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In this paper, we study asymptotic model change detection in multivariate linear regression by using the Kolmogorov–Smirnov
function of the partial sum process of recursive residuals. We approximate the rejection region and also the power function of
the test by establishing a functional central limit theorem for the sequence of the partial sum processes of the recursive
residuals of the observations. When the assumed model is true, the limit process is given by the standard multivariate
Brownian motion which does not depend on the regression functions. However, when the assumed model is not true (some
models change), the limit process is represented by a vector of deterministic trend plus the standard multivariate Brownian
motion. The finite sample size rejection region and the power of the test are investigated by means of Monte Carlo simulation.
The simulation study shows evidence that the proposed test is consistent in the sense that it attains the power larger than the
size of the test when the hypothesis is not true. We also demonstrate the application of the proposed test method to
Indonesian economic growth data in which we test the adequacy of three-variate low-order polynomial model. The test result
shows that the growth of the Indonesian economy is neither simultaneously constant nor linear. The test has successfully
detect the appearance of a change in the model which is mainly caused by the COVID-19 pandemic in 2020.

Keywords: economic growth; functional central limit theorem; gross domestic product; Kolmogorov–Smirnov type test; model
change detection; multivariate linear regression; multivariate standard Brownian motion; partial sum process; recursive residuals

1. Introduction

As stated in Fujikoshi [1], He et al. [2], Somayasa [3], and
Somayasa, Ruslan, and Sutiari [4], multivariate linear regression
has been applied in many fields of study including agriculture,
economics, geology, biology, and chemistry, among others.
One important part of statistical modelling using multivariate
linear regression is checking whether each component of the
mean of the response vector can be adequately represented by
a set of regression functions or whether we needmore functions
to represent some components of the mean of the response vec-
tor. This intention can be realized in practice by conducting
simultaneous detection whether there are some changes in

regression model. Cotos-Yéñez, Pérez-González, and
González-Manteiga [5], Fujikoshi [1], and Zimmerman [6]
called this step as model check. In other literatures, it also fre-
quently called goodness of fit test for regression (see Das [7]).

Methods for change detection in multivariate linear
regression has been intensively studied. They are commonly
developed based on the residuals of the responses. Likeli-
hood ratio test using modified Wilk’s lambda statistic has
been documented in the literatures of multivariate linear
regression (cf. [1, 2]). This method is applicable only when
the response vector is normally distributed. Somayasa et al.
[8] developed asymptotic model check method for multivar-
iate linear regression with spatial observations on a compact
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rectangle based on the partial sum process of the vector of
ordinary least squares residuals. The limit process obtained
in [8] has been derived analytically by using some transfor-
mation theorems and the linear property of the partial sum
operator. However, as it can be seen therein, the limit pro-
cess appeared as an intricate function of the standard multi-
variate Brownian motion. It depends not only on the design
of experiment but also on the assumed regression functions.
By this reason, the quantiles of the Kolmogorov–Smirnov as
well as the Cramér–von Mises type test statistics can not be
computed analytically. This clearly restricted the application
of the proposed method in practice. Although the limit pro-
cess has a complex structure, nevertheless it is geometrically
interpretable as a projection of the standard multivariate
Brownian motion on its kernel space. This simple structure
gives advantage in analyzing the power of the test when
the assumed model is not true (see Somayasa [9]).

Partial sum method has been initially investigated for the
purpose of quality monitoring in production process. The
application of the method has been continuously developed
to the problem of monitoring structural change for regres-
sion by defining a test based on the partial sum process of
recursive residuals. Recent publications related to this con-
text are Jiang and Kurozumi [10], Dao [11], and Otto and
Breitung [12], among others. Groen, Kapetanios, and Price
[13] pioneered the extension of the application of the
method for monitoring structural change in multivariate lin-
ear regression based on the partial sum process of the vector
of recursive residuals. However, their approaches required a
normal distribution assumption attached to the vector of the
errors, so that they are not purely asymptotic in the strictly
sense. When the vector of random errors in the model is mul-
tivariate normally distributed, then the vector of recursive
residuals builds a sequence of mutually independent random
vectors, so that the limit distribution of the corresponding
sequence of the partial sum processes of the vector of recursive
residuals can be immediately obtained. This means that the
application of the method in the practice must be started with
a goodness of fit test or diagnostic check regarding the normal-
ity of the vector of recursive residuals.

In this paper, we study the application of the partial sum
process of multivariate recursive residuals in asymptotic
model check for multivariate linear regression defined on a
closed and bounded experimental region. For that, we need
to establish a functional central limit theorem for the partial
sum process of recursive residuals obtained from multivari-
ate linear regression under more general setting then that
defined in Groen, Kapetanios, and Price [13]. It is worth
mentioning that the results presented in [10–13] have been
derived solely for univariate times series linear regression,
where the experimental region is given by the set of positive
integers which is not closed and bounded. In contrast to
time series, when the experimental region is compact, we
have triangular arrays of observations. For that, we need to
establish a functional central limit theorem applied to trian-
gular arrays of observations drawn from a multivariate linear
regression model. To the knowledge of the authors, this
result has not been yet documented elsewhere. It will require
more effort on one hand by the existence of the correlation

among the components of the response vector, but on the
other hand, linear regression is attractive statistical tool
which is applied in many areas such as in response surface
methodology, chemical industry, and mining industry,
among others.

The paper is organized as follows. In Section 2, we dis-
cuss literature review. Multivariate regression model with
univariate experimental region together with the definition
of the test statistic for checking the adequacy of the model
is defined in Section 3. The limit process of the sequence
of the partial sum processes of recursive residuals is investi-
gated in Section 4 for the situation under H0 as well as under
H1. The proofs of the results are postponed to the appendix.
Section 5 discusses the results of numerical simulation. In
Section 6, we demonstrate the application of the proposed
test method to real data which is the Indonesian economic
growth data. Some conclusions and remarks are presented
in Section 7.

2. Literature Review

Model check or model change detection plays important role
in every serious empirical model building for a random phe-
nomenon. As in geostatistics, Bassani and Costa [14]
informed that optimum prediction (kriging) of the spatial
process in unobserved geographical positions depends on
the adequateness of a proposed regression model. Myers,
Montgomery, and Anderson-Cook [15] stated that in
response surface methodology, the validity of an assumed
regression model determines the level of accuracy of the
optimum condition of a production process under study.
This means that to be able to obtain accurate prediction
result, we have to carry out model change detection before
the assumed model is used in the prediction (see also Huang
and He [16]).

