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In this study, we propose a new approach based on fuzzy TODIM (Portuguese acronym for interactive and multicriteria decision-
making) for decision-making problems in uncertain environments. Our method incorporates group utility and individual regret,
which are often ignored in traditional multicriteria decision-making (MCDM) methods. To enhance the analysis and application
of fuzzy sets in decision-making processes, we introduce novel entropy and distance measures for q-rung picture fuzzy sets. These
measures include an entropy measure based on the sine function and a distance measure derived from the Jensen-Shannon
divergence. In our methodology, incorporating the sine function into the entropy measure stands out as a distinctive decision,
grounded in a profound understanding of the inherent characteristics of fuzzy sets. Utilizing the sine function proves especially
advantageous when handling fuzzy sets that exhibit cyclical variations or fluctuations in their membership degrees. We
effectively weight the criteria for an improved evaluation by using this new entropy measure. The introduced distance measure
finds application in the TODIM approach, allowing the execution of TODIM method steps within a fuzzy environment until
the determination of one alternative’s dominance over another—an advancement beyond traditional approaches. We apply our
enhanced fuzzy TODIM method to a real-life construction project management problem from the literature and compare the
results with those in the literature and obtained from other MCDM methods. Our proposed measures are robust, as
demonstrated by the sensitivity analysis that varied the weights of group utility and individual regret, with the results
visualized in a 3D sensitivity plot. The findings demonstrate the superiority of our method in providing a more comprehensive
evaluation of alternatives, making it a useful tool for decision-makers facing complex and uncertain decision-making problems.

1. Introduction

Fuzzy set theory, introduced by Zadeh [1], expands upon
classical set theory’s characteristic function with a member-
ship function taking values in the closed interval [0,1]. Ata-
nassov [2] later extended this concept to intuitionistic fuzzy
sets (IFSs), which incorporate both membership and non-
membership functions. However, fuzzy sets and IFSs are
sometimes insufficient for addressing real-life problems.
Yager [3] introduced Pythagorean fuzzy sets (PyFSs) to
overcome these limitations, characterized by membership
and nonmembership functions with the sum of their squares
between 0 and 1. Yager [4] also proposed q-rung orthopair
fuzzy sets (q-ROFs) for better modeling real-life applica-

tions, characterized by membership and nonmembership
functions with the qth power between 0 and 1. q-ROFs are
generalizations of IFSs and PyFSs, and some main topologi-
cal properties of q-ROFs were investigated by Türkarslan
et al. in [5].

Cường [6] introduced the notion of picture fuzzy sets
(PFSs), characterized by membership, neutral, and non-
membership functions with their sum between 0 and 1. PFSs
expand upon fuzzy sets and IFSs. Kutlu Gündoğdu and Kah-
raman [7] and Ashraf et al. [8] later proposed spherical fuzzy
sets (SFSs) by generalizing PFSs and PyFSs. Li et al. [9] pro-
posed the notion of q-rung picture fuzzy set (q-RPFS) in
2018, expanding upon PFs, q-ROFSs, and SFSs. All these
fuzzy sets provide suitable tools for addressing unexpected
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situations and uncertainties in the input data required for
decision-making problems. Several researchers employed
these sets in multicriteria decision-making (MCDM). For
instance, Seikh and Mandal [10] introduced innovative
operational laws and corresponding aggregation operators
for PFSs. They also studied Archimedean aggregation oper-
ators for q-ROFSs, exploring their applications in the site
selection for software operating units [11]. Ünver et al.
[12] employed SFSs in addressing pattern recognition prob-
lems. Garg [13] introduced certain aggregation operators for
PFSs and applied them in the context of MCDM. Özçelik
[14] conducted an examination of the performances of
MCDMmethods and an optimization model in solving mul-
tiattribute shortest path problems under a fuzzy environ-
ment. Beg et al. [15] used q-RPFS in MCDM problems by
defining some aggregation operators. Akram et al. [16]
focused on MCDM with q-rung picture fuzzy information.
Pinar and Boran [17] proposed a novel distance measure
on q-RPFSs and its application to decision-making and clas-
sification problems. Akram et al. [18] conducted a hybrid
decision-making analysis using complex q-rung picture
fuzzy Einstein averaging operators. In Figure 1, the evolu-
tionary progression of the fuzzy set theory up to q-RPFSs
is depicted.

Entropy, an important measurement method for uncer-
tainty or information, was introduced by Shannon [19].
Zadeh [20] transformed Shannon’s entropy into fuzzy
entropy, measuring fuzziness in a fuzzy set. De Luca and
Termini [21] developed a new entropy based on Shannon’s
entropy, which was later extended to IFSs by Hung and
Yang [22]. Arya and Kumar [23] proposed a picture fuzzy
entropy. Mahnaz et al. [24] also introduced a distance-
based entropy measure for q-ROPFSs, also known as t
-spherical fuzzy sets [25], where the monotonicity condition
of the entropy is not solely dependent on the fuzziness of the
fuzzy sets. Furthermore, a distance measure, a widely used
measurement form, specifies the distance between two enti-
ties and is utilized in numerous decision-making problems
such as TODIM (Portuguese acronym for interactive and
multicriteria decision-making) method (see, e.g., [26–28]).
Distance measures are also applied in medical diagnosis,
pattern recognition, classification, and MCDM. For exam-
ple, Rani and Garg [29] studied distance measures for com-
plex IFSs and their applications in MCDM. Ünver and

Aydoğan [30] proposed distance measures for application
in MCDM problems. Son [31] explored a generalized picture
distance measure and its applications in clustering. Khan
et al. [32] presented biparametric distance and similarity
measures for PFSs and their applications in medical diagno-
sis. Jiang et al. [33] introduced a novel distance measure
between IFSs based on transformed isosceles triangles,
studying its applications in pattern recognition.

The TODIM method, introduced by Gomes and Lima
[34] and incorporating group utility and individual
regret—factors frequently overlooked in traditional MCDM
methods—stands out as a widely employed discrete MCDM
approach applicable to both quantitative and qualitative cri-
teria. In this paper, we present an extended TODIM method
that addresses the limitations of traditional MCDMmethods
by incorporating these crucial factors within the q-rung pic-
ture fuzzy environment. The distinctive choice of this
method over others is grounded in its ability to comprehen-
sively address the complexities of decision-making scenarios,
considering not only the quantitative aspects but also the
qualitative dimensions often crucial in real-world decision
problems. By explicitly integrating group utility and individ-
ual regret, TODIM offers a more nuanced and realistic rep-
resentation of decision scenarios, providing a robust
framework for decision-makers to navigate uncertainties
and varied criteria effectively. This adaptability and inclu-
siveness make TODIM a pragmatic choice, aligning with
the diverse nature of decision environments encountered
in practice. TODIM method determines loss and gain situa-
tions according to all criteria and uses pairwise comparisons
to eliminate discrepancies [34]. It has been extensively
applied to solve MCDM problems in various domains,
including engineering, business, and environmental man-
agement. Recently, a number of fuzzy TODIM method have
emerged in scholarly publications, which utilize fuzzy sets to
address the challenges of uncertainty and vagueness in
decision-making. For instance, Ju et al. [35] presented an
enhanced version of TODIM method within the context of
q-rung picture fuzzy framework, employing the Minkowski
distance. Herrera-Viedma and Cabrerizo [36] developed a
new fuzzy TODIM method to address MCDM problems
with unknown attribute weights. Konwar and Debnath
[37] explored continuity and the Banach contraction principle
in intuitionistic fuzzy n-normed linear spaces. Lourenzutti and
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Figure 1: Development network of fuzzy set theory.
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Krohling [38] studied TODIM in an intuitionistic fuzzy and
random environment. Ren et al. [39] proposed the Pythago-
rean fuzzy TODIM approach for MCDM. Wei [40] applied
the TODIM method to picture fuzzy MCDM.

