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The Pareto dominance-based evolutionary algorithms can effectively address multiobjective optimization problems (MOPs).
However, when dealing with many-objective optimization problems with more than three objectives (MaOPs), the Pareto
dominance relationships cannot effectively distinguish the nondominated solutions in high-dimensional spaces. With the
increase of the number of objectives, the proportion of dominance-resistant solutions (DRSs) in the population rapidly
increases, which leads to insufficient selection pressure. In this paper, to address the challenges on MaOPs, a knee point-driven
many-objective evolutionary algorithm with adaptive switching mechanism (KPEA) is proposed. In KPEA, the knee points
determined by an adaptive strategy are introduced for not only mating selection but also environmental selection, which
increases the probability of generating excellent offspring. In addition, to remove dominance-resistant solutions (DRSs) in the
population, an interquartile range method is adopted, which enhances the selection pressure. Moreover, a novel adaptive
switching mechanism between angle-based selection and penalty for selecting solutions is proposed, which is aimed at
achieving a balance between convergence and diversity. To validate the performance of KPEA, it is compared with five state-
of-the-art many-objective evolutionary algorithms. All algorithms are evaluated on 20 benchmark problems, i.e., WFG1-9,
MaFl1, and MaF4-13 with 3, 5, 8, and 10 objectives. The experimental results demonstrate that KPEA outperforms the
compared algorithms in terms of HV and IGD in most of the test instances.

1. Introduction

Multiobjective optimization problems (MOPs) are ubiqui-
tous in the real-world, such as wireless sensor networks
[1], engineering design [2], workflow applications [3], and
robot path planning [4]. In MOPs, the objectives usually
conflict with each other. Generally, an MOP with M con-
flicting objectives can be defined as follows:

min F(x) = (f, (%), f,(6)> -+ fr (%))

s.t.x €],

(1)

where x = (x, x,, -, x,,) is an n-dimensional decision vector
in the decision space 2 and M is the number of objective

functions. MOPs with more than three-objectives (i.e.,
M > 3) are also referred to as many-objective optimization
problems (MaOPs) [5, 6].

Generally, many-objective evolutionary algorithms
(MaOEAs) still adopt the Pareto dominance as the criterion
for selecting solutions. However, in high-dimensional spaces,
MaOEAs may face two significant challenges due to the curse
of dimensionality. The first challenge is the phenomenon of
dominance resistance. It means that the number of nondomi-
nated solutions in the population rapidly increases as the
number of objectives increases, which leads to the incompara-
bility of solutions [7, 8]. The resulting solutions that may
survive for many generations in the population are called
dominance resistance solutions (DRSs). The presence of DRSs
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will further expand the search space, which causes the conver-
gence deterioration in the local search space. The second chal-
lenge is the contradiction between maintaining population
convergence and diversity [9, 10].

To address these challenges, many novel MaOEAs have
been proposed [11, 12]. These methods can be broadly clas-
sified into the following four categories.

The first category involves the redefining or relaxing the
Pareto dominance relationship. Examples of improved dom-
inance relationships include angle dominance [13], grid
dominance [14], scalarization-based dominance relationship
[15], RPS-dominance relationship [16], and reinforced dom-
inance relationship [17]. NSGA-II+AD [13] proposes an
angle dominance criterion that is insensitive to parameters.
And the involved angle is composed of the solution and each
objective axis. This dominance relationship cleverly expands
the dominance region of a solution, which could increase the
convergence pressure. In CDR-MOEA [18], a dominance
relationship based on a convergence metric (CDR) is pro-
posed, which combines the convergence metric and the
adaptive parameter A based on cosine similarity. This dom-
inance relationship effectively balances the convergence and
diversity of the nondominated solution set. MOEA/D-AED
[19] uses adaptive Epsilon dominance to control the number
of nondominated solutions, which effectively addresses
problems with complex Pareto fronts (PFs).

The second type involves the decomposition-based algo-
rithms, whose core idea is to solve MOP by decomposing a
MOP into many single-objective subproblems. MOEA/D [20]
is a typical decomposition-based algorithm that guides candi-
date solutions towards the Pareto front by defining a set of uni-
formly distributed weight vectors. However, this approach relies
on the degree of match between the adopted reference vectors
and the true Pareto front. To address the problems with
irregular PFs, various adaptive decomposition-based methods
have emerged. For example, AMOEA/D [21] adopts an adap-
tive addition-first-and-deletion-second strategy to dynamically
adjust the weight vector. In addition, the reference points are
widely used in most decomposition-based algorithms, such as
NSGA-III [22], MOEA/DD [23], and SPEA/R [24]. SPEAR
proposes a density estimation technique based on reference
vectors to maintain population diversity. NSGA-III, as an
extension of NSGA-II [25], features a combination of
nondominated sorting with reference vectors. MOEA/DD, as
a variant of MOEA/D, introduces the Pareto dominance and
adaptively associates solutions with subregions. In summary,
the decomposition-based method is suitable for solving MaOPs,
but it is inevitable to preset the appropriate weight vectors and
the scalar functions for guaranteeing their performance.

The third type is the indicator-based algorithm. Unlike
the Pareto-dominance and decomposition-based algorithms,
this method usually evaluates the quality of solutions using
predefined performance indicators. Some well-known indica-
tors are used as criteria in environmental selection, including
inverted generational distance (IGD), hypervolume (HV),
and generational distance (GD). The indicator-based method
can provide more selection pressure towards the Pareto front.
Some recently popular indicator-based algorithms include
HypE [26], R2ZHCA-EMOA [27], and MaOEA/IGD [28].
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HypE adopts the Lebesgue measure to calculate the fitness
values of solutions. To reduce computational complexity,
R2HCA-EMOA uses the R2 indicator to approximate the
value of HV. However, this method cannot effectively balance
convergence and diversity. MaOEA-IGD proposes a novel
nondominance comparison strategy based on the IGD indica-
tor. This strategy compares solutions to reference points,
which improves the quality of population mating.

The final type is knee point-driven algorithms, which are
aimed at improving the performance of MaOEAs by identify-
ing knee points that contribute to a larger HV [29]. These
algorithms employ strategies such as reflex angle [30],
extended angle dominance [8], niching-based method [31],
distance-based strategies [32], and offspring generation strat-
egy [33] to identify knee points, which increase selection pres-
sure and improve convergence. KnEA [34] identifies knee
points based on the distance from the solutions to the hyper-
plane. And the number of knee points involved in this strategy
is controlled by threshold parameter T. However, the perfor-
mance of KnEA is greatly influenced by the variation of
parameter T. Pi-MOEA [35] uses the average ranking method
to identify pivot solutions within the neighborhood, which is
insensitive to parameters. k-NSGAII [36] applies a distance-
based metric to identify convex and edge knee points. To
improve the accuracy of the knee-detection method, k-
NSGAII designs a specific parameter # to control the width
of the knee region. However, these strategies emphasize con-
vergence too much but neglect the importance of diversity.
In contrast, KnMAPIO [29] designs a novel environmental
selection based on knee point-oriented dominance, which uses
extreme and boundary points to select solutions from the crit-
ical layer. This selection strategy effectively balances the con-
vergence and diversity.