As documented in Fahrmeir et al. [17] and Zimmerman
[6], model check or model change detection in multivariate
liner regression can be conducted in several various ways:
graphical method, Akaike information criterion (AIC), and
likelihood ratio test by making use of Wilk’s lambda statistic.
All methods have similar approach in that they are con-
ducted by investigating the residuals of the observations.
As a classical method, the decision obtained by graphical
method is subjective so that this method is rarely used in
the practice. AIC and likelihood ratio test are two inferential
methods that have drawback in the application in that they
are conducted under the assumption that the observations
are normally distributed (see Fujikoshi [1] and He et al. [2]).

Bischoff and Gegg [18] proposed a purely asymptotic
test method for detecting change in multivariate linear
regression based on the partial sum process of ordinary least
squares residuals. This innovative approach successfully
incorporates the theory of high-dimensional stochastic
process especially high-dimensional Gaussian process in
the statistical inference. Many authors proposed test method
based on the partial sums of recursive residuals instead of
ordinary least squares residuals. Recently, Dao [11] studied
the application of this approach for condition monitoring
and fault diagnosis of wind turbines. Jiang and Kurozumi
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[10] investigated the power properties of the test based on
the modified partial sum process of recursive residuals. Otto
and Breitung [12] applied the partial sum method for testing
and monitoring structural change of COVID-19.

To the best knowledge of the authors, the only work that
investigated the application of the partial sum process of
recursive residuals obtained from multivariate linear regres-
sion observed over time is that written by Groen, Kapeta-
nios, and Price [13]. As it has been already mentioned in
Section 1, they derived the limit process under multivariate
normally distributed random error which clearly restricted
the application of the method. Motivated by [13], in this
work, we propose asymptotic test method based on the par-
tial sum process of recursive residuals with application to
simultaneous model change detection in multivariate linear
regression of Indonesian economic growth data.

As defined in Bonokeling et al. [19], economic growth is
an increase in the production of economic goods and ser-
vices in one period of time compared with a previous period.
Economic growth of a country reflects and measures the
ability of the government in developing the economy of
the corresponding country. Economic growth is commonly
measured in terms of the increase in aggregated market
value of additional goods and services produced which is
measured based on the gross domestic product (GDP).

According to the study documented in Sari [20] and
Febriyanti [21], there are at least four variables that fre-
quently influence the economic growth of a country, namely,
investment, government expenditure, export, and import.
Each variable has a different impact on economic growth.
While investment, government spending, and export posi-
tively affect economic growth, import negatively affects eco-
nomic growth.

As it has been quoted in [19], other factor that can cause
negative influence to the economic growth is disaster, such as
COVID-19 outbreaks. The COVID-19 has destroyed world
economy in 2020 which has brought the world to worst eco-
nomic recession. Indonesia is one of more than 210 countries
in the world that has been hit by the COVID-19 pandemic.
Muhyiddin and Nugroho [22] reported that this situation
has caused the Indonesian economic grew negatively in the
second, third, and fourth quarters of 2020 after a positive
growth achieved in the first quarter of 2020. In this work,
we aim to check asymptotically that the COVID-19 causes
change in the model of the Indonesian economic growth so
that it can not be modelled anymore using low-degree poly-
nomial over time.

3. Model Definition

We consider a nonparametric multivariate regression

Y x = g x +E x , x ∈ a, b 1

where Y≔ Y1,⋯, Yp
⊤ is the random response vector, g =

g1,⋯, gp
⊤ is the true but unknown vector of regression

functions whose components are assumed to be continuous
and of bounded variation on D≔ a, b ⊂R, and E =

ε1,⋯, εp ⊤ is the random error vector with E E = 0 and

Cov E = Σ = σℓk
p,p
ℓ=1,k=1. We assume throughout that Σ is

a positive definite matrix. Let s1,⋯, sm be linearly indepen-
dent regression functions in L2 P0 , where P0 is the Lebes-
gue measure on the measure space D,B D . Our goal is
to find an asymptotic simultaneous monitoring procedure
to check whether or not there are some changes in the
regression models. More specifically, we aim to investigate
a test procedure for the hypotheses H0 gi ∈W∀i ∈ 1,⋯,
p versus H1 ∃i ∈ 1,⋯, p , such that gi∈W, where W is
a linear subspace in L2 P0 generated by the regression func-
tions s1,⋯, sm . In contrast to the classical inference
method for multivariate linear regression, in this work, we
do not need normal assumption for the error vector.

Suppose Model 1 is observed independently over an
equidistant experimental design on D, with triangular array
of design points, given by

γn ≔ xnj = a + b − a
j
n
, j = 1⋯ , n , n ≥ 1

Correspondingly, let Ynj ≔ Y xnj , gnj ≔ g xnj , and
Enj ≔E xnj . Then, the triangular array of observations Ynj

satisfies the model

Ynj = gnj +Enj, j = 1,⋯, n 2

Next, for j =m + 1,⋯, n, let γnj be the subset of γn consist-
ing of the first j design points. Associated with γnj, we define
the following j-dimensional vectors as follows:

Y i γnj ≔ Yi1,⋯, Yij
⊤

g i γnj ≔ gi xn1 ,⋯, gi xnj
⊤

ε i γnj ≔ εi1,⋯, εij
⊤

with E ε i γnj = 0 ∈Rj and Cov ε i γnj = σiiIj, where Ij
is the j × j identity matrix. The realization of Model 1 as well
as Model 2 when observed on γnj can be written as

Yj×p =Gj×p +E j×p, j =m + 1,⋯, n 3

where

Yj×p = Y 1 γnj ,⋯, Y p γnj

Gj×p = g 1 γnj ,⋯, g p γnj

E j×p = ε 1 γnj ,⋯, ε p γnj

with E E j×p =Oj×p and Cov vec E j×p = Σ ⊗ I j.
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LetWj×m be the design matrix of Model 3. That is, Wj×m
is a j ×m matrix, defined by

Wj×m = s1 γnj ,⋯, sm γnj

whose k-th column is given by sk γnj , where we define sk
γnj ≔ sk xn1 ,⋯, sk xnj

⊤ ∈R j, for k = 1,⋯,m. If H0 is
true, then we have the following multivariate linear regres-
sion model