The present paper introduces an extended TODIM
method that addresses the limitations of traditional MCDM
methods within the q-rung picture fuzzy framework. The
choice of q-RPFSs as the foundation for our methodology
is a strategic one, driven by several compelling reasons that
underscore their suitability for addressing the complexities
of decision-making under uncertainty. Firstly, q-RPFSs gen-
eralize existing fuzzy set models, offering a versatile and uni-
fied framework that can seamlessly integrate various fuzzy
set paradigms. Their incorporation allows us to effectively
represent uncertainties and vagueness in decision-making
scenarios, making them well suited for real-world applica-
tions where input data may be inherently uncertain. More-
over, the inclusion of a neutral degree for an element in a
q-RPFS enhances the model’s capability to handle uncer-
tainty, providing a more nuanced representation. This is
particularly advantageous in decision-making scenarios
where a balanced and neutral perspective is essential. By
choosing q-RPFSs, we are aligning our methodology with a
proven and effective paradigm that extends beyond tradi-
tional fuzzy set models.

In the present work, we propose new entropy and dis-
tance measures for q-RPFSs, utilizing the sine function and
Jensen-Shannon divergence, respectively. The choice of
using the sine function instead of the absolute value function
to define an entropy measure is motivated by the desire to
capture the specific characteristics and properties of the
fuzzy sets. While both functions can be used to quantify
the spread or dispersion of values within a set, the sine func-
tion offers certain advantages. Cui and Ye [41] employed the
sine function to define entropy for simplified neutrosophic
sets (SNSs), applying it in the context of MCDM. Garg
[42] utilized the sine function to establish operational laws
for PyFSs. Ashraf et al. [43] explored fuzzy decision support
modeling for Internet finance soft power evaluation,
employing sine trigonometric Pythagorean fuzzy informa-
tion. Türkarslan et al. [44] applied the sine function to define
cross-entropy for consistency fuzzy sets (CFSs). In this
paper, the sine function exhibits a periodic nature, oscillat-
ing between zero and one, which allows it to capture the
cyclical patterns or fluctuations that may exist in the mem-
bership degrees. This can be particularly useful in scenarios
where the data exhibits periodic or repetitive variations
[42]. Furthermore, the absolute value function only con-
siders the magnitude of the values and disregards any direc-
tional information or patterns. It treats positive and negative
deviations from a central point equally, without taking into
account any potential asymmetry or specific distribution
characteristics. Taking into account these advancedmeasures,
our proposed method offers a resilient approach to weighing
criteria and delivers improved evaluation capabilities.

In this manuscript, we also perform sensitivity analysis
by altering the weights assigned to group utility and individ-
ual regret, along with adjusting the parameters employed in
the extended TODIM method. We demonstrate the practical

utility of the proposed method by applying it to a real-life
problem from the literature [15] in construction project
management and compare the results with those obtained
using other MCDM methods. The findings show that the
proposed method outperforms the other methods in terms
of sensitivity analysis and providing a more comprehensive
evaluation of alternatives, highlighting the importance of
considering group utility and individual regret in MCDM
problems.

The following advantages stem from our research and
the development of these pioneering information measures:

(1) This paper introduces new entropy and distance
measures for q-RPFSs, expanding the existing reper-
toire of measurement techniques and providing
alternative methods for assessing uncertainty and
relationships in complex decision-making problems

(2) The proposed information measures are expected to
improve the effectiveness of MCDM processes, offer-
ing better decision support by accounting for a wider
range of uncertainty and vagueness inherent in real-
world problems

(3) The introduced entropy measure plays a crucial role
in the enhanced TODIM method by effectively
assigning weights to criteria. Notably, in contrast to
the classical TODIM approach, this weighting pro-
cess takes place within the fuzzy environment

(4) The distance measure, derived from the Jensen-
Shannon divergence, possesses the capability to
gauge the similarity between objects while overcom-
ing certain limitations of other divergence measures.
In contrast to the Kullback-Leibler divergence, which
lacks symmetry, the Jensen-Shannon divergence
symmetrically quantifies the dissimilarity between
two objects. Consequently, incorporating the pro-
posed distance measure in the TODIM method
enhances the robustness of the approach

(5) This research demonstrates the practical application
of the proposed entropy and distance measures by
integrating them into the well-established extended
TODIM method. This integration showcases how
the new measures can be used in real-life decision-
making scenarios

(6) q-RPFSs extend the scope of several established fuzzy
set models, facilitating the smooth integration of
diverse fuzzy set paradigms. Notably, the inclusion
of the neutral degree for an element in a fuzzy set
enhances the treatment of uncertainty, contributing
to the improved handling of fuzzy set uncertainties

(7) By comparing the results obtained using the new
measures in an extended TODIM method to those
from existing literature, the paper highlights the
effectiveness and potential advantages of using the
proposed entropy and distance measures in MCDM
problems
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The rest of the paper is organized as follows: In Section
2, we give a comprehensive exploration of the foundational
concepts underpinning our research. We revisit key theoret-
ical underpinnings of fuzzy set theory, emphasizing its evo-
lution from classical set theory to more advanced forms
such as q-ROFSs, PFSs, SFSs, and q-RPFSs. The section is
aimed at establishing a robust theoretical foundation for
the subsequent discussions on decision-making methodolo-
gies. We also give a short information about fuzzy entropy
measures. Section 3 is dedicated to introducing novel infor-
mation measures tailored specifically for q-RPFSs. Here, we
define and elaborate on innovative entropy and distance
measures, incorporating the sine function and Jensen-
Shannon divergence, respectively. These measures are
designed to enhance the evaluation capabilities of decision-
making processes, offering a unique perspective on the
weighing of criteria in complex decision scenarios. In Sec-
tion 4, we present our extended TODIM method, addressing
the limitations observed in traditional MCDM methods by
incorporating group utility and individual regret. This sec-
tion provides a step-by-step elucidation of the methodologi-
cal enhancements, emphasizing the rationale behind the
choice of the sine function in defining entropy measures.
Furthermore, we apply the extended TODIM method to a
practical, real-life construction project management prob-
lem sourced from the literature. We provide a comparative
analysis of the solution using another distance-based
MCDM method and conduct a sensitivity analysis. Finally,
in Section 5, we conclude the paper.

2. Preliminaries

In this section, we provide a brief overview of some funda-
mental concepts in fuzzy set theory. Throughout this paper,
we operate under the assumption that X = x1,⋯, xn rep-
resents a finite universal set and assume q ≥ 1.

Definition 1 (see [4]). A q -ROFS A within X can be repre-
sented as

A = x, γA x , ζA x : x ∈ X , 1

where γA X ⟶ 0, 1 and ζA X⟶ 0, 1 are functions
satisfying the condition γqA x + ζqA x ≤ 1 for any x ∈ X.

Definition 2 (see [6]). A PFS A within X can be represented
as

A = x, γA x , ηA x , ζA x : x ∈ X , 2

where γA X⟶ 0, 1 , ηA X⟶ 0, 1 , and ζA X⟶ 0,
1 are functions satisfying the condition γA x + ηA x + ζA
x ≤ 1 for any x ∈ X. The functions γA, ηA, and ζA are
referred to as the membership function, neutral function,
and nonmembership function of A, respectively.

