, (c) birds at the acute stage of Gumboro infection, and (d) Gumboro virus population with parameter values Λ = 10, ω = 0 000143,
τ2 = 0 009, η = 0 0001543, μ = 0 032143, ω1 = 0 008, ω2 = 0 009, α2 = 0 0900982, θg = 0 0039, σg = 0 0165, δg = 0 021429, and ϕg = 0 033.
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Proof 5. We have shown in Section (4.5) that the endemic
equilibrium point E∗∗

g exists when R0g > 1. Using the Poin-
caré–Bendixson theorem, the global stability of the endemic
equilibrium point E∗∗

g is investigated [13]. It follows from
Dulac’s multiplier, 1/SEgIgRCV , that

∂
∂S

Λ − ωCv/ τ2 + Cv + η S
SEgIgRCV

= −
Λ

S2EgIgRCV

< 0

∂
∂Eg

ωCv/τ2 + Cv S − σg + ϕg + η + μ Eg

SEgIgRCV
= −

ωCv/ τ2 + Cv S

SE2
gIgRCV

< 0

∂
∂Ig

ϕgEg − δg + η + μ Ig
SEgIgRCV

= −
ϕgEg

SEgI
2
gRCV

< 0

∂
∂R

σgEg + δgIg − ηR

SEgIgRCV
= −

σgEg + δgIg
SEgIgR

2CV

< 0

∂
∂CV

ω1Eg + ω2Ig − α2CV

SEgIgRCV
= −

ω1Eg + ω2Ig
SEgIgRC

2
V

< 0

∂
∂S

Λ − ωCv/ τ2 + Cv + η S
SEgIgRCV

+ ∂
∂Eg

ωCv/ τ2 + Cv S − σg + ϕg + η + μ Eg

SEgIgRCV

+ ∂
∂Ig

ϕgEg − δg + η + μ Ig
SEgIgRCV

+ ∂
∂R

σgEg + δgIg − ηR

SEgIgRCV

+ ∂
∂CV

ω1Eg + ω2Ig − α2CV

SEgIgRCV

= −
Λ

S2EgIgRCV

−
ωCv/ τ2 + Cv S

SE2
gIgRCV

−
ϕgEg

SEgI
2
gRCV

−
σgEg + δgIg
SEgIgR

2CV

−
ω1Eg + ω2Ig
SEgIgRC

2
V

< 0

36

Due to the fact that Ω is positively invariant and the
endemic equilibrium exists whenever R0g > 1, there are no
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Figure 3: Graphs showing the dynamics of the model (a) for susceptible chicken, (b) birds at the early stage of Gumboro infection, (c) birds
at the acute stage of Gumboro infection, and (d) Gumboro virus population when R0g = 1 2528 with parameter values Λ = 10, ω = 0 0143,
τ2 = 0 009, η = 0 0001543, μ = 0 032143, ω1 = 0 08, ω2 = 0 09, α2 = 0 0900982, θg = 0 39, σg = 0 0165, δg = 0 021429, and ϕg = 0 033.
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periodic orbits in Ω according to Dulac’s criterion. From the
Poincaré–Bendixson theorem, it follows that all solutions of
the limiting system originating in Ω remain in Ω for all time
t. The absence of periodic orbits suggests that whenever
R0g > 1, the special endemic equilibrium of the Gumboro
model is GAS.

5. Numerical Simulation

Numerical simulations to prove the theoretical results for
the Gumboro disease mathematical model were carried out
using MATLAB ode 45 solver. This was made possible by
the use of some parameters in the literature and others that
were estimated or assumed as shown in Table 1.

From Figure 2, it was shown that the number of birds at
early stages of infection, acute stages of infection, and the
pathogen population converges to zero while the susceptible
birds’ population tends to a constant λ/η when R0g < 1 which
implies that whenever Gumboro disease dies out, only the
susceptible chicken would remain. Figure 3 also shows that
birds at early and acute stages of infection together with the
pathogen population tend towards the endemic equilibrium
point when R0g > 1 while the susceptible birds converge to
zero indicating that Gumboro disease remains endemic.
From Figure 4, it was shown that birds at early stages of
infection increase with the increase in the contact rate of
susceptible to Gumboro disease-contaminated environment.

6. Conclusion

A mathematical model of Gumboro disease transmission
dynamics was formulated in this paper. The disease-free and
endemic equilibrium points were determined, and the
reproduction number was derived. The findings showed that
Gumboro disease dies out whenever R0g < 1 and persists in

the chicken population whenever R0g > 1. Also, it was realized
that minimizing the contact rate of chicken to a contaminated
environment lowers cases of infections in a population. These
numerical simulation findings were found to be in harmony
with the theoretical stability analysis results.

Data Availability Statement

All data is provided in this paper.

Conflicts of Interest

The authors declare no conflicts of interest.

Author Contributions

All the authors collaborated in carrying out this study.
Author I.C. designed the study, author J.S.M. wrote the first
draft of the manuscript and performed the mathematical
analysis of the study and the literature review, and author
W.N.M. performed the numerical simulation. All authors
read and approved the final manuscript.