Yj×p =Wj×mB +E j×p, j =m + 1,⋯, n 4

where B is the m × p matrix of unknown parameters,
defined by

B =
β11 ⋯ βp1

⋮ ⋱ ⋮

β1m ⋯ βpm

= β 1 ,⋯, β p

The least squares estimator of B in Model 4 based on the
first j vector of observations can be computed by the follow-
ing formula:

B̂j = WΤ
j×mWj×m

−1
WΤ

j×mYj×p 5

Hence, by the definition of the component-wise projec-
tion, we have for i = 1,⋯, p,

β
i

j = W⊤
j×mWj×m

−1
W⊤

j×mY i γnj 6

We note that index j in B̂j as well as in β
i

j presented in
Equations (5) and (6) means that the estimation is based on
the first j observations. By following the univariate case, we
define the p-dimensional recursive residual of Model 4 as

unj = u 1
nj ,⋯, u p

nj

⊤
=
Ynj − B̂⊤

j−1s xnj
ejj

7

where

ejj ≔ 1 + s⊤ xnj W⊤
j−1 ×mW j−1 ×m

−1
s xnj

with s xnj ≔ s1 xnj ,⋯, sm xnj
⊤ ∈Rm.

For the purpose of testing the hypotheses defined above,
we investigate the sequence of the partial sum processes of
the p-dimensional recursive residuals (Equation 7) by trans-
forming the random matrix

Up× n−m =
u⊤n,m+1

⋮

u⊤nn

⊤

into a sequence of p-dimensional stochastic processes Qn−m
Up× n−m x : x ∈D , defined by

Qn−m Up× n−m x ≔ 〠
n x−a / b−a

j=1
unj +

n x − a
b − a

−
n x − a
b − a

un, n x−a / b−a +1

8

where t ≔max z ∈Z z ≤ t and unj = 0 ∈Rp, for j = 1,
⋯,m. Let us call Qn−m Up× n−m x : x ∈D throughout
the paper p-dimensional recursive residual partial sum process
(RRPSP). By the definition, for every n ≥ 1, Qn−m Up× n−m
builds a stochastic process with sample path in the space of p
-dimensional vector of continuous functions Cp D ≔ × p

i=1
C D . We define a test using the Kolmogorov–Smirnov func-
tional, given by

KS n
p ≔max

1≤j≤n
Σ−1/2Qn−m Up× n−m xnj 9

It is clear that the wider the dispersion of the assumed

model to the true-unknown model, the larger the value of K
S n
p will be. This means that the statistic KS n

p in Equation
(9) measures the discrepancy between the true and the

assumed model. By this reason, KS n
p can be reasonably used

as a test statistic in detecting the occurrence of some changes

in the model. We will reject H0 when KS n
p is large. For that,

the limit distribution of KS n
p under H0 as well as under H1

needs to be investigated.
We notice that the partial sum process (Equation 8)

differs to those defined in [13] in that they did not include
the rest term of Equation (8) in their definition. Conse-
quently, the process defined in [13] has sample path in
the space of p-dimensional right continuous functions on
D with left limit, denoted by Dp D , instead of the space
Cp D .

4. Approximation to the Test Statistics

Since the exact distribution of KS n
p is mathematically not

tractable, we investigate their limit distribution. We firstly
obtain the limit process of Qn−m Up× n−m by applying The-
orem 7.5 of Billingsley [23] (see also Theorem 1.5.4 of Van
der Vaart and Wellner [24]).

By substituting

B̂j−1 = W⊤
j−1 ×mW j−1 ×m

−1
W⊤

j−1 ×mY j−1 ×p
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into Equation (7), the vector of the recursive residuals can be
expressed as follows:

unj =
Ynj

ejj
−
Y⊤

j−1 ×pW j−1 ×m W⊤
j−1 ×mW j−1 ×m

−1
s xnj

ejj

Since we have Y j−1 ×p =W j−1 ×mB +E j−1 ×p and Ynj =
B⊤s xnj +Enj, then by substituting these two equations into
the preceding one, we get

unj =
Enj

ejj
−
E⊤

j−1 ×pW j−1 ×m W⊤
j−1 ×mW j−1 ×m

−1
s xnj

ejj

Hence, for j =m + 1,⋯, n, it holds

uΤnj =
−s⊤ xnj W⊤

j−1 ×mW j−1 ×m
−1

ejj
×W⊤

j−1 ×m, 1 E j×p

10

Expression (10) shows that for every j =m + 1,⋯, n,
there exists a column vector cnj ∈Rn, defined by

c⊤nj ≔ bnj On−j

where

bnj ≔
−s⊤ xnj W⊤

j−1,mWj−1,m
−1
W⊤

j−1,m, 1
⊤

ejj
∈Rj

On−j ≔ 0, 0,⋯, 0 ⊤ ∈Rn−j

The column vector c⊤nj satisfies

c⊤njcnj′ =
1 ; if j = j′

0 ; if j ≠ j′
11

So the p-dimensional vector of recursive residuals unj
can be written as

u⊤nj = c⊤njEn×p 12

By Equation (12), we get E unj = 0, and by Equation
(11), it holds

Cov unj, unj′ =

σ11c⊤njcnj′ ⋯ σ1pc⊤njcnj′
⋮ ⋱ ⋮

σp1c⊤njcnj′ ⋯ σppc⊤njcnj′

=
Σ ; if j = j′

O ; if j ≠ j′

Thus, unj = u 1
nj ,⋯, u p

nj

⊤
j ≥m + 1 builds a

sequence of uncorrelated p-dimensional random vectors
with E unj = 0 ∈Rp and Cov unj = Σ ∈Rp×p. If the ran-
dom error vector Enj is distributed as Np 0, Σ , then unj
is also distributed as Np 0, Σ . Hence, under such condi-

tion, the set unj = u 1
nj ,⋯, u p

nj

⊤
j ≥m + 1 constitutes

a sequence of independent and identically distributed ran-
dom vectors.

Furthermore, by Equation (12), there exists an n −m × n
dimensional lower triangular matrix C, say, where

C =
c⊤n,m+1

⋮

c⊤n,n

=
b⊤n,m+1 O⊤

n−m−1

⋮

b⊤nn

with the properties CCΤ = In−m, such that

u⊤n,m+1

⋮

u⊤nn

=CEn×p 13

For i = 1,⋯, n −m and k = 1,⋯, n, let cik be the entry of
C in the i-th row and k-th column. Then, by the definition,
cik can be concretely written as

cik =
−s⊤ xn,m+i W⊤

m+i−1 ×mW m+i−1 ×m
−1

em+i,m+i
× s xn,k 14

for k = 1,⋯,m + i, and cik = 0, for k =m + i + 1,⋯, n.
Now we are in the position to state the limit distribution

of 1/ n −m Σ−1/2Qn−m Up× n−m under H0. The proof is
given in the appendix.