Definition 3 (see [7, 8]). A SFS A within X can be repre-
sented as

A = x, γA x , ηA x , ζA x : x ∈ X , 3

where γA X ⟶ 0, 1 , ηA X⟶ 0, 1 , and ζA X ⟶ 0,
1 are functions satisfying the condition γ2A x + η2A x + ζ2A
x ≤ 1 for any x ∈ X. The functions γA, ηA, and ζA are
referred to as the membership function, neutral function,
and nonmembership function of A, respectively.

To briefly revisit the concept, the Hessian matrix of a
function f x1,⋯, xn with multiple variables is given by

ℍ f =

∂2 f
∂x21

∂2 f
∂x1∂x2

⋯
∂2 f

∂x1∂xn

∂2 f
∂x2∂x1

∂2 f
∂x22

⋯
∂2 f

∂x2∂xn
⋮ ⋮ ⋱ ⋮

∂2 f
∂xn∂x1

⋯ ⋯
∂2 f
∂x2n

4

If ℍ f is positive definite, then the function f is strictly
convex. If ℍ f is negative definite, then the function f is
strictly concave at a point in its domain.

2.1. q-Rung Picture Fuzzy Sets. We revisit the definition of
q-RPFS, which will be utilized to establish a knowledge
measure for q-RPFSs.

Definition 4 (see [15]). A q-RPFS A in X is represented as
follows:

A = x, γA x , ηA x , ζA x : x ∈ X 5

Here, γA X ⟶ 0, 1 , ηA X⟶ 0, 1 , and ζA X
⟶ 0, 1 are functions satisfying γqA x + ηqA x + ζqA x ≤ 1
for all x ∈ X. The functions γA, ηA, and ζA are referred to
as the membership function, neutral function, and non-
membership function of A, respectively. We denote the trip-
let of nonnegative numbers α = γ, η, ζ as a q-rung picture
fuzzy value (q-RPFV) if γq + ηq + ζq ≤ 1.

It is important to note that if ηA x = 0 for every x ∈ X,
then set A becomes a q-ROFS. For q = 1 and q = 2, set A
transforms into a PFS and a SFS, respectively.

We now review some set operations for q-RPFSs.

Definition 5 (see [15]). Let A = γA x , ηA x , ζA x x ∈ X
and B = γB x , ηB x , ζB x x ∈ X be two PFNs.

(i) A ∪ B = x, max γA x , γB x , max ηA x , ηB x ,
min ζA x , ζB x x, max γA x , γB x , max ηA
x , ηB x , min ζA x , ζB x x ∈ X
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(ii) A ∩ B = x, min γA x , γB x , min ηA x , ηB x ,
max ζA x , ζB x x ∈ X

(iii) The complement Ac of A is given with Ac = ζA x ,
ηA x , γA x x ∈ X

Now, we revisit a score function associated with the
q-rung picture score function.

Definition 6 (see [15]). Let A = γA x , ηA x , ζA x x ∈ X
and B = γB x , ηB x , ζB x x ∈ X be two PFNs. The
score function s A is defined as

s A = 1
3 1 + γq + ηq − ζq 6

The accuracy function h A is defined as

h A = 1
2 1 +max γq, ηq − ζq 7

3. q-Rung Picture Fuzzy Information Measures

This section introduces new information measures for
q-RPFSs, which include measures of entropy and distance.
In the literature, several measures have been proposed to cap-
ture the uncertainty and vagueness inherent in fuzzy sets,
with the entropy measure being particularly significant [19,
21–23, 45]. Entropy measures the uncertainty or randomness
of a fuzzy set and has found various applications in the
decision-making, pattern recognition, and classification.
Therefore, it is essential to define a proper entropy measure
for q-RPFSs to understand the degree of uncertainty or
vagueness in the data.

3.1. A New q-Rung Picture Fuzzy Entropy Measure. Arya and
Kumar [23] introduced an entropy measure for PFSs. Here,
we represent the conditions for the entropy measures appli-
cable to q-RPFSs.

Definition 7. Let q -RPFS(X) be the set of all q-RPFSs on X.
A q-rung picture fuzzy entropy measure is a fuction E q
− RPFS X ⟶ 0, 1 satisfying the following properties:

E1. If A is a crisp set, then E A = 0.
E2. E A = 1 if and only if A = x, 1/2 1/q, 1/2 1/q,

1/2 1/q : x ∈ X .
E3. E Ac = E A .
E4. E A ≤ E B if A is less fuzzier than B; that is, γqA x

≤ γqB x , ηqA x ≤ ηqB x , and ζqA x ≤ ζqB x if max γqB x , ηqB
x , ζqB x ≤ 1/2 or γqA x ≥ γqB x , ηqA x ≥ ηqB x , and ζqA x
≥ ζqB x if min γB x , ηB x , ζB x ≥ 1/2.

Inspired by [41], we introduce a novel fuzzy entropy
measure for q-RPFSs. Let A be a q-RPFS in X. We define
the function E q‐RPFS X ⟶ 0, 1 as follows:

E A = 1
3n〠

n

i=1
sin γqA xi π + sin ηqA xi π + sin ζqA xi π ,

8

where q‐RPFS X is the set of all q-RPFS on X.

Theorem 8. The measure E A is a q-rung picture fuzzy
entropy measure.

Proof. E1. If A is a crisp set, then we get

γA xi = 1, ηA xi = 0, ζA xi = 0, 9

or

γA xi = 0, ηA xi = 0, ζA xi = 1 10

Thus, we obtain

E A = 1
3n〠

n

i=1
sin γqA xi π + sin ηqA xi π + sin ζqA xi π = 0

11

E2. If A = x, 1/2 1/q, 1/2 1/q, 1/2 1/q : x ∈ X , then
we obtain

E A xi = 1
3n〠

n

i=1
sin γqA xi π + sin ηqA xi π + sin ζqA xi π

= 1
3n〠

n

i=1
3 sin π

2 = 1

12

To prove the sufficiency, consider the function f defined
by f γ, η, ζ = sin γqπ + sin ηqπ + sin ζqπ for γ, η, ζ ∈
0, 1 . Thus, we have

∂f γ

∂γ
= πqγq−1 cos γqπ 13

To find the critical points, we need to solve

πqγq−1 cos γqπ = 0 14

Then, we have γqπ = π/2 + kπ for any integer k. So, we
obtain γq = 1/2 + k. Since γ ∈ 0, 1 , we get k = 0 and so
γq = 1/2. Similarly, we have ηq, ζq = 1/2. So, the point P =
1/2 1/q, 1/2 1/q, 1/2 1/q is a critical point. Zero is not

considered as it makes the function zero so it cannot make
the function maximum. On the other hand, we have

K γ = ∂2 f γ

∂γ2
= −πqγq−2 cos πγq − q cos πγq + πqγq sin πγq

15
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and get the following Hessian matrix:

ℍ γ, η, ζ =
K γ 0 0
0 K η 0
0 0 K ζ

16

Therefore, we have

ℍ P =

−
1

2 2q−2 /q π
2q2 0 0

0 −
1

2 2q−2 /q π
2q2 0

0 0 −
1

2 2q−2 /q π
2q2

= 1
2 2q−2 /q π

2q2

−1 0 0

0 −1 0

0 0 −1
17

Since the Hessian matrix ℍ P is negatively defined,
then f takes its maximum value at point P.