In the past few years, many novel strategies for address-
ing MaOPs have been proposed. However, most MaOEAs
still cannot meet the performance requirements. There are
two main challenges.

First, without any prior knowledge, the diversity-first-con-
vergence-second principle adopted by most Pareto dominance-
based MaOEAs leads to the loss of population convergence.

Second, a strategy that overly emphasizes diversity may
select many DRSs into the next-generation population,
which leads to the population gradually moving away from
the PF.

To address the above challenges, a knee point-driven
many-objective evolutionary algorithm with adaptive switch-
ing mechanism (KPEA) is proposed in this paper, which is
aimed at achieving a balance between convergence and diver-
sity. Specifically, to increase the probability of generating
excellent offspring, KPEA incorporates the knee points and
the weighted distances into its mating strategy. During the
environmental selection, an adaptive switching mechanism
between angle-based selection and penalty is designed to bal-
ance convergence and diversity. The main contributions of
this study can be summarized as follows:

(1) Unlike the methods that indirectly identify DRS
based on extreme solutions, to detect and eliminate
DRSs in the population, an interquartile range
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method based on population convergence is used,
which enhances the quality of population mating
and ensures even scaling of each objective

(2) Compared with selection mechanisms based on
convergence-first or diversity-first, in the environ-
mental selection process, an adaptive switching mech-
anism between angle-based selection and penalty can
maintain a balance between convergence and diver-
sity, instead of excessively emphasizing either of them

The remainder of this paper is organized as follows. The
related works and the motivation of this study are presented
in Section 2. A detailed description of the framework and
core strategies of KPEA is presented in Section 3. The exper-
imental setup is presented in Section 4. The experimental
results and related analysis are presented in Section 5. Fur-
ther investigation and discussion on KPEA are provided in
Section 6. Finally, the conclusions of this paper and future
work are given in Section 7.

2. Related Work and Motivation

In this section, the relevant research on dominance resis-
tance solutions (DRSs) and angle-based selection strategies
are reviewed, and the research motivation is elaborated
briefly.

2.1. Impact of DRSs. In general, the Pareto-based algorithms
regard the nondominated solutions as suitable candidates
for the next generation. When some solutions are barely
dominated but clearly inferior to others, then they will not
be removed by the Pareto dominance-based strategies [7,
37, 38]. This phenomenon is called dominance resistance,
and these solutions are called DRSs.

Regarding the specific definition of DRSs, various
researchers have provided various descriptions. In literature
[7], “DRSs are extremely inferior to others in at least one
objective, and therefore, they are apart from Pareto opti-
mums.” DRSs were rephrased in literature [38] as “These
are points in the nondominated set that are extremely poor
in at least one of the objectives, while being extremely good
in some others.” Since DRSs are located on certain bound-
aries of the objective space, most may have the best density
values, which causes these solutions to be always reserved
for the next generation [39]. Furthermore, the proportion
of nondominated solutions in a population grows exponen-
tially as the number of objectives increases [40]. Meanwhile,
the number of DRSs may also increase with the number of
objectives, which results in more intense dominance resis-
tance [5]. Even worse, DRSs can seriously inflate the nadir
in specific axial directions, leading to an uneven scaling of
each objective [8].

Figure 1 illustrates the situation of DRSs in the popula-
tion in biobjective and triobjective spaces. The solid purple
dots represent the nondominated solutions in the search
space. In Figure 1, each axis shows the fitness value on each
objective, and the nondominated solutions within the red
dashed box are DRSs. With the increase of the number of
objectives, the presence of DRSs will further expand the

search space, which causes the convergence deterioration
in local search space.

Some researchers have tried to identify the extreme solu-
tions directly with specific methods. In many-objective particle
swarm optimization (MaOPSO) [41], the solutions in the
external archive that minimize the achievement scalarizing
function (ASF) [42] are considered as the extreme solutions.
In the multiphase balance of diversity and convergence in
many-objective optimization (B-NSGA-III) [43], the extreme-
LS operator is used to identify the extreme solutions in
objective directions. Nevertheless, because MaOPSO and B-
NSGA-III are all Pareto-based algorithms, their effectiveness
is significantly impacted by DRSs. Different from directly
determining the precise extreme solutions, some researchers
are commiitted to deleting the DRSs in the current population
to indirectly determine the extreme solutions.

Bhattacharjee et al. [38] propose a six-sigma-based
method to eliminate DRSs. In this method, a solution is clas-
sified as DRSs when its value on the objective exceeds the
average value plus six times the standard deviation of all
nondominated solutions on that objective. However, the
strategy still has some drawbacks. Xiang et al. [44] demon-
strate experimentally that the method produces solutions
with very poor convergence for some problems. Further-
more, Zhou et al. [45] propose a method to eliminate DRS
by modifying the current candidate extreme solutions.
Unfortunately, when there are several DRSs on an objective
axis, this strategy cannot eliminate all DRSs.

In summary, the elimination of DRSs is beneficial to
finding the exact extremal solutions. As Bhattacharjee et al.
stated in literature [38], “the detection and elimination of
DRSs is far from trivial, and further research is needed to
address this issue.” In the paper, an interquartile range
method (IQR) is introduced to eliminate certain nondomi-
nated solutions in the population whose convergence values
are greater than the upper third quartile (Q3).

2.2. Angle-Based Selection Strategy. Basing on the embedding
position of the angle selection criterion, the angle-based evo-
lutionary algorithm can be classified into three categories.
The first category involves applying the angle selection to
environmental selection. The decomposition-based ranking
and angle-based selection evolutionary algorithm (MOEA/
D-SAS) [46] employs the angle information between solu-
tions in the objective space to maintain population diversity.
The vector angle-based evolutionary algorithm (VaEA) [47]
uses the maximum-vector-angle-first strategy to select elite
individuals. However, in certain cases, the selected solutions
may have poor convergence. Thus, VaEA adopts the worse-
elimination principle and conditionally uses alternative solu-
tions to replace poorly converging ones. The scalar projec-
tion and perspective-based evolutionary algorithm (PAEA)
[45] uses the minimum angle formed between a solution
and a unit vector as a control threshold to maintain a bal-
ance between convergence and diversity. However, how to
determine the threshold for the search direction in these
strategies is usually an extremely complex problem.

The second category involves incorporating angle selec-
tion into the dominance relationship. Wang et al. [37]
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FIGURrE 1: The existence of DRSs in the population at different objectives.

propose the generalized Pareto optimum (GPO) that uses a
parameter ¢,, the extension angle on the ith objective to
redefine the dominance relationship. Yuan et al. [13] pro-
pose an angle dominance criterion that is insensitive to
parameters. The involved angle is composed of the solution
and each objective axis. This dominance relationship clev-
erly expands the dominance region of a solution, which
could increase the convergence pressure.

The third category involves considering angle selection
in both environmental selection and dominance relation-
ships. He and Yen [48] propose a coordinated selection
strategy to solve MaOP problems. This strategy uses ASF
distance as the convergence metric and the angle formed
between individuals as the diversity metric, which is applied
to both environmental selection and mating selection. Dur-
ing the process of evolution, this strategy can balance the
convergence and diversity of the whole population. Li et al.
[49] use an archive population to update reference points
and construct a distance scaling function based on the angle
between individuals and reference points. This function is
employed in mating selection, which improves the quality
of offspring in the population.