Theorem 1. Let the regression functions s1,⋯, sm be linearly
independent in L2 P,D , continuous, and have bounded
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variation on D. Suppose that E u i
nj

4
<∞, for i = 1,⋯, p,

n ≥ 1 and j =m + 1,⋯, n. If H0 is true, then for n⟶∞,
1/ n −m Σ−1/2Qn−m Up× n−m converges in distribution
to Bp. Thereby, Bp is the standard p-variate Brownian
motion on D. That is, a centered p-variate Gaussian pro-
cess with the covariance function given by

C x1, x2 = min x1, x2 − a
b − a

Ip, x1, x2 ∈D

We consult the reader to Durrett [25] for the definition
of the standard p-variate Brownian motion Bp.

By Theorem 1, it is clear for arbitrary fixed x ∈D, and
the sequence of random vectors

1
n −m

Σ−1/2Qn−m Up× n−m x

converges in distribution to a p-variate normal distribution
Np 0,Ax , where

Ax ≔
x − a
b − a

Ip

So that by applying Theorem 2.7 in [23] or Theorem
1.3.6 in [24] (continuous mapping theorem), the quadratic
form defined by Equation (15)

1
n −m

A−1/2
x Σ−1/2Qn−m Up× n−m x

2
15

converges in distribution to a chi-square distribution with p
degrees of freedoms, denoted by χ2 p . Furthermore, Theo-
rem 1 gives us an approximation to the probability distribu-

tion of the Kolmogorov–Smirnov type test statistics KS n
p

when H0 is true allowing us in approximating the rejection
region of the test. It is constructed based on the probability
distribution of the statistic supx∈D Bp x . For α ∈ 0, 1 , an

asymptotic size α-test will reject H0, if and only if KS n
p ≥

ν1−α, where ν1−α is a positive constant that satisfies the con-
dition P supx∈D Bp x ≥ ν1−α = α. In practice, Σ is usu-
ally unknown. It is estimated under H0 by a consistent
estimator Σn, defined by

Σn ≔
1
n

r⊤n1
⋮

r⊤nn

⊤ r⊤n1
⋮

r⊤nn

16

where for j = 1,⋯, n,

rnj = Ynj − Y⊤
n×pWn×m W⊤

n×mWn×m
−1s xnj

This means that Equation (16) is computed based on
the p-dimensional ordinary least squares residuals.

To be able to assess the power of the test, we need to find
out the limit distribution of the test statistic when H0 is not
true. For that, we consider the scaled version of Model 2,
defined by

Ynj =
1
n −m

gnj +Enj, j = 1,⋯, n 17

When H0 is not true, the model can be written as

Yj×p =
1
n −m

Gj×p +E j×p, j =m + 1,⋯, n 18

Let u∗nj be the vector of the recursive residuals when H0
is not true. Then, by recalling Equations (10) and (17), we
have

u∗nj =
1/ n −m gnj +Enj

ejj

−
Y⊤

j−1 ×pW j−1 ×m W⊤
j−1 ×mW j−1 ×m

−1
s xnj

ejj

By substituting

Y⊤
j−1 ×p =

1
n −m

G⊤
j−1 ×p +E⊤

j−1 ×p

obtained from Equation (18) into the preceding equation,
we get

u∗nj =
gnj

ejj n −m
−
G⊤

j−1 ×pW j−1 ×m W⊤
j−1 ×mW j−1 ×m

−1

ejj n −m

× s xnj + unj
19

where unj is the recursive residuals under H0. It is clear
that when H0 is true, u∗nj defined in Equation (19) coin-
cides with unj. This can be obtained by replacing the terms
gnj/ n −m and G⊤

j−1 ×p/ n −m by B⊤s xnj and B⊤

W⊤
j−1 ×m, respectively.
The limit process of Qn−m U∗

p× n−m , for U∗
p× n−m ≔

u∗n,m+1,⋯, u∗n,n when H0 is not true, is summarized in
Theorem 2. The proof is postponed to the appendix.

Theorem 2. Let the regression function s1,⋯, sm be linearly
independent in L2 P0,D , continuous, and have bounded
variation on D. Suppose that the model

6 Journal of Applied Mathematics



Ynj =
1

n −m
g xnj +Enj

is observed over γn. When H0 is not true, then under the
condition of Theorem 1, 1/ n −m Σ−1/2Qn−m U∗

p× n−m
converges in distribution to the process hG + Bp, as n⟶∞,
where for every x ∈D,

hG x ≔ Σ−1/2

a,x
g z P0 dz −

a,x a,z
g v s⊤ v P0 dv

×
a,z

s v s⊤ v P0 dv

−1

s z P0 dz

The convergence result presented in Theorem 2 pro-
vides an approximation to the power function of the test.

Let ΨKS n
p

g be the power of the test evaluated in a regres-

sion function vector g. That is,

ΨKS n
p

g ≔ P KS n
p > ν1−α g 20

Then, by Theorem 2 and the well-known continuous
mapping theorem, ΨKS n

p
g can be approximated by the

following boundary crossing probability:

Ψ g ≔ P sup
x∈D

hG x + Bp x > ν1−α 21

When H0 is true, the power computed in Equations
(20) and (21) will reduce to the probability of type I error
of the test of size α. Conversely, when H0 is not true, both
determine the probability of the rejection of H0 provided

0 10 15 20 25

0.0

0.2

0.4

0.6

0.8

1.0

t

F 
(t)

5
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(b) n = 40 and x = 1

Figure 1: The graphs of the ECDF of the quadratic form of the three-variate RRPSP for first-order model (step line) and the CDF of χ2 3
(dotted line).
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that g is a true regression function vector. In other words,
ΨKS n

p
g and Ψ g supply information regarding the abil-

ity of the test in detecting the existence of model change.
A good test should own the general property stated in
Lehmann and Romano [26] and Rasch and Schott [27].
That is, the larger the power under H1 is, the better is
the test.