E3. The proof is trivial.
E4. Letmax γqB xi , η

q
B xi , ζ

q
B xi ≤ 1/2. In this case, ifA

is less fuzzier than B, we have γqA x ≤ γqB x ≤ 1/2, ηqA x ≤
ηqB x ≤ 1/2, and ζqA x ≤ ζqB x ≤ 1/2. Thus, we get πγqA x ≤
πγqB x ≤ π/2, πηqA x ≤ πηqB x ≤ π/2, and πζqA x ≤ πζqB x
≤ π/2. Since the sine function is increasing over 0, π/2 , the
proof is completed. The proof for the other case can be estab-
lished similarly.

Remark 9. Cui and Ye [41] provided a comparable entropy
for SNSs, while Türkarslan et al. [44] applied a similar con-
cept to define a cross-entropy for CFSs. The sine function
introduces a distinctive feature to the entropy measure by
exhibiting a periodic nature. Unlike the absolute value func-
tion, which remains constant in its behavior, the sine func-
tion oscillates between zero and one in a periodic fashion.
This periodicity enables the entropy measure to capture
cyclical patterns and fluctuations that may exist within the
membership degrees of fuzzy sets. In decision-making sce-
narios, where data might exhibit periodic or repetitive varia-
tions, the sine-based entropy provides a more nuanced and
accurate representation of the underlying dynamics [42].
Moreover, the sine function introduces a directional compo-
nent that is absent in the absolute value function. While the
absolute value function treats positive and negative devia-
tions from a central point equally, the sine function captures
both magnitude and direction. This is particularly important
in scenarios where asymmetry or specific distribution char-
acteristics play a role in defining the fuzziness of the fuzzy
sets. The sine-based entropy, therefore, offers a more
nuanced and context-specific assessment of the spread or
dispersion of values within a set.

3.2. A New q-Rung Picture Distance Measure. In this sub-
section, we discuss the concept of divergence measure
and its importance in measuring the difference between
two q-RPFSs. We also introduce a distance measure for
q-RPFSs based on the Jensen-Shannon divergence. The
reason for defining a distance measure for q-RPFSs based
on the Jensen-Shannon divergence is that the Jensen-
Shannon divergence has several desirable properties, such
as being symmetric, nonnegative, and satisfying the triangle
inequality. These properties make it a suitable choice for
defining a distance measure between q-RPFSs.

Definition 10 (see [46]). Let X be a discrete random variable,
and let P1 and P2 be two probability distributions for X. The
KL divergence is defined as follows:

KL P1, P2 = 〠
x∈X

P1 x log P1 x
P2 x

18

It is worth noting that KL P1, P2 is nonnegative, addi-
tive, and nonsymmetric.

Now, we define a new distance measure for q-RPFSs.
This new measure can provide more accurate and meaning-
ful results in various applications where q-RPFSs are used.
This measure allows for a more accurate and meaningful
comparison between q-RPFSs, especially in cases where
there are overlaps or uncertainties in the membership
degrees of the elements. In addition, the proposed distance
measure considers the underlying uncertainty and vagueness
in the data, which is a common feature in real-world
decision-making problems.

Definition 11. Let α and β be two q-RPFVs where

α = γα, ηα, ζα
B = γβ, ηβ, ζβ

19

A new q-rung picture fuzzy distance measure is defined
as

D α, β = 1
8 log 2 〠

J∈S
Jqα log

2Jqα
Jqα + Jqβ

+ 〠
J∈S

Jqβ log
2Jqβ

Jqα + Jqβ
,

20

where S = γ, η, ζ, π and πA x = 1 − γqA x − ηqA x − ζqA xq .

Theorem 12. Let α, β, and τ be three q-RPFSs in X; then we
have the following:

D1. D α, β = 0 if α = β.
D2. D α, β =D β, α .
D3. D α, τ ≤D α, β +D β, τ .
D4. 0 ≤D α, β ≤ 1.

Proof. D1-D2. The proofs are trivial.
D3. We consider three cases.
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Case 1. Let γα ≤ γβ ≤ γτ or γτ ≤ γβ ≤ γα. Then, we have

γqα − γqτ = γqα − γqβ + γqβ − γqτ 21

Case 2. Let γβ ≤min γα, γτ . Then, we have γqα − γqβ ≥ 0
and γqτ − γqβ ≥ 0. Therefore, we have

γqα − γqβ + γqβ − γqτ − γqα − γqτ

=
γqα − γqβ + γqτ − γqβ − γqα + γqτ, if γα ≥ γτ

γqα − γqβ + γqt − γqβ + γqα − γqt , if γα ≤ γτ

=
2 γqτ − γqβ , if γα ≥ γτ

2 γqα − γqβ , if γα ≤ γτ

= 2 min γqα, γqτ − γqβ ≥ 0

22

Case 3. Let γβ ≥max γα, γτ . Then, we have γqβ − γqα ≥ 0
and γqβ − γqτ ≥ 0. Thus, we obtain

γqα − γqβ + γqβ − γqτ − γqα − γqτ

=
−γqα + γqβ − γqτ + γqβ − γqα + γqτ, if γα ≥ γτ

−γqα + γqβ − γqτ + γqβ + γqα − γqt , if γα ≤ γτ

=
2 γqβ − γqα , if γα ≥ γτ

2 γqβ − γqτ , if γα ≤ γτ

= 2 γqβ −max γqα, γqτ ≥ 0

23

So far any case, we have γqα − γqβ + γqβ − γqτ ≥ γqα − γqτ .

On the other hand with a similar conclusion, we can get ηqα
− ηqβ + ηqβ − ηqτ ≥ ηqα − ηqτ , ζqα − ζqβ + ζqβ − ζqτ ≥ ζqα − ζqτ ,

and πq
α − πq

β + πq
β − πq

τ ≥ πq
α − πq

τ .

D4. Let p1 = γqα, p2 = ηqα, p3 = ζqα, and p4 = πq
α and q1 = γqβ,

q2 = ηqβ, q3 = ζqβ, and q4 = πq
β. It is clear that

〠
4

i=1
pi = 〠

4

i=1
qi = 1 24

that yields that

〠
J∈S

Jqα log
2Jqα

Jqα + Jqβ
= 〠

4

i=1
pi log

2pi
pi + qi

= KL P,Q ≥ 0,

〠
J∈S

Jqβ log
2Jqβ

Jqα + Jqβ
= 〠

4

i=1
qi log

2qi
pi + qi

= KL Q, P ≥ 0,

25

where P = p1,⋯, p4 and Q = q1,⋯, q4 . Hence, D α, β
= 1/8 log 2 KL P,Q + KL Q, P ≥ 0. It is clear that
D α, β ≤ 1.

4. An Application on MCDM

In this section, we propose an extended TODIM method in
the context of q-rung picture fuzzy sets and apply it to a pre-
viously published MCDM problem. Following the applica-
tion, we perform a sensitivity analysis of the extended
TODIM method.

We now discuss the steps taken in implementing an
extended TODIM method, using a similar approach pro-
posed by Arya and Kumar [23].

4.1. An Extended TODIM Method. In this subsection, we
present the steps of the promised extended TODIM method,
which is a widely used MCDM approach and is applicable to
both quantitative and qualitative criteria. The method is
based on the distance measure D A, B , defined in Definition
11, and the entropy measure E A , defined in Definition 7, is
used to weigh the criteria. The usage of the distance measure
and entropy in the extended TODIM method is crucial for
the proper evaluation of the MCDM problem. The distance
measure D enables the calculation of the dissimilarity
between two q-RPFSs. On the other hand, the entropy mea-
sure E allows for the weighting of the criteria in a more accu-
rate manner. By utilizing both measures in the proposed
extended TODIM method approach, a more comprehensive
evaluation of the criteria can be achieved, resulting in more
effective decision-making.