Based on the above research, this paper presents a novel
environmental selection strategy that regards the relation-
ship between population size and the number of nondomi-
nated solutions as two criteria for selecting the solutions.
The knee points determined by an adaptive strategy are
introduced for not only mating selection but also environ-
mental selection.

2.3. Motivation of This Paper. When dealing with many-
objective optimization problems (MaOPs), dominance-
based algorithms often face difficulties caused by DRSs and
active diversity promotion [50, 51]. Decomposition-based
algorithms can avoid the problem of insufficient selection
pressure but require a predefined set of weight vectors. How-
ever, uniformly distributed weight vectors cannot guarantee

well-distributed solutions. In contrast, angle-based selection
strategies perform well on enhancing population diversity,
especially when dealing with MaOPs with complex Pareto
fronts. The studies in Section 2.2 indicate that many algo-
rithms using angle-based ecological niche protection tech-
niques seem effective, but there are still many unresolved
problems. When dealing with nonlinear optimization prob-
lems, for the strategy proposed by the hyperplane-assisted
evolutionary algorithm (hpaEA) [52] to protect prominent
solutions, it may be invalid to maintain the diversity of the
population.

The strategy of protecting prominent solutions proposed
by the hyperplane-assisted evolutionary algorithm (hpaEA)
[52] is not suitable for MaOPs with nonlinear Pareto fronts.
On this type of problem, it is unable to maintain the diver-
sity of the population for this strategy. The strategy proposed
by VaEA overemphasizes diversity and lacks a reasonable
design for angle thresholds, which results in difficultly
achieving effective convergence in certain high-dimensional
problems.

To address the above issues, this paper proposes a knee
point-driven many-objective evolutionary algorithm with
adaptive switching mechanism (KPEA). It incorporates the
knee points and weighted distance into its mating strategy
to increase the probability of generating excellent offspring.
An interquartile range method is introduced to detect and
eliminate DRSs in the population. During the environmental
selection, an adaptive switching mechanism between angle-
based selection and penalty is designed to balance conver-
gence and diversity.

Up to now, most selection mechanisms focus on either
convergence or diversity optimization. Generally, without
any prior knowledge, a single strategy cannot offer a univer-
sal and acceptable performance on most MaOPs.

With this motivation, an adaptive switching mechanism
between angle-based selection and penalty proposed in this
paper could keep a balance between convergence and
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diversity, instead of excessively emphasizing either of them.
The selection mechanism first preserves knee points identi-
fied by adaptive recognition and then selects individuals
based on the maximum-vector-angle-first principle. The
adaptive penalty mechanism selects the individuals with
the best convergence one by one. Then, it adaptively adjusts
the penalty set based on the distribution of solutions, which
achieves comprehensive coverage of the Pareto front. As
mentioned above, KPEA not only eliminates the influence
of DRSs throughout the entire evolutionary process but also
achieves a balance between diversity and convergence.

3. Proposed Algorithm

This section provides a detailed description of the proposed
KPEA. Firstly, the main framework of the algorithm KPEA
is given. Subsequently, the quartile detection method is
regarded as a preprocessing tool to detect DRSs, which
enhances the quality of population mating and ensures even
scaling of each objective. In addition, in the mating selection,
knee points and weighted distances are introduced as sec-
ondary selection criteria. Finally, an environment selection
strategy is proposed with an adaptive switching mechanism,
which can adaptively switch according to the relationship
between population size and the number of nondominated
solutions.

3.1. General Framework. A common Pareto-based MaOEA
framework is employed in the proposed KPEA, as shown
in Algorithm 1. First of all, an initial parent population P
of size N is randomly generated. Then, after individuals are
selected from P using the binary tournament selection strat-
egy, an offspring population Q is generated using mutation
(lines 5 and 6). Three metrics, namely, dominance relation,
knee point criterion, and weighted distance metric, are
employed as the selection criteria for the binary tournament
selection. If there are some checked DRSs in the combined
population S, a preprocessing mechanism based on IQR is
used to detect and eliminate DRSs (line 8). Next, the nondo-
minated sorting is performed on the preprocessed new com-
bined population P (line 9), and an adaptive strategy is
introduced to identify the knee points of each nondominated
front in the combined population P (line 10). Finally, with
an adaptive switching mechanism, N individuals are selected
from the population based on the relationship between pop-
ulation size and the number of nondominated solutions. As
a vital contribution of this study, the niche protection oper-
ation different from VaEA [47] considers both convergence
and diversity of each solution in the population.

In order to clearly illustrate the framework of KPEA, the
specific flow of KPEA is shown in Figure 2. Specifically,
KPEA consists of five evolution parts: mating selection, pre-
processing, nondominated sorting, identification of knee
points, and environment selection. During the environmen-
tal selection, an adaptive switching mechanism between
angle-based selection and penalty is designed to balance
convergence and diversity. In addition, the switching condi-
tions and the specific evolutionary process of this novel
adaptive switching mechanism are visualized.

3.2. Preprocessing Operation. Preprocessing is one of the
most important steps in data mining, which is aimed at
eliminating outliers [53]. In fact, during the optimization
process of MaOPs, there are many DRSs (ie., outliers)
within the population. As discussed in Section 2, these DRSs
have a negative impact on the quality of the final solutions.
Thus, removing these DRSs is a crucial step to improve the
performance of the algorithm.

In this paper, an interquartile range (IQR) method is
introduced to detect and eliminate DRSs. IQR 1is a descrip-
tive statistic for identifying outliers in any dataset. Given
an ordered one-dimensional dataset R, the lower quartile
(Q,) and upper quartile (Q;) of the dataset are determined
first, and then the IQR is calculated as follows.

{UB:Q3+”(Q3_Q1)’ 2)

LB=Q, -r(Qs - Q)

where UB and LB denote the upper and lower boundaries of
the dataset, respectively. The value of parameter r is set to
1.5, which will be comparatively analyzed in Section 4. In
addition, Q, and Q; are defined as

-]
4

= | (2RI

=\ ) (3)

Ql = R,',

Q3 = Rj,
where [¢] indicates rounding up and ||«|| represents the size
of the set. The specific process of preprocessing aimed at the
dataset R={48,32,---,53,17}, which is composed of
convergence metrics of solutions, is visually illustrated in
Figure 3.

First, the convergence metrics of all solutions are calcu-
lated and sorted in ascending order. According to the quar-
tile method, the index positions 7 and j locate at 1/4 and 3/4
of the sorted convergence metrics, respectively. In Figure 3,
i=[13*1/4] =4 and j=[13*3/4] = 10, where [e| indicates
rounding up. Q; and Q; are calculated according to Eq.
(3). In Figure 3, Q, =32 and Q; =55. Then, the lower and
upper boundaries are set as are calculated according to Eq.
(2). In this paper, a solution is considered a DRS when its
convergence metric is greater than the upper boundary.
Finally, the blue point with a convergence metric of 92 will
be regarded as DRSs by the preprocessing mechanism and
will be eliminated from the population.