5. Numerical Simulation

In this section, we report on and discuss numerical simu-
lation to study the finite sample size performance of the
convergence result and the behavior of the test investigated
in the preceding section. To be more specific, we con-
sider p-variate polynomial model defined by sk x ≔ xk−1,

for k = 1,⋯,m, with experimental region restricted to the
unit interval [0,1] and equidistance design points of size n.
So that the design matrix of the j-th part of the model for
j =m + 1,⋯, n is given by

Wj×m ≔

1 1
n

1
n

2
⋯

1
n

m−1

1 2
n

2
n

2
⋯

2
n
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⋮ ⋮ ⋮ ⋮ ⋮

1 j
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(a) n = 40 and x = 0 5
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(b) n = 40 and x = 1

Figure 2: The graphs of the ECDF of the quadratic form of the three-variate RRPSP for second-order model (step line) and the CDF of
χ2 3 (dotted line).
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Polynomial model clearly satisfies the condition of
Theorem 1.

5.1. Simulation Under H0. We simulate the convergence
result formulated in Theorem 1 by demonstrating the finite
sample size attitude of Equation (15) based on two scenarios
under H0. In the first scenario, we generate the samples
from the three-variate polynomial model of degree 1
(m = 2), that is, three-variate straight line regression model.
The three-dimensional error vectors are generated indepen-
dently from the three-variate centered normal distribution
with the covariance matrix

Σ =
2 −1 0
−1 2 −1
0 −1 2

The simulation result for n = 40 is devoted in Figure 1,
where Figure 1(a) is for x = 0 5 and Figure 1(b) is for x = 1.
The graph of the empirical cumulative distribution function
(ECDF) of the quadratic form of the three-variate RRPSP is
scattered using the step line. The curve indicated by the
dotted line is for the cumulative distribution function
(CDF) of χ2 3 . All graphs are generated using R under
10000 runs. In the second scenario, we simulate three-

Table 3: Simulated rejection probabilities of size α = 0 05 test for
three-variate first-order model computed for several varied values
of ρ, γ, and δ with n = 40.

ρ γ δ Ψ g ρ γ δ Ψ g
n = 40
0.0 0.0 0.0 0.0534 0.0 0.0 0.5 0.0497

4.5 0.0 0.0 0.0576 0.0 0.0 2.5 0.0590

10.5 0.0 0.0 0.0913 0.0 0.0 5.5 0.1047

12.5 0.0 0.0 0.1063 0.0 0.0 8.5 0.1995

14.5 0.0 0.0 0.1290 0.0 0.0 12.5 0.4215

16.5 0.0 0.0 0.1586 0.0 0.0 15.0 0.5840

20.0 0.0 0.0 0.2153 0.0 0.0 20.0 0.8565

25.0 0.0 0.0 0.3366 0.0 0.0 25.0 0.9754

30.0 0.0 0.0 0.4747 0.0 0.0 30.0 0.9973

40.0 0.0 0.0 0.7576 0.5 0.5 0.5 0.0533

0.0 0.5 0.0 0.0493 2.5 2.5 2.5 0.0958

0.0 4.0 0.0 0.0742 3.5 3.5 3.5 0.1450

0.0 10.5 0.0 0.2431 5.5 5.5 5.5 0.3167

0.0 15.0 0.0 0.4744 6.5 6.5 6.5 0.4339

0.0 20.0 0.0 0.7723 8.5 8.5 8.5 0.6818

0.0 24.0 0.0 0.9244 10.5 10.5 10.5 0.8393

0.0 30.0 0.0 0.9912 12.5 12.5 12.5 0.9681

0.0 35.0 0.0 0.9988 15.0 15.0 15.0 0.9963

Table 2: Simulated rejection probabilities of size α = 0 05 test for
three-variate first-order model computed for several varied values
of ρ, γ, and δ with n = 30.

ρ γ δ Ψ g ρ γ δ Ψ g
n = 30
0.0 0.0 0.0 0.0497 0.0 0.0 0.5 0.0495

4.5 0.0 0.0 0.0576 0.0 0.0 2.5 0.0609

10.5 0.0 0.0 0.0875 0.0 0.0 5.5 0.1091

12.5 0.0 0.0 0.1109 0.0 0.0 8.5 0.2079

14.5 0.0 0.0 0.1340 0.0 0.0 12.5 0.4353

16.5 0.0 0.0 0.1622 0.0 0.0 15.0 0.6061

20.0 0.0 0.0 0.2259 0.0 0.0 20.0 0.8722

25.0 0.0 0.0 0.3434 0.0 0.0 25.0 0.9801

30.0 0.0 0.0 0.4911 0.0 0.0 30.0 0.9985

40.0 0.0 0.0 0.7722 0.5 0.5 0.5 0.0526

0.0 0.5 0.0 0.0516 2.5 2.5 2.5 0.0948

0.0 4.0 0.0 0.0735 3.5 3.5 3.5 0.1405

0.0 10.5 0.0 0.2512 5.5 5.5 5.5 0.3228

0.0 15.0 0.0 0.4995 6.5 6.5 6.5 0.4430

0.0 20.0 0.0 0.7810 8.5 8.5 8.5 0.7035

0.0 30.0 0.0 0.9917 10.0 10.0 10.0 0.8540

0.0 35.0 0.0 0.9994 12.5 12.5 12.5 0.9725

0.0 40.0 0.0 0.9999 15.0 15.0 15.0 0.9973

Table 1: The approximated lower quantiles of KS n
p . The simulation

results are based on 100000 runs.

n ν0 75 ν0 85 ν0 90 ν0 95 ν0 99
p = 2

25 1.9229 2.1770 2.3591 2.6438 3.2097

30 1.9263 2.1794 2.3583 2.6389 3.2043

35 1.9270 2.1839 2.3680 2.6518 3.2108

40 1.9305 2.1822 2.3639 2.6415 3.1978

45 1.9362 2.1909 2.3712 2.6423 3.1923

50 1.9282 2.1829 2.3618 2.6444 3.1902

p = 3
25 2.2615 2.5203 2.6999 2.9738 3.5337

29 2.2611 2.5176 2.6971 2.9763 3.5235

35 2.2693 2.5232 2.7050 2.9893 3.5511

40 2.2643 2.5208 2.7018 2.9770 3.5278

45 2.2674 2.5241 2.7038 2.9840 3.5250

50 2.2690 2.5218 2.6988 2.9785 3.5211

p = 4
25 2.4970 2.7477 2.9298 3.2032 3.7301

30 2.4979 2.7499 2.9302 3.1978 3.7332

35 2.5054 2.7545 2.9303 3.2013 3.7448

40 2.5075 2.7605 2.9392 3.2172 3.7514

45 2.5121 2.7672 2.9456 3.2205 3.7544

50 2.5174 2.7699 2.9490 3.2157 3.7573
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variate quadratic model (m = 3) defined on the unit interval
0, 1 . The error vectors are generated independently from
the three-variate centered normal distribution having the
same covariance matrix as in the first case. The graphs of
the ECDF of the quadratic form of the RRPSP simulated
for n = 40, x = 0 5, and x = 1 together with the graphs of
the CDF of χ2 3 are presented in Figures 2(a) and 2(b),
respectively.