(i) Step 1: consider B = B1,⋯, Bm and C = C1,⋯,
Cn as the sets of alternatives and criteria,
respectively

(ii) Step 2: let D = dij = γij, ηij, ζij be a q-rung picture
fuzzy decision matrix with alternatives B1,⋯, Bm
and criteria C1,⋯, Cn. The matrix D is given by

D =
B1

⋮

Bm

=
d11 ⋯ d1n

⋮ ⋱ ⋮

dm1 ⋯ dmn

26

The process of determining these values has been estab-
lished in [15] that introduces q-RPFSs. The selection of these
values depends on the specific application domain, the
expertise of the decision-makers, and the nature of the prob-
lem being addressed. The values for the membership func-
tion, nonmembership function, and neutral function are
typically determined through expert knowledge, domain-
specific expertise, and consultation with stakeholders or
decision-makers.

(iii) Step 3: to obtain a normalized q-rung picture fuzzy
decision matrix R = rij from the decision matrix
D = dij , we use the following transformation:
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rij =
dcij, for cost criteria,
dij, for benefit criteria

27

Here, dij
c = ζij, ηij, γij represents the complement

of dij.

(iv) Step 4: to determine the weights of the criteria, use
the equation

wj =
∑m

i=1E rij
∑n

j=1∑
m
i=1E rij

, 28

where wj is the weight of the criterion Cj. Next, obtain the
relative weight of criterion Cj with respect to the most
important criterion, denoted by rwj, as follows:

rwj =
wj

wr
, j, r = 1,⋯, n, 29

where wr is the maximum weight among all the criteria

(v) Step 5: calculate the dominance of alternative Bi over
alternative Bt under criterion Cj using the following
equation:

Φj Bi, Bt =

rwjD rij, rt j
∑n

j=1rwj
, if rij < rt j,

0, if rij = rt j,

−
1
θ

D rij, rt j ∑n
j=1rwj

rwj
, if rij > rt j

30

Here, θ is the attenuation factor of the losses. The gain or
loss nature of the dominance relationship is defined based
on the values of rij and rt j.

(vi) Step 6: construct the dominance matrix Φ j for each
criterion Cj, where each entry Φj Bi, Bt denotes the
dominance of alternative Bi over Bt under criterion
Cj. The matrix Φj has dimensions m ×m and is
given by

Φj =

0 Φ j B1, B2 ⋯ Φ j B1, Bm

Φj B2, B1 0 ⋯ Φ j B2, Bm

⋮ ⋮ ⋱ ⋮

Φ j Bm, B1 Φj Bm, B2 ⋯ 0

31

(vii) Step 7: compute the overall dominance degree of
each alternative Bi under the criterion Cj as the
summation of its dominance over all other alterna-
tives Bt , given by

δj Bi = 〠
m

t=1
Φj Bi, Bt , i = 1,⋯,m 32

We can represent the total dominance consequences for
each alternative as a column vector, given by

Ψj =

〠
m

t=1
Φj B1, Bt

⋮

〠
m

t=1
Φj Bm, Bt

33

By Equation (32), the overall dominance matrix δ can be
obtained as

δij =

〠
m

t=1
Φ1 B1, Bt 〠

m

t=1
Φ2 B1, Bt ⋯ 〠

m

t=1
Φn B1, Bt

⋮ ⋮ ⋱ ⋮

〠
m

t=1
Φ1 Bm, Bt 〠

m

t=1
Φ2 Bm, Bt ⋯ 〠

m

t=1
Φn Bm, Bt

34

(viii) Step 8: compute the positive and negative ideal
solutions. The positive ideal solution is denoted as

δ+ = δ+j j = 1,⋯, n , 35

and the negative ideal solution is denoted as

δ− = δ−j j = 1,⋯, n , 36

where

δ+ = max
1≤i≤m

〠
m

t=1
Φ1 Bi, Bt ,⋯, max

1≤i≤m
〠
m

t=1
Φn Bi, Bt ,

δ− = min
1≤i≤m

〠
m

t=1
Φ1 Bi, Bt ,⋯, min

1≤i≤m
〠
m

t=1
Φn Bi, Bt

37

8 Journal of Applied Mathematics



(ix) Step 9: use the maximum group utility Mi and the
minimum individual regret value Si to calculate the
compromise solution as follows:

Mi = 〠
n

j=1
wj

d δ+j , δij
d δ+j , δ−j

,

Si = max
1≤j≤n

wj

d δ+j , δij
d δ+j , δ−j

38

Here, d δ+j , δij measures the distance between the posi-
tive ideal solution and the current solution δij, while d δ+j ,
δ−j measures the distance between the positive ideal solution
and the negative ideal solution where

d δ+j , δij = max
1≤j≤n

〠
m

t=1
Φ j Bi, Bt − 〠

m

t=1
Φ j Bi, Bt ,

d δ+j , δ−j = max
1≤j≤n

〠
m

t=1
Φj Bi, Bt − min

1≤j≤n
〠
m

t=1
Φj Bi, Bt

39

(x) Step 10: calculate the overall value of Qi as

Qi = τ
Mi −M−

M⊥ −M− + 1 − τ
Si − S−

S⊥ − S−
, 40

where M⊥ =maxi Mi , M
− =mini Mi , S

⊥ =maxi Si , and
S− =mini Si . Here, the coefficient τ and 1 − τ represent

the weights assigned to the maximum group utility Mi
and individual regret Si , respectively

Steps of the extended TODIM method are visualized in
Figure 2.

4.2. Numerical Example

(i) Step 1: in a recent study, Beg et al. [15] have
investigated a MCDM problem using 3-RPFSs
and aggregation operators. A construction supervi-
sor plays a crucial role in overseeing construction
activities at a worksite, involving tasks such as pro-
ject planning, monitoring, and ensuring a safe
working environment. They are responsible for
managing contractors, staff, budgets, and policies
and adhering to schedules. Hiring a competent
construction supervisor is vital for a company’s
efficiency and productivity. In this scenario, a con-
struction company is in the process of recruiting a
supervisor for its ongoing projects. Three alterna-
tives (B1, B2, B3) have appeared for an interview
as alternatives. The evaluation of these candidates
is based on five attributes: the ability to read and
understand blueprints, schematics, and construc-
tion documents (C1); monitoring the project bud-
get C2 ; being highly qualified C3 ; possessing
communication skills C4 ; and having a reason-
able salary demand C5

(ii) Steps 2 and 3: we use the normalized decision matrix
of [15] recalled in Table 1

(iii) Step 4: Table 2 displays the values of criteria weights
calculated using (28)

Todim
Method

Form a MCGDM
problem1

10

9

8

7 6

5

4

3

2
Form a decision matrix
in q-rung picture fuzzy
environment

Calculate the dominance
of each alternative over others

Construct the
dominance matrix

Calculate the
compromise solution

Calculate the overall
value of each alternative

Normalize the
decision matrix

Determine the weight
of each criterion

Compute the overall
dominance degree of
each alternative

Compute the positive
and negative ideal solutions

Figure 2: Flowchart of the extended TODIM method.
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As a result, Table 3 shows the relative weights of each
criterion calculated using (29).