Algorithm 2 presents the specific process of the prepro-
cessing operation. In the first step, the convergence metric
for each solution is calculated and stored in the set CM (line
1). Then, CM are sorted in ascending order (line 2). Subse-
quently, the corresponding index position i of Q, in P is cal-
culated according to the quartile method, and then the value

of Q, in the ordered CM is calculated using Eq. (3) (line 3).
As the same as the solving procedure of Q,, Q; is calculated
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2 K«g
3 P « Initialize(N)
4 While termination criterion not fulfilled do

Input:P (population), N (population size), M (number of objectives), K (set of knee points), T (rate of knee points in population)
1 r« 1,t« 0/*Adaptive parameters for finding knee points*/

5 P’ — Mating_selection(P, K, N)

6 Q « Variation(P)

7 S—PUQ

8 P = Preprocessing(S) /* A preprocessing operation to eliminate the DRSs. */

9 F « Nondominated_sort(P) /*the preprocessed population is assigned to Ny non-dominated fronts, F;, 1 <i < N */
10 [K, r, t] « Finding_ Knee_ point(F, T, r, t)

11 P «— Environmental_selection(F, K, N)

12 End While

13 Return P

ALGoriTHM 1: Framework of the proposed KPEA.

Start

Generation of Non-dominated
oy offspring P 5 sorting

NO

Find knee points

Selection

Delete |P| - N solutions
from KNF,

(line 4). To avoid the situation that the number of candidate

Penalty
Compute the angles
F1| > YES P| = N2>-NO»  and distances of the
solutions in F
NO l
h 4
| Add knee points into P | Move the solution p,
with the best
convergence into P
Add non dominated l
solutions in F ...F, into P
Identify the neighbors
of p,and adjust the
e YES ® penalty set
NO
A A
Association and Niching:
choose N - |P| solutions
FIGURE 2: The running process of KPEA.
m 5 1/2
I= Z(max,x—min.x) 4
. xePfl( ) xePfl( ) > ( )

solutions after preprocessing is less than the population size
N, Q, and Q; may be adjusted. If j > N, the upper and lower
quartiles of the CM are adjusted accordingly (lines 5-7).
After determining the upper and lower quartiles, UB is cal-
culated using Eq. (2) (line 9). Finally, any solutions with a
convergence metric larger than UB are eliminated, leading
to a new set of solutions P (line 10). P is an auxiliary set
for detecting whether there are DRSs in P. The disparity
indicator I is employed, which calculates the diagonal length
of the hypercube formed by the extreme objective values in
population (line 11). The disparity indicator I is defined as

I
—

where m represents the number of objectives and x is a can-
didate solution that belongs to the population. After calcu-
lating the disparity indicator I, and I, of P and P, the
difference ratio y between two sets is calculated as follows:

(5)
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48 32 77 44 36 92 55 28 39 62 19 53 17
¢ Sorted by ascending order
17 19 28 32 36 39 44 48 53 55 62 77 92

1 2 3 4 5 6 7 8 9 10 11 12 13

b

Q, and Q, of the ordered convergence metrics are calculated

17 19 28 |32| 36 39 44 48 53 |55 62 77 92
1 2 3 |45 6 7 8 9 (10 11 12 13
i J

N

Q, and Q; of the ordered convergence metrics are calculated

17 19 28 (32| 36 39 44 48 53 |55 62 77 92

1 2 3[4l 5 6 7 8 9 |10/ 11 12 13
i j
Q, =32 Q,=55

b

Q=32 Q,=5 IQR=Q;-Q,=23  UB=89.5LB=-25

0 20 40 60 80 100

FIGURE 3: An illustration of identifying the DRSs with the interquartile range method, where LB and UB represent the lower and upper
boundaries, respectively, and Q, and Q; represent the lower and upper quartiles, respectively.

Input: P (population), N (population size)

1 Compute the convergence metrics of solutions P — CM

2 Sort CM;

3 The index position i is calculated, and then Q, is calculated using Eq. (3).

4 The index position j is calculated, and then Q; is calculated using Eq. (3).

5 1Ifj> N then

6 i=||CM| - N and Q, = CM(i)

7 j = Nand Q; = CM())

8 End

9 Compute the UB of the ordered set CM

10  Eliminate the solutions whose convergence metrics are greater than UB — P’
11 Calculate the disparity indicators Is of P and P /*Detect if there are DRSs in P */
12 If y > 1 then

13 P=P

14 End

ALGORITHM 2: Preprocessing (P, N).

Obviously, if y is smaller than or equal to 1, it implies  3.3. Adaptive Strategy of Identifying Knee Points. In KPEA,
that there are no DRSs in P. On the contrary, if y is greater ~ the knee points play a crucial role. According to literature
than 1, it indicates that one or more DRSs exist in P, and P [34], knee point-based selection has more advantages than
will be updated to P with no DRSs (lines 12 and 13). using HV-based selection.



The core idea of determining the knee point is demon-
strated in Figure 4. In biobjective minimization problems,
the extreme solutions with the maximum value on the
respective objective axes f; and f, need to be first deter-
mined. Then, the extreme line L is defined as

L=ax+by+c. (6)

Finally, the distance D from each solution A(x,,y,) to L
is calculated as

lax, + by, +¢|
Va2 + b?

_|ax, +by, +¢|

Va2 + b?

if ax, + by, + ¢ <0,
D(A, L) =

. otherwise.
(7)

Within the neighborhood range, the solution with the
maximum distance to L will be identified as the knee point.
In many-objective optimization problems, L refers to the
hyperplane [54].

As shown in Figure 4, solutions A, B, and C are located
within the neighborhood enclosed by dashed lines. Among
these, solution A has the maximum distance to L. Therefore,
A is considered as the knee point within the neighborhood.
When there is only one solution within the neighborhood
(e.g., solution H), that solution is also considered as the knee
point.

The results of identifying knee points will be significantly
affected by the size of the neighborhood of the solutions.
Solutions B, E, and H are identified as knee points based
on the neighborhood size defined in Figure 4. However,
when all solutions are included in the same neighborhood,
only solution E is identified as the knee point. To address
this issue, a strategy is introduced to adjust the neighbor-
hood size of solutions.

Assuming that at the gth generation, there are Ny
-nondominated fronts within the population. Each nondo-
minated front is composed of a set of nondominated solu-
tions F;. The neighborhood of a solution is defined by a
hypercube of dimension V' x V2 x - x VI x-- x V M,
where 1 <j<M and M denotes the number of objectives.
Specifically, the neighborhood size ng of the jth objective

is calculated as follows:
V= (f max + f minfg) Ty (8)

where f minj and f max), represent the minimum and max-
imum values of the nondominated set F; on the jth objective
at the gth generation, respectively. The parameter r, denotes
the ratio of the size of the neighborhood to the span of jth
objective in nondominated front F; at the gth generation,
which is defined as

ry=ryy * e—(l—tg_I/T)/M, (9)
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FIGURE 4: Description of identifying the knee points in KPEA.

where r,_, represents the ratio of the size of the neighbor-

hood to the span of jth objective in F; at the (g — 1)th gen-
eration and f,_, indicates the ratio of knee points to the

number of nondominated solutions in F; at the (g—1)th
generation. The threshold T (0< T <1) is used to control
the proportion of knee points in F,.