The simulation results show that independent to the
proposed regression model and to the chosen value of
x ∈ 0 5, 1 , χ2 3 gives a good approximation to the distri-
bution of the quadratic form of the three-variate RRPSP.

Next we approximate the finite sample size lower quan-

tile of the Kolmogorov–Smirnov type statistic KS n
p under

H0 by Monte Carlo simulation. For this purpose, we gener-
ate the samples based on the p-variate polynomial model of
degree one (m = 2) and two (m = 3), for p = 2, 3, 4, where the
error vectors are generated independently from the p-variate
normal distribution Np 0, Σp , with the following corre-
sponding covariance matrix:

Σ2 =
2 −1

−1 2

Σ3 =

2 −1 0

−1 2 −1

0 −1 2

Σ4 =

9 3 −6 12

3 26 −7 −11

−6 −7 9 7

12 −11 7 65

Table 1 consists of the simulated lower quantiles of KS n
p

for α = 65%, 75%, 85%, 90%, 95%, and 99%, simulated for
n = 25, 30, 35, 40, 45, and 50, under 100000 runs. These
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Figure 3: The graphs of simulated rejection probabilities of the test for three-variate first-order model using n = 40 sample points. The
graphs are generated under 10000 runs.
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quantiles are used in constructing the finite sample size
rejection region of the test. The R coding for generating
the graphs and the lower tail quantiles can be obtained by
request to the authors.

5.2. Simulation Under H1. We simulate the case of testing
H0 gi ∈W, for all i ∈ 1, 2, 3 , versus gi∈W, for some
i ∈ 1, 2, 3 , where W = s1, s2 , with sk x = xk−1, for x ∈ 0, 1
and k = 1, 2. This means that under H0, we assume a three-
variate first-order model on the unit interval 0, 1 . In this
simulation, the samples are generated based on the following
three-variate scaled regression model

Y1

Y2

Y3

=

2 + 0 5 k/n + 2ρ exp k/n
n − 2

−0 2 + 0 25 k/n + 3 5γ exp k/n
n − 2

0 25 + 2 5 k/n + 4 5δ exp k/n
n − 2

+
ε1

ε2

ε3

where the error vector is generated independently from the
three-variate normal distribution N3 0, Σ , with Σ is given
by

Σ =
2 −1 0
−1 2 −1
0 −1 2

When the constants ρ, γ, and δ are simultaneously set to
zero, the condition under H0 is fulfilled which means that

there are no changes in the model. In such a case, the
power of the test should be equal to the size of the test
5%. However, when at least one of these constants are non-
zero, then there exists some i ∈ 1, 2, 3 such that gi∈W. In
other words, there exist some models that change
simultaneously.

Some numerical empirical powers of size 5% test simu-
lated for n = 30 and n = 40 with several chosen values of ρ,
γ, and δ under 10000 runs are given in Tables 2 and 3,
respectively. The tables present the empirical power of four
types of alternative:

1. H11: g1∈W (when ρ ≠ 0, γ = 0, and δ = 0)

2. H12: g2∈W (when ρ = 0, γ ≠ 0, and δ = 0)

3. H13: g3∈W (when ρ = 0, γ = 0, and δ ≠ 0)

4. H14: gi∈W for all i = 1, 2, 3 attained when ρ ≠ 0, γ ≠ 0,
and δ ≠ 0. It can be seen therein that when ρ = 0, γ = 0,
and δ = 0, the power of the test attains the value 0.04967
for n = 30 and attains the value 0.05340 for n = 40,
which are approximately equal to 5%. So the size of
the test is achieved. The graphs of the simulated
power function of size 5% test associated with the
alternatives H11, H12, H13, and H14 are scattered in
Figure 3 simulated for n = 40 under 10000 runs.
The graphs indicate increasing power functions. They
have a common feature in that the larger the values
of ρ, γ, and δ are, the greater the powers. All powers
reach the size of the test at the starting points, that is
when ρ, γ, and δ are simultaneously fixed to zero.
Tables 2 and 3 and Figure 3 show that the power
of the test for such alternatives gets large as the

Total.export

100

150

200

250

500 600 700 800 900 1000

100 150 200 250

Total.investment

500
600
700
800
900
1000

GDP

2.0

2.2

2.4

2.6

2.8

2.0 2.2 2.4 2.6 2.8

Figure 4: The scatter matrix between the total value of export, total value of investment, and the GDP.
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model moves away from H0. This means that the
test has good power in detecting the existence of
some changes in the model when some changes exist.
By referring to Ghosh, Delampady, and Samanta
[28], it can be concluded based on the simulation
results that the test is unbiased

6. Application

In this section, we consider Indonesian economic growth
data provided by the Central Bureau of Statistics of the
Republic of Indonesia (Badan Pusat Statistik (BPS)) [29].
The data consists of quarterly simultaneous measurements
of the total value of export, total value of investment, and
the GDP of Indonesia measured starting from the first quar-
ter of 2015 until the first quarter of 2022. The first observa-
tion was recorded at the end of March 2015, the second one
was at the end of June 2015, and so on. The last one which is
the 29th observation was recorded at the end of March 2022.
All variables are measured in IDR trillion (see BPS [29]).
The data considered in this work can also be obtained by
request to the authors. The sample coefficient correlation
matrix of the three variables based on the data of size 29 is
given by

1 00000 0 78547 0 67968
0 78547 1 00000 0 90174
0 67968 0 90174 1 00000

The matrix indicates the existence of strong correlations
among the three variables. These tendencies are also visual-
ized graphically in Figure 4 which is the scatter matrix of the
data. The strongest correlation appears between the total
value of investment and the GDP, namely, 0.90174, whereas
the weakest correlation is that between the total value of
export and the GDP, that is, 0.67968. By reviewing this fact,
the statistical analysis of the three variables must be handled
simultaneously applying multivariate method.