(iv) Steps 5 and 6: to determine the dominance of alter-
native Bi over Bt under criterion Cj, assuming θ = 1,
we calculate five dominance matrices Φ1 to Φ5 as
follows:

Φ1 =
0 00000 −0 1679 −0 35542
0 02986 0 00000 −0 32147
0 06321 0 05717 0 00000

,

Φ2 =
0 0000 −0 46662 0 106671
0 123422 0 0000 0 140379
−0 40329 −0 53072 0 0000

,

Φ3 =
0 0000 −0 62107 −0 56141
0 078836 0 0000 0 047903
0 071263 −0 37738 0 0000

,

Φ4 =
0 0000 −0 38647 −0 53887
0 077622 0 0000 −0 51794
0 108232 0 104029 0 0000

,

Φ5 =
0 0000 0 066169 0 65004

−0 28786 0 0000 0 090677
−0 28279 −0 39448 0 0000

41

(v) Step 7: the resulting overall matrix δ is obtained as
follows:

δ =
−0 52333 −0 35994 −1 18248 −0 92534 0 131173
−0 2916 0 263802 0 12674 −0 44032 −0 19718
0 12038 −0 93401 −0 30612 0 21226 −0 67727

42

(vi) Step 8: the positive and negative ideal solutions are
computed as follows:

δ+ = 0 12038, 0 263802, 0 12674, 0 21226, 0 131173 ,
δ− = −0 52333,−0 93401,−1 18248,−0 92534,−0 67727

43

(vii) Step 9: for i = 1, 2, 3, we compute Mi and Si as
follows:

M1 = 0 60348,
M2 = 0 153399,
M3 = 0 503389,
S1 = 0 188509,
S2 = 0 108138,
S3 = 0 248255

44

(viii) Step 10: the total value of Qi is computed, resulting
in the ranking B3 being superior to B1, which in
turn is superior to B2

Table 1: Normalized decision matrix.

C1 C2 C3 C4 C5
B1 (0.5, 0.3, 0.5) (0.7, 0.5, 0.6) (0.4, 0.6, 0.2) (0.6, 0.1, 0.7) (0.7, 0.5, 0.3)

B2 (0.6, 0.2, 0.4) (0.4, 0.7, 0.2) (0.8, 0.5, 0.2) (0.6, 0.4, 0.4) (0.7, 0.5, 0.6)

B3 (0.7, 0.5, 0.4) (0.3, 0.6, 0.8) (0.7, 0.3, 0.4) (0.9, 0.3, 0.4) (0.6, 0.2, 0.4)

Table 2: Weights of the criteria.

w1 = 0 166916 w2 = 0 248255 w3 = 0 180575 w4 = 0 188509 w5 = 0 215745

Table 3: Relative weights of the criteria.

rw1 = 0 672358 rw2 = 1 000000 rw3 = 0 479902 rw4 = 0 759338 rw5 = 0 869045
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4.3. Comparative Analysis

4.3.1. Comparison with the Existing Literature. The out-
comes of the current study, along with the ranking of [15],
are displayed in Table 4.

The results presented in Table 4 provide insights into the
influence ofQi based on the calculatedQi values and rankings.
According to the table, B3 holds the highest influence, as it
possesses the highest Qi value and is ranked at the top. This
indicates that B3 has the most significant impact among the
evaluated factors. On the other hand, B1 and B2 exhibit lower
influence compared to B3, with B1 being ranked second and
B2 ranked third. TheQi values for B1 and B2 are lower inmag-
nitude, suggesting a relatively weaker impact compared to B3.
Additionally, the rankings of [15] are provided for compari-
son purposes. It is noteworthy that the rankings of B1 and
B2 differ between this study and the referenced work. This dis-
crepancy highlights the potential variability in assessing the
influence of factors, which can arise from different methodol-
ogies, contexts, or perspectives employed in the studies.

The ranking order heavily depends on the specific cri-
teria and their relative weights assigned in each evaluation.
Even a slight variation in the weights can lead to different
rankings. We have demonstrated the superiority of our
approach over the previous one through several key aspects.
The proposed approach incorporates group utility and indi-
vidual regret, which are often overlooked in traditional
methods. By considering both aspects, our approach pro-
vides a more comprehensive evaluation of alternatives, cap-
turing the collective preferences of decision-makers while
addressing individual concerns.

We have introduced novel entropy and distance mea-
sures for q-RPFSs, enhancing the analysis and application
of fuzzy sets in decision-making processes. These measures,
based on trigonometric functions and the Jensen-Shannon
divergence, offer more accurate and meaningful results in
various applications. The use of trigonometric functions
allows for a more flexible and nuanced representation of
uncertainty in q-RPFSs. The Jensen-Shannon divergence
takes into account both the overlapping and differing aspects
of fuzzy sets, resulting in a more comprehensive evaluation
of similarity or dissimilarity. Furthermore, our approach
incorporates the TODIM method, a well-established and
widely used technique for multicriteria decision-making.
By integrating the strengths of TODIM method with the
novel measures and the consideration of group utility and
individual regret, our approach combines robustness, accu-
racy, and practicality.

4.3.2. Comparison with Another MCDMMethod. In this sub-
section, we address the same problem using the Technique

for Order Preference by Similarity to Ideal Solution (TOP-
SIS) [47], another distance-based MCDM technique, and
proceed to compare the outcomes. To facilitate this compar-
ison, we perform defuzzification on the normalized decision
matrix presented in Table 1 by using the score function
defined in [15], as recalled in Definition 6. Thus, we obtain
the decision matrix presented in Table 5.

Upon solving the MCDM problem using TOPSIS, we
identify the optimal alternative as B2, aligning precisely with
the best alternative identified by the proposed TODIM
method. In this solution, the second-best alternative is B1,
while the least favorable option is B3. The closeness coeffi-
cients provide a quantitative measure of the proximity of
each alternative to the ideal solution. Higher closeness coef-
ficients indicate greater proximity to the ideal solution. The
associated closeness coefficients are 0.66, 0.46, and 0.45 for
the respective alternatives.

The consistency in selecting the best alternative, B2, by
both the proposed TODIM method and TOPSIS, lends cred-
ibility to the robustness of the decision-making process. This
convergence suggests that, despite the distinct methodolo-
gies employed, both approaches align in identifying B2 as
the most favorable option. The comparison between the
extended TODIM and TOPSIS is visualized in Figure 3.

4.4. Sensitivity Analysis. Analyzing the sensitivity of the
results to the parameters τ and θ can provide a better under-
standing of the robustness of the method and the relative

Table 4: Qi influence indices.

Ranking Ranking of [15]

B1 0.786801 2 3

B2 0.286801 3 2

B3 0.888498 1 1

Table 5: Defuzzified decision matrix.

C1 C2 C3 C4 C5
B1 0.3423 0.4173 0.4240 0.2913 0.4803

B2 0.3867 0.4663 0.5430 0.4053 0.4173

B3 0.4680 0.2437 0.4353 0.5640 0.3867

B1

B2B3

Extended TODIM
TOPSIS

Figure 3: Comparison visualization between the extended TODIM
and TOPSIS.
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importance of group utility and individual regret in the
decision-making process. Varying these parameters over a
range of values allows for a comparison of the rankings
obtained, which can help decision-makers choose a compro-
mise solution that is stable and satisfactory across different
parameter settings. In addition, the sensitivity analysis can
provide insights into the trade-off between group utility
and individual regret, which can help make informed deci-
sions. In this subsection, we present a comparison and sen-
sitivity analysis of the results obtained with different values
of τ and θ. We investigate the robustness of our proposed
method to variations in these parameters and compare our
results to those obtained by other methods. Specifically, we
vary the values of τ and θ between 0.5 and 3 with an incre-
ment of 0.5 for each parameter.