The main steps for identifying the knee points are pre-
sented in Algorithm 3. The knee points are identified start-
ing from the first nondominated front (lines 2). First, the
extreme points in F; are identified, and the hyperplane L is
calculated (lines 3 and 4). Next, the size of the neighborhood
for the solutions in F; is calculated (lines 5-8). The distances
from each solution to L are calculated and sorted in descend-
ing order (lines 9¢+10). Then, the knee points within each
neighborhood are identified and added into the knee point
set K (lines 12-15). Finally, the ratio between the number
of knee points and the number of nondominated solutions
in F; is updated (line 17).

3.4. Binary Tournament Mating Selection. In KPEA, a binary
tournament selection based on three metrics, including the
Pareto dominance, knee point criterion, and weighted dis-
tance, is designed, as shown in Algorithm 4.

Two individuals, x and y, are randomly selected from the
parent population P. If y is dominated by x, then x will be
preferred (lines 4-7). If x and y are nondominated, the indi-
vidual belonging to the knee point set K will be selected
(lines 9-12). If both or none of x and y belongs to the knee
point set K, the weighted distances will be used to compare
x and y. The weighted distances DWs of x and y are calcu-
lated as follows:

k
DW(x) = Z wydis, (10)
i=1
rxi ( )
we= o 11
X1 k
Zi:lrxi
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Input: F (sorted population), T (rate of knee points in population), r, ¢t (adaptive parameters)
1 K« & /* knee points */

2 Forall F, € Fdo

3 E « Find_extreme_solution(F,)

4 L « Calculate_extreme_hyperplane(E)

5 Update r by Eq. (9)

6 fmax «— Maximum value of each objective in F,

7 fmin < Minimum value of each objective in F;

8 Calculate V by Eq. (8)

9 Calculate the distance from each solution in F, to L by Eq. (7)
10 Sort F; in a descending order according to the distances

11 Sizep«—|F;]

12 For all p € F, do

13 NB—{alac F,— |f, - fi| < Vi, 1<j< M}

14 Ke<KU{p}

15 F, — F\NB

16 End For

17 t = |K|/Size,

18 End for

19 Return K, r and ¢t

ArcoriTHM 3: Finding_knee_point (F, T, r, and t).

Input: P (population), K (set of knee points), N (population size)
1 Q<Y

2 While |Q| <N do

3 Randomly choose x and y from P

4 If x < y then

5 Q<= QU {x}

6 Else If y < x then

7 Q<Qu{y

8 Else

9 If x € Kand y ¢ K then

10 Q—QuU{x}

11 Else If y € K and x ¢ K then

12 Q< Qu{y

13 Else

14 If DW(x) > DW(y) then
15 Q—Qu{x

16 Else If DW(x) < DW(y) then
17 Q—Quiy

18 Else

19 If rand() < 0.5 then
20 Q«— Qu {x}
21 Else

22 Q—Quy
23 End If

24 End If

25 End If

26 End If

27 End While

28 Return Q

ALGORITHM 4: Mating_selection (P, K, and N).
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1

1’ =
, 12
dis, . — VYL dis, (12)

xi

where x; is the ith nearest neighbor of x in the population,
wy; is the weight of x;, dis,; is the Euclidean distance
between x and x;, and r; is the rank of distance dis, ,; among
all distances dis, i, 1 <j<k.

Then, the individual with a large value of DW is
selected (lines 14-17). If DW(x) = DW(y), either is selected
(lines 19-23). This procedure is repeated until N individuals
are selected.

3.5. Environmental Selection. In this paper, a novel environ-
mental selection strategy is proposed, which is aimed at
enhancing selection pressure while balancing convergence
and diversity.

The details of the novel environmental selection strategy
are provided in Algorithm 5. Firstly, the sorted population F
will be normalized (line 1). The objective vector F(x;) of a

solution x; in the sorted population F can be normalized

T . .
to F'(xj) = (f{(xj),f;(xj), ,f,'ﬂ(x])) using the following
formula [55, 56]:

file) -2 ;
Zmax _ Zmin ’ ( )
1 1

fi’(xj) =

where z;™" denotes the ideal point, that is, 2" = min f(x;)
ie{l,--,M}, je{l,---,|F|}; zM™* represents the worst
point, that is, 2" = max f,(x;)i € {1, ---, M}, j€ {1, ---, [ F[}.

When the number of solutions in F, exceeds the popula-
tion size N, the solutions based on the Pareto dominance
relationship are incomparable. In this situation, the conver-
gence and diversity of KPEA are maintained alternately by
the penalty mechanism (introduced in Section 3.5.1), which
also decreases the sensitivity to the distribution threshold
(lines 2 and 3).

In contrast, when the number of nondominated solu-
tions in F, is less than the population size, knee points are
first preserved by the selection mechanism (introduced in
Section 3.5.2), which increases selection pressure and
improves convergence. Then, the remaining solutions are
selected with association and niching functions based on
the principle of maximum-vector-angle-first, which main-
tains diversity (lines 4 and 5). The detailed explanations of
these methods will be provided in the following sections.

3.5.1. Penalty. When the number of solutions in F, is greater
than the population size N, the function Penalty() is trig-
gered in KPEA, as shown in Algorithm 6. The excellent solu-
tions for the next generation are selected based on the
penalty principle, which considers both the diversity and
convergence of the population. First, the angles DM, = {y!,

Hys o> Mgy b between p;and {py,p, s Piys Pivr> 5 Py}
is computed and stored in Sp = {DM;, DM,, -+, DM } in
ascending order (lines 2-3). The distance CM; from p, to the
idle point z* is computed and stored in Sy, = {CM,, CM,,
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+++,CM|g } (lines 4-5). Then, the solution with the minimum
value in Sgy; is selected from the candidate solution set and
put into the next-generation population P (lines 7 and 8).
Once a solution is selected, its neighbors N; are identified,
where y'; <a and g € {1}, 3, > i, }. These neighbors
N, are put into the penalty set E (lines 9 and 10). The size of
E is determined by the size of the initial candidate set S and
the desired population size N. If the number of solutions in
E exceeds its capacity limit, the penalty set E must be updated
based on the similarity between the penalized solutions N; and
the selected solution set P. Specifically, the closer the solution
p; in E is to the candidate solution, the smaller the angle value
DM; (stored in Spy,) between p; and the candidate solution.
Therefore, among the neighbors of the candidate solutions,
the top N;=S- N neighbors with smaller angle values are
kept in the penalty set (lines 11-13). Then, the remaining
well-distributed solutions N with larger angle values (stored
in Sp,) will be moved from E to the candidate set F (line 14).