We aim to model the data using three-variate polyno-
mial regression model and conduct a test for checking the
adequacy of a proposed model based on the partial sum pro-
cess of the recursive residuals. For that we interpret, the data
as a realization of 29 independent three-dimensional vector
responses admitting three-variate regression model observed
on equidistance design points 1/29, 2/29,⋯, 1 over the
unit interval [0,1]. The scatter plot of the total value of
investment, the total value of export, and the GDP are pre-
sented in Figure 5. The existence of deep peaks in the scatter

Table 4: The critical values of KS type test for constant, first-order,
second-order, and third-order polynomial model.

Model Critical value

Constant 9.3802

First order 3.0876

Second order 1.8136

Third order 2.8870

Period

To
ta

l e
xp

or
t

0.0
500

700

900

150

2.8

2.6

2.4

2.2

200

250

0.2 0.4 0.6 0.8 1.0

Period

To
ta

l i
nv

es
tm

en
t

0.0 0.2 0.4 0.6 0.8 1.0

Period

G
D

B

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: The scatter plot of 29 total value of exports, total value of investments, and the GDB of Indonesia observed on the unit interval
0, 1 .
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plot of the data appeared as the impact of the contraction of
the Indonesia’s economic growth during the COVID-19
pandemic in 2020. In the normal situation, the total values
of export, import, and the GDP should smoothly increase
so that they can be modelled by means of lower degree poly-
nomial functions. We infer that the COVID-19 pandemic
will change the model in which they need to be modelled
by means of higher degree polynomial model. The existence
of these changes will be detected by using the proposed test

procedure. The computation result of the test statistic KS n
p

for several low-order three-variate polynomial regression
models is presented in Table 4. The R coding for computing

KS n
p can be obtained by request to the author. Since the

lower 95% quantile of the distribution of KS n
p for n = 29

and p = 3 takes the value 2.9763 (see Table 1), then the
asymptotic size 5% test will reject constant model and first-
order model, whereas second-order model and third-order
model will not be rejected. The test result seems to be syn-
chronous with the scatter plot of the data in that constant
and first-order models are not plausible for the Indonesia’s
economic growth data during the period of March 2020
until March 2022.

7. Conclusion

A limit theorem for the sequence of a random function
defined by the RRPSP of multivariate linear regression
has been established. The result can be applied in detecting
the existence of changes in regression model. In the case of
no change, we successfully obtain the limit. It has been
given by the standard multivariate Brownian motion Bp

x : x ∈D which is a model free limit process which
depended only on the dimension of the response vector.
When there exists at least one change, the limit process
has been obtained as a vector of trends plus the standard
multivariate Brownian motion, that is, hG x + Bp x : x ∈
D . We have built simulation to approximate the finite sam-
ple size critical values as well as the power of the Kolmogo-
rov–Smirnov type test. The simulation showed that the test
based on the multivariate RRPSP leads to an unbiased test
with good power. This test method can be implemented in
computer using statistical package like R, so that the compu-
tation is quite fast.

Appendices

Proof of Theorem 1

Without loss of generality, we assume for the rectangle D
= a, b , that a = 0 and b = 1, with xnj = j/n, for j = 1,⋯, n.
According to the well-known Donsker theorem (cf. Billings-
ley [23] and Van der Vaart and Wellner [24]), we need to
show that the finite dimensional distributions of 1/
n −m Σ−1/2Qn−m Up× n−m converges to those of Bp and

that 1/ n −m Σ−1/2Qn−m Up× n−m is tight. For arbitrary
q ≥ 1, let 0 ≤ x1 ≤⋯≤ xq ≤ 1 be q different points in 0, 1
and κ1,⋯, κq be nonzero constants. We show that ∑q

i=1 κi/

n −m Σ−1/2Qn−m Up× n−m xi converges in distribution

to ∑q
i=1κiBp xi which follows a centered p-variate normal

distribution with the covariance matrix Ip∑
q
i=1∑

q
r=1κiκr

min xi, xr . By recalling Equation (12) and by defining
a notation

qn;xi ≔ nxi − nxi

we get the following expressions

〠
q

i=1
κiQn−m Up× n−m xi

= 〠
q

i=1
κi 〠

nxi

j=1
c⊤njEn×p + qn;xic

⊤
n, nxi +1En×p

= 〠
n

ℓ=1
〠
q

i=1
κi 〠

nxi

j=1
cjℓEnℓ + qn;xi c nxi +1,ℓEnℓ

Hence, we have

〠
q

i=1

κiQn−m Up× n−m xi

n −m
= 〠

n

ℓ=1
anℓEnℓ A 1

where

anℓ ≔ 〠
q

i=1

κi
n −m

〠
nxi

j=1
cjℓ + qn;xi c nxi +1,ℓ

Thus, by Equation (A.1), the problem now reduces to
that of showing ∑n

ℓ=1Σ−1/2anℓEnℓ converges in distribution
to ∑q

i=1κiBp xi . Since anℓEnℓ ℓ = 1,⋯, n are indepen-
dent, with E anℓEnℓ = 0 and Cov anℓEnℓ = a2nℓΣ, by the
well-known Lindeberg–Feller multivariate central limit the-
orem, it is suffices to show that the covariance of ∑n

ℓ=1
Σ−1/2anℓEnℓ converges to that of ∑q

i=1κiBp xi and it satisfies
Lindeberg–Feller condition. That is, for every ε > 0,