(i) The value τ = 0 5 is taken, and we get B3 ≻ B1 ≻ B2.
Furthermore, the ranking for different τ values is
given in Table 6. Just using τ = 0 5 resulted in a dif-
ferent ranking. The different rankings obtained for
different values of τ indicate that the overall ranking
of alternatives is sensitive to the weight assigned to
group utility and individual regret. It is important
to note that the choice of τ depends on the
decision-maker’s preferences and priorities. By con-
sidering different τ values, the decision-maker can
have a better understanding of the impact of the
weight assigned to each criterion on the overall rank-
ing of alternatives. This sensitivity analysis can pro-
vide insights into the robustness and reliability of
the decision-making process

(ii) For θ = 0 5, we obtain the overall matrix δ1, as well
as the positive and negative ideal solutions, as
follows:

δ1 =
−1 04665 −0 82656 −2 36495 −1 85068 0 131173
−0 61307 0 263802 0 12674 −0 95827 −0 48504
0 12038 −1 86802 −0 18032 0 21226 −1 35453

,

δ+1 = 0 12038, 0 263802, 0 12674, 0 21226, 0 131173 ,
δ−1 = −1 04665,−1 86802,−2 36495,−1 85068,−1 35453

45

The values of Mi and Si are calculated as follows:

M1 = 0 601539,
M2 = 0 301346,
M3 = 0 478682,
S1 = 0 188509,
S2 = 0 106962,
S3 = 0 248255,

46

and the overall values of Qi are computed for promised τ
values, as shown in Table 7.

As a result, the rankings for various τ values are pre-
sented in Table 8.

(iii) For θ = 1 5, the overall matrix δ2 and positive and
negative ideal solutions are obtained as follows:

δ2 =
−0 34888 −0 20441 −0 78832 −0 61689 0 131173
−0 18445 0 263802 0 12674 −0 26767 −0 10123
0 12038 −0 62267 −0 18032 0 21226 −0 45151

,

δ+2 = 0 12038, 0 263802, 0 12674, 0 21226, 0 131173 ,
δ−2 = −0 34888,−0 62267,−0 78832,−0 61689,−0 45151

47

The values of Mi and Si are calculated as follows:

M1 = 0 605684,
M2 = 0 30359,
M3 = 0 503978,
S1 = 0 188509,
S2 = 0 109114,
S3 = 0 248255,

48

and thus, the overall value of Qi are computed for different τ
values and presented in Table 9. Accordingly, the rankings
for different τ values are presented in Table 10.

Table 6: Rankings for different τ values and θ = 1.

τ Ranking θ = 1
0.5 B3 ≻ B1 ≻ B2

1 B1 ≻ B3 ≻ B2

1.5 B1 ≻ B3 ≻ B2

2 B1 ≻ B3 ≻ B2

2.5 B1 ≻ B3 ≻ B2

3 B1 ≻ B3 ≻ B2

Table 7: Qi influence indices for θ = 0 5.

τ Qi values θ = 0 5
0.5 Q1 = 0 788576 Q2 = 0 00000 Q3 = 0 835442
1 Q1 = 1 000000 Q2 = 0 000000 Q3 = 0 670884
1.5 Q1 = 1 211424 Q2 = 0 00000 Q3 = 0 506326
2 Q1 = 1 422848 Q2 = 0 0000 Q3 = 0 341768
2.5 Q1 = 1 634271 Q2 = 0 0000 Q3 = 0 177209
3 Q1 = 1 845695 Q2 = 0 0000 Q3 = 0 012651
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(iv) For θ = 2, the overall matrix δ3 and positive and
negative ideal solution are obtained as follows:

δ3 =
−0 26166 −0 12664 −0 59124 −0 46267 0 131173
−0 13087 0 263802 0 12674 −0 18135 −0 05325
0 12038 −0 467 −0 11743 0 21226 −0 33863

,

δ+3 = 0 12038, 0 263802, 0 12674, 0 21226, 0 131173 ,
δ−3 = −0 26166,−0 467,−0 59124,−0 46267,−0 33863

49

The values of Mi and Si are calculated as follows:

M1 = 0 607196,
M2 = 0 304401,
M3 = 0 504516,
S1 = 0 188509,
S2 = 0 109936,
S3 = 0 248255,

50

and thus, the overall value of Qi are computed for different τ
values in Table 11.

The rankings for different values of τ are presented in
Table 12.

(v) For θ = 2 5, the overall matrix δ4 and positive and
negative ideal solution are obtained as follows:

δ4 =
−0 20933 −0 07998 −0 47299 −0 37014 0 131173
−0 09873 0 263802 0 12674 −0 12956 −0 02447
0 12038 −0 3736 −0 07969 0 21226 −0 27091

,

δ+4 = 0 12038, 0 263802, 0 12674, 0 21226, 0 131173 ,
δ−4 = −0 20933,−0 3736,−0 47299,−0 37014,−0 27091

51

The values of Mi and Si are calculated as follows:

M1 = 0 608457,
M2 = 0 305073,
M3 = 0 505007,
S1 = 0 188509,
S2 = 0 110922,
S3 = 0 248255,

52

and thus, the overall value of Qi are computed for different τ
values in Table 13.

The ranking for different τ values can be seen in
Table 14.

Table 9: Qi influence indices for θ = 1 5.

τ Qi values θ = 1 5
0.5 Q1 = 0 785306 Q2 = 0 00000 Q3 = 0 831666
1 Q1 = 1 000000 Q2 = 0 00000 Q3 = 0 663331
1.5 Q1 = 1 214694 Q2 = 0 00000 Q3 = 0 494997
2 Q1 = 1 429388 Q2 = 0 00000 Q3 = 0 326663
2.5 Q1 = 1 644083 Q2 = 0 00000 Q3 = 0 158329
3 Q1 = 1 858777 Q2 = 0 00000 Q3 = −0 01001

Table 10: Rankings for different τ values and θ = 1 5.

τ Ranking θ = 1 5
0.5 B3 ≻ B1 ≻ B2

1 B1 ≻ B3 ≻ B2

1.5 B1 ≻ B3 ≻ B2

2 B1 ≻ B3 ≻ B2

2.5 B1 ≻ B3 ≻ B2

3 B1 ≻ B2 ≻ B3

Table 8: Rankings for different τ values and θ = 0 5.

τ Ranking θ = 0 5
0.5 B3 ≻ B1 ≻ B2

1 B1 ≻ B3 ≻Q2

1.5 B1 ≻ B3 ≻ B2

2 B1 ≻ B3 ≻ B2

2.5 B1 ≻ B3 ≻ B2

3 B1 ≻ B3 ≻ B2

Table 11: Qi influence indices for θ = 2.

τ Qi values θ = 2
0.5 Q1 = 0 784029 Q2 = 0 00000 Q3 = 0 830446
1 Q1 = 1 000000 Q2 = 0 00000 Q3 = 0 660892
1.5 Q1 = 1 215971 Q2 = 0 00000 Q3 = 0 491338
2 Q1 = 1 431941 Q2 = 0 00000 Q3 = 0 321784
2.5 Q1 = 1 647912 Q2 = 0 00000 Q3 = 0 15223
3 Q1 = 1 863882 Q2 = 0 00000 Q3 = −0 01732

Table 12: Rankings for different τ values and θ = 2.