Funding

The authors received no specific funding for this work.

Acknowledgments

The authors appreciate the ample time given by their respec-
tive universities in writing this manuscript.

References

[1] J. Daraj, “Infectious bursal disease in poultry,” 2019, https://
www.msdvetmanual.com/poultry/infectious-bursal-disease/
infectious-bursal-disease-in-poultry on 23/6/2021.

[2] T. George and B. W. Jessica, Infectious Bursal Disease (GUM-
BORO) in Backyard Chicken, Mississippi state university pub-
lication number P3211, 2018.

[3] M. Mengesha and W. Tsega, “Phenotypic and genotypic
characteristics of indigenous chickens in Ethiopia: a review,”
African Journal of Agricultural Research, vol. 6, no. 24,
pp. 5398–5404, 2011.

[4] W. U. Mutinda, P. N. Nyaga, L. W. Njagi, L. C. Bebora, and
P. G. Mbuthia, “Gumboro disease outbreaks cause high mor-
tality rates in indigenous chickens in kenya,” Bulletin Health
and Production Africa, vol. 61, pp. 571–578, 2018.

[5] B. K. Mishra and D. N. Sinha, “A mathematical model on
avian influenza with quarantine and vaccination,” Journal of
Immunological Techniques & Infectious Diseases, vol. 5, no. 4,
p. 2, 2016.

[6] J. I. Uwakwe, S. C. Inyama, and A. Omame, “Mathematical
model and optimal control of New-Castle disease (ND),”
Applied and Computational Mathematics, vol. 9, no. 3,
pp. 70–84, 2020.

[7] E. A. Omollo and G. Kimathi, “Formulation of a mathematical
model for the transmission dynamics of infectious bursal
disease (IBD), incorporating effects of environmental factors,”
Asian Research Journal of Mathematics, vol. 16, no. 9, pp. 20–
35, 2020.

0 20 40 60 80 100 120 140 160 180

50

100

150

200

250

Time (days)

Bi
rd

s a
t t

he
 ea

rly
 st

ag
e o

f g
um

bo
ro

 in
fe

ct
io

n

ω = 0.009155
ω = 0.09155
ω = 0.9

Figure 4: A graph showing the dynamics of birds at the early stage
of Gumboro infection with different values of ω.

11Journal of Applied Mathematics

https://www.msdvetmanual.com/poultry/infectious-bursal-disease/infectious-bursal-disease-in-poultry
https://www.msdvetmanual.com/poultry/infectious-bursal-disease/infectious-bursal-disease-in-poultry
https://www.msdvetmanual.com/poultry/infectious-bursal-disease/infectious-bursal-disease-in-poultry


[8] J. I. Uwakwe, S. C. Inyama, B. O. Emerenini, and C. A. Nse,
Mathematical and Control Model of Bursal Disease (Ibd), IOSR
Journal of Mathematics (IOSR-JM) e-ISSN, 2019.

[9] O. Diekmann and J. A. P. Heesterbeek,Mathematical Epidemi-
ology of Infectious Diseases: Model Building, Analysis and
Interpretation. Vol. 5, John Wiley & Sons, 2000.

[10] P. Van den Driessche and J. Watmough, “Reproduction num-
bers and sub-threshold endemic equilibria for compartmental
models of disease transmission,” Mathematical Biosciences,
vol. 180, no. 1-2, pp. 29–48, 2002.

[11] C. Castillo-Chavez, Z. Feng, andW. Huang, “On the computa-
tion of R0 and its role on global stability,” Mathematical
Approaches for Emerging and Reemerging Infectious Diseases,
vol. 125, pp. 229–250, 2002.

[12] C. Castillo-Chavez and B. Song, “Dynamical models of tuber-
culosis and their applications,” Mathematical Biosciences and
Engineering, vol. 1, no. 2, pp. 361–404, 2004.

[13] O. Adebimpe, B. O. Moses, and O. J. Okoro, “Global stability
analysis of a SEIR epidemic model with saturation incidence
rate,” International Journal of Mathematical Sciences, vol. 34,
no. 1, 2014.

12 Journal of Applied Mathematics


	Mathematical Modeling of the Transmission Dynamics of Gumboro Disease
	1. Introduction
	2. Model Formulation
	2.1. Model Assumptions
	2.2. Model Flow Chart and Equations

	3. Basic Properties of the Model
	3.1. Positivity of the Solutions of the Model
	3.2. Boundedness of the Solutions of the Model

	4. Analysis of the Model
	4.1. Disease-Free Equilibrium (DFE) Point
	4.2. Reproduction Number for Gumboro Model
	4.3. Local Stability of DFE
	4.4. Global Stability of DFE
	4.5. Existence of the Endemic Equilibrium Point (Eg&midast;&midast;)
	4.6. Local Stability of Endemic Equilibrium
	4.7. Global Stability of the Endemic Equilibrium Point

	5. Numerical Simulation
	6. Conclusion
	Data Availability Statement
	Conflicts of Interest
	Author Contributions
	Funding
	Acknowledgments