lim
n⟶∞

1
n −m

〠
n

ℓ=1
E anℓΣ−1/2Enℓ

2
Rp × 1 anℓΣ−1/2Enℓ Rp>ε n−m = 0

It is clear that E ∑n
ℓ=1Σ−1/2anℓEnℓ = 0 and

Cov 〠
n

ℓ=1
Σ−1/2anℓEnℓ = 〠

n

ℓ=1
a2nℓIp
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where

〠
n

ℓ=1
a2nℓ = 〠

q

i=1
〠
q

r=1

κiκr
n −m

〠
nxi

j=1
〠
nxr

s=1
〠
n

ℓ=1
cjℓcsℓ

+ 〠
q

i=1
〠
q

r=1
κiκr

qn;xi
n −m

〠
nxr

s=1
〠
n

ℓ=1
c nxi +1,ℓcsℓ

+ 〠
q

i=1
〠
q

r=1
κiκr

qn;xr
n −m

〠
nxi

j=1
〠
n

ℓ=1
cjℓc n xr−a / b−a +1,ℓ

+ 〠
q

i=1
〠
q

r=1

κiκrqn;xiqn;xr
n −m

〠
n

ℓ=1
c nxi +1,ℓc nxr +1,ℓ

= 〠
q

i=1
〠
q

r=1

κiκr
n −m

〠
nxi

j=1
〠
nxr

s=1
c⊤njcns

+ 〠
q

i=1
〠
q

r=1
κiκr

qn;xi
n −m

〠
nxr

s=1
cΤn, nxi +1cns

+ 〠
q

i=1
〠
q

r=1
κiκr

qn;xr
n −m

〠
nxi

j=1
c⊤njcn, nxr +1

+〠
q

i=1
〠
q

r=1
κiκr

qn;xiqn;xr
n −m

c⊤n, nxi +1cn, nxr +1

By recalling Equation (11) and the fact that qn;xi / n −m
and qn;xr / n −m converge to zero, then the right-hand side
of the last equation converges as n⟶∞ to

〠
q

i=1
〠
q

r=1
κiκr min xi, xr A 2

Expression (A.2) is the formula for the covariance func-
tion of ∑q

i=1κiBp xi . Next, let ε > 0 be arbitrary small num-
ber and let M ≔maxm+1≤j≤n max1≤ℓ≤n ncjℓ . By the
definition, we have

anℓ ≤
∑q

i=1 κi
n −m

〠
nxi

j=1
cjℓ + qn;xi cn, nxi +1,ℓ

= 〠
q

i=1

κi
n −m

M
1
n

nxi + 1
n

qn;xi M

≤ 〠
q

i=1

2M κi
n −m

≤
2Mq

n −m

Then, we get by applying the well-known bounded con-
vergence theorem

lim
n⟶∞

1
n −m

〠
n

ℓ=1
E anℓΣ−1/2Enℓ

2
Rp× 1 anℓΣ−1/2Enℓ >ε n−m

≤ lim
n⟶∞

n4M2q2

n −m

×
E Σ−1/2En1

2 × 1 Σ−1/2Enℓ > ε n−m /2Mq

n −m
= 0

Next we show that the process Qn−m Up× n−m is tight.
Since the modulus of continuity of the sequence Qn−m
Up× n−m satisfies

φ Qn−m Up× n−m ; δ ≤ 〠
p

i=1
φ Qn−m u i

n−m ; δ

the process Qn−m Up× n−m is tight only if Qn−m u i
n−m is

tight, for all i = 1,⋯, p. By some characterizations of tight-

ness in the space Cp D , we only need to show that E
Qn−m u i

n−m
4
<∞. The result follows by the assumption

that E u i
nj

4
<∞, for i = 1,⋯, p, n ≥ 1, and j =m + 1,⋯, n.

The proof finishes.

Proof of Theorem 2

By recalling the definition of the operator Qn−m, we have

1
n −m

Qn−m U∗
p× n−m x

= 〠
nx

j=1

gnj
n −m ejj

+
qn;xgn nx +1
n −m ejj

− 〠
nx

j=1

Hj;mV−1
m;js xnj

n −m ejj

+
qn;xH nx +1;mV−1

nx ;ms xn, nx +1

n −m e nx +1, nx +1

+
Qn−m Up× n−m x

n −m
, x ∈D

A 3

where for j = 1,⋯, nx , we define

Vj;m ≔W⊤
j−1 ×mW j−1 ×m

Hj;m ≔G⊤
j−1 ×pW j−1 ×m

By conducting a little algebraic manipulation, Equation
(A.3) can be further written as
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1
n −m

Qn−m U∗
p× n−m x

= n
n −m

〠
nx

j=1

gnj
n ejj

+ qn;x
n

g xn, nx +1

ejj

−
n

n −m ejj
〠
nx

j=1

1
n
〠
j−1

ℓ=1
g xnℓ s⊤ xnℓ

× 1
n
〠
j−1

ℓ=1
s xnℓ s⊤ xnℓ

−1
1
n
s xnj

+ n
n −m

qn;x
n

1/n ∑ nx
ℓ=1 g xnℓ s⊤ xnℓ

e nx +1, nx +1

× 1
n
〠
nx

ℓ=1
s xnℓ s⊤ xnℓ

−1

s xn, nx +1

+ 1
n −m

Qn−m Up× n−m x

A 4

Let Pn, n ≥ 1 be a sequence of discrete probability mea-
sure defined on the σ-field B D associated with the
sequence of the experimental design γn, given by

Pn B ≔
1
n
〠
n

j=1
1B xnj , B ∈B D , n ≥ 1

Then, we can write Equation (A.4) in terms of the inte-
grals with respect to Pn as follows:

1
n −m

Qn−m U∗
p× n−m x

= n
n −m 0,x

g v Pn dv
ejj

+ op 1

−
n

n −m ejj 0,x 0,z
g u s⊤ u Pn du

×
0,z

s u s⊤ u Pn du

−1

s v Pn dv

+ op 1
0,x

g u s⊤ u Pn du

×
0,x

s u s⊤ u Pn du

−1

s xn, nx +1

+ 1
n −m

Qn−m Up× n−m x

A 5

It is clear that Pn converges in distribution to the Lebes-
gue measure P0 mentioned in Section 2, which is defined by
P0 0, x ≔ x. Moreover, since the components of g and s
are bounded and continuous on D, qn;x/n converges to zero
and ejj converges to one, as n⟶∞; then, by applying

either Theorem 2.1 in [23] (Portmanteau theorem) or Theo-
rem 1.3.4 in Van der Vaart and Wellner [24], all integrals
presented in the right-hand side of Equation (A.5) converge
as n⟶∞ to the integral with respect to P0. So by recalling
Theorem 1, we get

Σ−1/2

n −m
Qn−m U∗

p× n−m x

⇒ Σ−1/2

0,x
g v P0 dv − Σ−1/2

0,x a,z
g u s⊤ u P0 du

×
0,z

s u s⊤ u P0 du

−1

s v P0 dv + Bp x

We notice that the p × p symmetric matrix 0,z s u s⊤
u P0 du is invertible since the columns are linearly inde-
pendent (see also Somayasa and et al. [8]), establishing the
proof.
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