τ Ranking θ = 2
0.5 B3 ≻ B1 ≻ B2

1 B1 ≻ B3 ≻ B2

1.5 B1 ≻ B3 ≻ B2

2 B1 ≻ B3 ≻ B2

2.5 B1 ≻ B3 ≻ B2

3 B1 ≻ B2 ≻ B3
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(vi) For θ = 3, the overall matrix δ5 and positive and
negative ideal solution are obtained as follows:

δ5 =
−0 17444 −0 04887 −0 39416 −0 30845 0 131173
−0 07729 0 263802 0 12674 −0 09503 −0 000528
0 12038 −0 31134 −0 05453 0 21226 −0 22576

,

δ+5 = 0 12038, 0 263802, 0 12674, 0 21226, 0 131173 ,
δ−5 = −0 17444,−0 31134,−0 39416,−0 30845,−0 22576

53

The values of Mi and Si are calculated as follows:

M1 = 0 609525,
M2 = 0 305637,
M3 = 0 505459,
S1 = 0 188509,
S2 = 0 111915,
S3 = 0 248255,

54

and thus, the overall value of Qi are computed for different τ
values in Table 15.

The rankings for different τ values can be found in
Table 16.

A comprehensive examination has been conducted for
each τ and θ, revealing valuable insights. The results indicate
that for τ = 0 5, B3 emerges as the best alternative, while B2 is
the worst alternative. However, for τ = 1, 1 5, 2, 2 5, 3, the
best alternatives are consistently identified as B1, with the
worst alternatives varying between B2 and B3. Comparing

these results with the example in the literature [15], we
observe that for τ = 0 5, the best alternative remains as B3,
and the worst alternative is still B2. However, for other
values of τ, the best alternative changes to B1. This discrep-
ancy stems from our unique perspective and the utilization
of a different method in examining the example.

To visually illustrate the outcomes of the sensitivity anal-
ysis for varying τ and θ values, we present a 3D scatter plot
in Figure 4. The plot depicts the overall values of Qi for each
alternative Bi across different combinations of τ and θ.
Through this plot, we can observe the impact of changes in
τ and θ values on the overall ranking of the alternatives.

The findings of this study affirm the effectiveness of the
proposed extended TODIM method in addressing MCDM
problems in the q-RPFS environment. Additionally, the sen-
sitivity analysis conducted by manipulating the τ and θ
values reveals the potential variation in alternative rankings
based on the assigned weights. Hence, careful consideration
should be given to the selection of weights for group utility
and individual regret to obtain the most appropriate rank-
ing. Overall, this study underscores the significance of
adopting different methods and perspectives when
approaching MCDM problems in the q-RPFS environment.

4.5. Evaluation of the Application. In this section, we assess
the effectiveness of applying the extended TODIM method
to the recruitment process for a construction supervisor
within the context of a MCDM problem, as previously delin-
eated by Beg et al. [15].

(1) Using the proposed entropy, our approach assigns
appropriate weights to the criteria based on their rel-
ative importance in the construction supervisor
selection process. This weighting reflects the

Table 13: Qi influence indices for θ = 2 5.

τ Qi values θ = 2 5
0.5 Q1 = 0 782479 Q2 = 0 00000 Q3 = 0 829507
1 Q1 = 1 000000 Q2 = 0 00000 Q3 = 0 659014
1.5 Q1 = 1 217521 Q2 = 0 00000 Q3 = 0 488521
2 Q1 = 1 435043 Q2 = 0 00000 Q3 = 0 318028
2.5 Q1 = 1 652564 Q2 = 0 00000 Q3 = 0 147535
3 Q1 = 1 870085 Q2 = 0 00000 Q3 = −0 02296

Table 14: Rankings for different τ values and θ = 2 5.

τ Ranking θ = 2 5
0.5 B3 ≻ B1 ≻ B2

1 B1 ≻ B3 ≻ B2

1.5 B1 ≻ B3 ≻ B2

2 B1 ≻ B3 ≻ B2

2.5 B1 ≻ B3 ≻ B2

3 B1 ≻ B2 ≻ B3

Table 15: Qi influence indices for θ = 3.

τ Qi values θ = 3
0.5 Q1 = 0 780895 Q2 = 0 00000 Q3 = 0 828775
1 Q1 = 1 000000 Q2 = 0 00000 Q3 = 0 65755
1.5 Q1 = 1 219105 Q2 = 0 00000 Q3 = 0 486326
2 Q1 = 1 438211 Q2 = 0 00000 Q3 = 0 315101
2.5 Q1 = 1 657316 Q2 = 0 00000 Q3 = 0 143876
3 Q1 = 1 876422 Q2 = 0 00000 Q3 = −0 02735

Table 16: Rankings for different τ values and θ = 3.

τ Ranking θ = 3
0.5 B3 ≻ B1 ≻ B2

1 B1 ≻ B3 ≻ B2

1.5 B1 ≻ B3 ≻ B2

2 B1 ≻ B3 ≻ B2

2.5 B1 ≻ B3 ≻ B2

3 B1 ≻ B2 ≻ B3
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significance of each criterion in meeting the overall
objectives of the construction project management

(2) The method evaluates each candidate (B1, B2, and B3)
against the established criteria (C1 to C5). The innova-
tive entropy measures, particularly the sine function,
play a crucial role in quantifying the fuzziness and
uncertainties associated with each candidate’s qualifi-
cations and performance in the specified criteria

(3) Unlike traditional MCDM methods, our proposed
approach integrates group utility and individual
regret into the decision-making process

(4) Sensitivity analysis is conducted by varying the
weights assigned to group utility and individual
regret, along with the parameters τ and θ used in
the extended TODIM method. This analysis pro-
vides insights into the robustness of the proposed
method under different scenarios, offering decision-
makers a comprehensive understanding of its
performance

5. Conclusion

In this paper, we proposed an extended TODIM method for
MCDM problems in the q-RPFS setting. The proposed
method was applied to a construction project manager
selection problem from the literature, and its effectiveness

was demonstrated by comparing the results with previous
studies.

Through the analysis of the results, we found that the
proposed method provided a flexible and efficient frame-
work for handling MCDM problems in a q-RPFS environ-
ment. By considering the weight assigned to group utility
and individual regret, the proposed method could generate
different rankings for different τ values, allowing for sensi-
tivity analysis and a more nuanced understanding of the
decision problem. Furthermore, the results showed that the
proposed method could yield different rankings from previ-
ous studies, indicating the importance of examining a prob-
lem from multiple viewpoints and with different methods.

In conclusion, the proposed extended TODIM method
offers a promising approach for MCDM problems in q-RPFS
environments and could be applied to a range of decision-
making scenarios in various fields. Future research can focus
on exploring additional applications of the proposed method
in various domains and evaluating its effectiveness in differ-
ent contexts. While the method exhibits promise in address-
ing the construction project management problem
scrutinized in this study, its utility can be investigated in
realms beyond, including finance, healthcare, and environ-
mental management. A valuable avenue for research
involves scrutinizing the sensitivity of the method to diverse
parameter values, shedding light on its robustness and sta-
bility. Additionally, extending the method to tackle more
intricate decision problems holds the potential to augment
its practical applicability, furnishing decision-makers with
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Figure 4: 3D sensitivity analysis plot for the extended TODIM method with varying τ and θ values.
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a formidable and versatile tool. Moreover, our method is
adaptable for application to another extension of fuzzy sets,
such as quasirung fuzzy sets (see, e.g., [48, 49]). Ultimately,
the method presented here can be seamlessly incorporated
into fuzzy soft sets, as demonstrated in previous works such
as [50–53].
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