The process of the penalty mechanism in a 2D objective
space is illustrated in Figure 5. In this example, there are 9
nondominated solutions in F,, and the population size N is
5. Firstly, solution A with min (S¢y) is selected. And then,
as the angles between the solutions (B and C) and A are
smaller than &, B and C will be penalized, as shown in
Figure 5(b). Next, as the same as the method in Figure 5(b),
solution I with min (S¢y) is selected. As the number of solu-
tions in the penalty set does not exceed the limit, the neighbor
H of I can be directly punished, as shown in Figure 5(c). Sub-
sequently, solution F with min (S¢y) is selected. At present,
solutions A, I, and F are contained in the population P. Solu-
tions B, C, and H are included in the penalty set. Because the
penalty set can only accommodate four solutions, the neigh-
bors E and G cannot be directly penalized by the mechanism.
Therefore, it is necessary to update the penalty set by removing
solution H with max (Sp,). After the update, the penalty set is
composed of solutions B, C, E, and G. The selected solution
may have no neighbors, which means there is no angle
between the candidate solutions and the selected solutions
smaller than «. In this case, no solution is penalized. Finally,
based on the above steps, solutions D and H are selected, as
shown in Figures 5(e) and 5(f).

3.5.2. Selection. Once the number of nondominated solutions
in F, is less than the population size, the selection operation
will be triggered, as given in Algorithm 7. The knee points of
each nondominated front are selected first and added into P,
which can increase selection pressure (line 2). Then, the
remaining nondominated solutions from F, U---UF,_; are
selected and added into P. If the number of solutions in F,
exceeds the population size N, then F, is considered as the crit-
ical front. N — |P| knee points with the minimum distance to
the hyperplane are removed (lines 4 and 5). Otherwise, the
association function that constructs the search direction based
on P and the niching function that is aimed at ensuring the
diversity of the population are used to select N — |P| solutions
one by one from F; (lines 6-8). The association and niching
functions will be described in detail in the following sections.
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Output: P (next population)
1 Normalization (F)
If |F;| > N then

Else
maximum-vector-angle-first. */

6 End
7 Return P

Input: F (sorted population), K (set of knee points), N (population size);

2
3 P «— Penalty(F;, N); /* Solutions are selected one by one using penalty mechanism. */
4
5

P « Selection(F, K, N); /* The knee points are first preserved, and then each solution is selected based on the principle of

ALGorITHM 5: Environmental_selection (F, K, and N).

Input: F (sorted population), N (population size);
Output: P (next population)

1 while [P| <N do

2 Compute the angles DM; = {yi, i, -, HfF\—l} between pand {p;, pa, - Pit> Pivrs - Py}

3 Spar = {DMy, DM, ..., DM}

4 Compute the distance CM;, from p; to the idle point z *;

5 Sem ={CM,, CM,, ..., CM |}

6 S=|F|

7 Select p; with min(S,,)

8 Move p; into P

9 Identify the neighbors N; of p,, where /,t"j < aand yij e{un iy e yi‘FH}

10 Move N; into the penalty set E

11 If Size(E) > S — N then

12 Identify the neighbors N; of P, where the DM;of N; is smaller compared to the other neighbors of P, DM; € {DM,;, DM,,
<o DMy}

13 Penalize N; into the penalty set E

14 Move the remaining solutions N,into the solution set F, where the DM,of N, is larger compared to the other neighbors
of P, DM, € {DM,, DM, ...., DM}

15 End

16 End

17 Return P

ALGORITHM 6: Penalty (F, N).

3.5.3. Association. The angle-based association process is
described in this section. After selecting the knee points into
P, if P is not full, N —|P| solutions will be selected from
F; based on the vector angles. Before describing the associa-
tion operation, some relevant formulas are first presented in
this section.

The norm could calculate the vector angle between two
solutions in the normalized objective space. The objective
vector F(x;) in the sorted population F has been normalized

to F'(xj) = (f;(xj),f;(xj), ---,f:n(xj))T, as introduced at the
beginning of Section 3.5. The norm of solution x; in the
sorted population is defined as

norm (x;) Zf'(xj)z. (14)

The vector angle y between solutions x; and ¢ is
defined as

F'(x;) - F'(c;)

norm (x]-) -norm (c)

u(x) ¢) 2 arccos ,  (15)

where F’ (x;)-F '(¢) is to calculate the inner product between
F'(xj) and F'(c;). And F'(xj) - F'(c;) is defined as

m

F'(x)) - F'() = ) £ (%)) - fi' (c)- (16)

i=1

The main steps of the association process are provided in
Algorithm 8. For each remaining member in F), for example,
x;, the minimum vector angle (denoted as 6 (x;)) between x;
and the solutions in P is calculated. The index of the solution
in P that has the minimum vector angle to x; is denoted as
y(x j)'

Firstly, for each x; € F), its 0 (x;) and y (x;) are initialized
as 0o and -1, respectively (lines 1-3). Then, for each ¢, € P,
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FIGURE 5: An illustration of selecting solutions in the penalty mechanism. Five superior solutions need to be selected from 9 nondominated
solutions A-I, while the penalty set can accommodate only four solutions. The threshold « represents the neighborhood range for each
solution. (a) There are 9 nondominated solutions in the population. (b) A with min (S¢y,) is selected. As £Bz*A <a and £Cz*A<a, B
and C are penalized. (c) I is selected, and then H is penalized. (d) F is selected, then E and G are penalized. (e) D is selected. (f) H is selected.
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Output: P (next population)

Input: F (sorted population), K (set of knee points), N (population size);

1 P=g,i=1

2 P« PU(KnNEF)/* Select the knee point and the solutions in F,...F, into P */

3 P—F U..UF,

4 If |P|> N then

5 Delete |P| — N solutions from K N F,, which have the minimum distances to the hyperplane
6 Else If |[P| < N then

7 Associate each member of F,; with a solution in P: Association (P, F))

8 Choose N — |P| solutions one by one from F, to construct final P: P = Niching (P, F, N — |P|)
10 End If

11 Return P

AvLGoriTHM 7: Selection (F, K, and N).

For each x; € F,
0 (x]-) =00
y (x) =-1
For each ¢, P

End If
0 End For
1

1

2

3

4

5

6 Ifu<o (xj)
7

8

9

1

11 End For

Input: P (population), F; (critical front)

Calculate angle u between x; and ¢, by Eq. (15)

0 (xj) =u
y (xj) =k

ALGORITHM 8: Association (P, F)).

the angle ¢ between x; and ¢ is calculated (lines 4 and 5). If
1 <0 (x;),0 (x;) and y (x;) are updated accordingly (lines 6-8).
The association process in a 2D objective space is illustrated in
Figure 6. In this example, there are 4 nondominated solutions,
and one knee point has been selected and put into the next-
generation population P. Based on the vector angle association,
both x,; and x, are associated with ¢;, x5, and x, are associated
with ¢,, and x; is associated with ¢;. Taking x; as an example,
0 (x;) and y (x5) are f and 2, respectively.

3.5.4. Niche Preservation. A niche-based diversity mainte-
nance strategy is described in Algorithm 9, which is based
on the principle of maximum-vector-angle-first.

First, each solution in F; has a flag value, which indicates
whether the solution has been added into P. These flag
values should be initialized to false at the beginning of the
process (lines 1 and 2). Subsequently, for each k < (N —|P|),
the index of the solution in F; that has the maximum vector
angle to P is calculated, which is denoted by p (lines 3 and 4).

Finally, based on the principle of maximum-vector-
angle-first, the best solution is selected and added to P, as
specified in Algorithm 10. When p is null, it means that all

solutions in F; have been added into P. Otherwise, X, is

added into P and the corresponding flag is updated to true
(lines 4 and 5). When adding x, to the population P, the vec-

tor angles between the remaining solutions in F; and the

x
I ox,
o
x
3
c \ x
1 4
h
~ c,
B G
Gy X
cs 5
>
»
fi

Knee points
Other chosen solutions
Candidate solutions

FIGURE 6: Description of updating angles in the maximum-vector-
angle-first principle.

solutions in P must be adjusted accordingly. This adjustment
can be achieved by computing the vector angle between x,
and each solution in F; whose flag value is false (lines 7-11).
The specific updating process has been described in Section
3.5.3. As shown in Figure 6, compared to the other remaining
solutions, the angle between the solution ¢; in P and x, in F, is
the maximum. Based on the principle of maximum-vector-
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Output: P (next population)

End for
Return P

Input: P (population), F; (critical front), N — |P| (solutions to be chosen)

1 T=|F)| /* |F,| returns the cardinality of F, */

2 ﬂag(xj) = false, x;€ F,j=1,2,.,T

3 For k=1to (N—|P|)/* Find the index with the maximum vector angle*/
4 p=arg max {0(x;)|x; € FA(flag(x;) == false)}

5 P = Maximum-Vector-Angle-First (P, p, T)

6

7

AvrgorrtaMm 9: Niching (P, F;, and N — |P)).

Output: P (next population)

Input: P (population), p (solution index); T (number of solutions)

1 If p == null,

2 Return P

3 EndIf

4 P=PU{} /", is orderly added"/

5 flag( P) = true

6 Forj=1toT

7 If flag(x;) == false I* x; is a member of F, */

8 Calculate angle between x; and , by Eq. (15)

9 If angle < 6 (xj) /* x; is associated with p*/

10 0 (x;) = angle /*Update the vector angle from x; to P */
11 y(x;) = |P| /*Update the corresponding index.”/
12 End if

13 End if

14 End for

15 Return P

ArLGoriTHM 10: Maximum-vector-angle-first (P, p, and T).

angle-first, x, will be added into P. Obviously, compared to
solutions such as x;, x5, and x,, adding x, is more likely to
improve the distribution of the population. In addition, the
potential solutions may be obtained along the direction of x,.
Assuming that two more solutions need to be added into P,
x, and x5 will be chosen.

In contrast, x5 can never be considered because the vec-
tor angle between x5 and the associated solution ¢; is zero.
This means that ¢; with the same direction as x5 has good
convergence in P.

3.6. Time Complexity Analysis. During each evolutionary
generation, KPEA performs five main operations: mating
selection, preprocessing, nondominated sorting, identifica-
tion of the knee points, and environmental selection. The
preprocessing operation takes a runtime of O(N log N).
Nondominated sorting operation takes a runtime of O(N
log”N). The identification of the knee points requires at
most a runtime of O(mN?). Specifically, it takes at most a
runtime of O(mN) to compute the distance between each
nondominated solution and the hyperplane. And it takes a
runtime of O(mN?) to identify the knee points in the non-
dominated solutions set.

During the environment selection, the time complexity of
KPEA is mainly determined by the adaptive switching strat-

egy, as described in Algorithm 5. When the number of nondo-
minated solutions in F, exceeds the population size N, the
function penalty operation is triggered. First, the computation
of cosine similarity requires a runtime of O(mN?). Next, it
takes a runtime of O(N?) to identify the elite solutions. When
the number of nondominated solutions in F, is less than N,
the selection operation will be triggered. First, it takes a run-
time of O(N log N) to identify the knee points into the next
generation of the population. Next, the association and nich-
ing functions require at most a runtime of O(mN?).

Therefore, the environment selection stage requires at
most a runtime of O(mN?). Overall, in each generation, the
worst time complexity of KPEA is max {O(N log" >N),
O(mN?)}.

4. Experimental Setup

The experiment to validate the performance of the proposed
KPEA on MaOPs is set up in this section. First, in Section
4.1, five representative algorithms are briefly introduced,
namely, k-NSGAII [36], KnEA [34], Pi-MOEA [35], hpaEA
[52], and VaEA [47]. Then, the specific characteristics of the
test problems in the MaF and WFG benchmark suites are
listed in Section 4.2. Finally, performance metrics and
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parameter settings are described in Section 4.3 and 4.4,
respectively.

4.1. Comparison Algorithms. To fully validate the effective-
ness of KPEA, five state-of-the-art algorithms are selected
for performance comparison in this paper. The core ideas
of these five algorithms are presented as follows.

(i) k-NSGAII [36]. The algorithm is based on NSGA-II
and introduces a knee point identification strategy,
which uses a user-defined parameter # to control
the width of the neighborhood of knee points. This
strategy can improve the coverage of the population
on the Pareto front

(if) KnEA [34]. The algorithm adopts an adaptive strat-
egy to identify knee points for each nondominated
front and uses a custom threshold parameter T to
control the number of knee points recognized. This
strategy not only enhances selection pressure on the
Pareto front but also promotes population diversity

(iii) Pi-MOEA [35]. The algorithm uses an average rank-
ing method to identify pivot solutions within the
adaptive neighborhood, which is aimed at achieving
a balance between convergence and diversity

(iv) VaEA [47]. The selection of solutions is based on
the principles of maximum-vector-angle-first and
worse-elimination without requiring additional
weight vectors and parameters

(v) hpaEA [52]. With the assistance of hyperplanes,
prominent solutions are selected first during both
mating selection and environmental selection, which
increases the selection pressure

4.2. Description of Benchmark Problems. In this paper, 20
scalable test problems from two well-known benchmark test
suites, WFG [57] and MaF [58], are used in this study to ver-
ify the performance of KPEA. The characteristics of the test
problems are detailed in Table 1.

4.3. Performance Indicators. Two widely used performance
metrics, namely, hypervolume (HV) [59] and inverse gener-
ational distance (IGD) [60, 61], are considered as they can
simultaneously evaluate the convergence and diversity of
solution sets. The IGD measures the average distance
between the nondominated solution set P and the nondomi-
nated solution set P* uniformly distributed along the true
Pareto front (PF) [26]. IGD is defined as follows:

ZvéP*d(V’ P)

IGD(P*, P) = TR (17)

where d(v, P) refers to the minimum distance between the
solution in v and its closest solution in P. Therefore, the
smaller the value of IGD, the closer the solution set is to
the true PF.

HYV refers to the volume of a hypercube in the objective
space that is enclosed by a reference point and a set of non-
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TaBLE 1: Characteristics of the benchmark problems.

Problem Characteristics

WFG1 Mixed, biased, scaled

wrcs Cones, o e

WEG3 Linear, degenerate, nonseparable, scaled

WEFG4 Concave, multimodal, scaled

WEG5 Concave, deceptive, scaled

WEFG6 Concave, nonseparable, scaled

WEFG7 Concave, biased, scaled

WEGS Concave, biased, nonseparable, scaled

WEGY Concave, Ei;z:;il; ;il;l;ieins(:i?eladeceptive,

MaF1 Linear

MaF4 Convex, multimodal

MaF5 Convex, biased

MaF6 Concave, degenerate

MaF7 Mixed, disconnected, multimodal

MaF8 Linear, degenerate

MaF9 Linear, degenerate

MaF10 Mixed, biased

MaF11 Convex, disconnected, nonseparable

MaF12 Concave, nonseparable, biased, deceptive

MaF13 Concave, unimodal, nonseparable, degenerate
TABLE 2: Setting of the population size.

M N

3 120

5 126

8 156

10 275

dominated solutions P, which is a common indicator for
measuring the performance of the algorithm. It can be
defined as follows:

|P|
HV = volume (AU1 vi> , (18)
=

where v; is the hypercube enclosed by z"=(1,1,---,1) and
the individual i in P. The quality of the solution set can be
judged by the HV value.

In order to obtain reliable statistical conclusions, the
Wilcoxon rank-sum test [62] with a significance level of
0.05 is conducted to evaluate whether the proposed KPEA
has a significant advantage over other comparative algo-
rithms. The symbols “+,” “-,” and “=” indicate whether the
results obtained by the compared algorithms are signifi-
cantly better, similar, and worse than those obtained by
KPEA, respectively. Moreover, the Friedman test [63] is
employed in this study to obtain the average rankings of
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FIGURE 7: Pareto front on WEGI with 10 objectives: (a) k-NSGAIL (b) KnEA. (c) Pi-MOEA. (d) hpaEA. (e) VaEA. (f) KPEA.
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Figure 9: Continued.
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FIGURE 9: Pareto front on MaF1 with 3 objectives: (a) k-NSGAIL (b) KnEA. (c) Pi-MOEA. (d) hpaEA. (e) VaEA. (f) KPEA.
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Figure 10: Continued.
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(f)
FIGURE 10: Pareto front on MaF5 with 3 objectives: (a) k-NSGAIL (b) KnEA. (c) Pi-MOEA. (d) hpaEA. (e) VaEA. (f) KPEA.

29



30

Value

Dimension no.

()

Dimension no.

(©)

Value

Dimension no.
(e)
FIGURE 11: Pareto front on MaF5 with 10 objectives: (a) k-NSGAIL (b) KnEA. (c) Pi-MOEA. (d) hpaEA. (e) VaEA. (f) KPEA.
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FIGURE 12: Pareto front on MaF8 with 3 objectives: (a) k-NSGAIL (b) KnEA. (c) Pi-MOEA. (d) hpaEA. (e) VaEA. (f) KPEA.
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TaBLE 7: The properties of test problems.

Properties Problems
Linear Pareto fronts MaF1
Concave Pareto fronts MaF2
Degenerate Pareto fronts MaF6
Distance minimization problems MaF9
Convex Pareto fronts WEG1
Disconnect Pareto fronts WEFG2
Scaled Pareto fronts WEFG9

the algorithms on each test instance, which helps the overall
performance of each algorithm.

4.4. Parameter Settings. The several key parameters adopted
in this experiment are summarized as follows:

(i) Variation Operators. In this paper, the simulated
binary crossover (SBX) [64] and polynomial muta-
tion [65] are adopted by all the MaOEAs used for
comparison to generate offspring solutions. The
crossover probability p, is set to 1, and the mutation
probability p,, is set to 1/D, where D is the number
of decision variables. Following the recommenda-
tions in literature [23], the distribution indexes #,
and #,, are set to 20 and 30, respectively. The other
parameter settings for the algorithms are consistent
with the settings described in their respective
literature

(ii) Population Size. This paper considers 3, 5, 8, and 10
objectives. The population size N of six algorithms
for different numbers of objectives M is summa-
rized in Table 2

(iii) The Number of Runs and Termination Criterion.
For each test instance, each algorithm runs 20 times
independently. The termination criterion for each
run is determined by the predefined maximum
number of generations (maxGen). For WFG1 and
WEFG2, maxGen is set to 1000. For WFG3-WFG9,
maxGen is set to 250. For the MaF test suite, max-
Gen is set to 250. When the number of generations
reaches maxGen, all algorithms are terminated

5. Experimental Results

In this section, according to the experimental design
described in Section 4, KPEA is compared with five state-
of-the-art algorithms on WFG and MaF. The statistical
results of IGD and HV metrics obtained by the six algo-
rithms on the test suite are listed in Tables 3-6. The best
results for each problem instance are annotated with a dark
gray background. Then, in Section 5.3, the sensitivity of
KPEA to parameter r is discussed. Additionally, the perfor-
mance comparison of KPEA and its different variants is
analyzed in Section 5.4. Finally, in Section 5.5, the overall
performance of six algorithms is analyzed.

Journal of Applied Mathematics

5.1. Analysis of WFG Test Problems. The mean and standard
deviation values of IGD and HV results obtained by five
compared algorithms and KPEA on the WEFG test suite are
listed in Tables 3 and 4. The performance is challenged by
the multiple complex features of WFG problems, which
include scalability, deception, and separability.

As shown in Table 3, KPEA significantly outperforms
other algorithms. Specifically, among 36 instances, KPEA
outperforms all compared algorithms on 18 instances. The
performance of KPEA is significantly better than the other
five algorithms on the WFG1, WFG2, and WFG8 problems
with scaling and concave-convex Pareto fronts. It can be
attributed to the novel adaptive switching mechanism of
KPEA, which balances diversity and convergence. In terms
of the HV indicator, KnEA performs better on the WFG5
and WFGY problems with deceptive and concave Pareto
fronts. This is due to the fact that KnEA sets a small thresh-
old T for the adaptive strategy to identify knee points, which
helps KnEA to achieve good performance on scalable prob-
lems. Pi-MOEA performs better than KPEA when solving
the WEG problems with three-objective. Furthermore, the
performance of VaEA is considerably worse than that of
KPEA. The reason is that VaEA emphasizes diversity too
much but the importance of convergence is neglected.

In Table 4, in terms of IGD values, KPEA and VaEA
achieve better results than other algorithms on most of the
WEG test problems. Out of the 36 test instances, KPEA
achieves the best IGD result on 20 instances, while Pi-
MOEA obtains the best result on 8 instances. The reason
why KPEA performs well on some WFG test problems
may be that it combines the knee points with the maxi-
mum-vector-angle-first principle to guide the evolution of
the population. Therefore, unlike KnEA and k-NSGAII that
lack a diversity maintenance mechanism, it is not easy for
KPEA to trap in the local optima on problems with biased
Pareto fronts such as WFGI1, WFG8, and WFGY. Pi-
MOEA uses a threshold T defined based on the average
ranking to control the neighborhood range of solutions,
which helps the algorithm maintain a balance between con-
vergence and diversity. It is important to note that on the
WEG test suite, the performance of the k-NSGAII and
hpaEA is relatively the worst in both HV and IGD metrics.
For k-NSGAII, the effectiveness of the knee point-driven
algorithms is heavily influenced by the approach used to
detect the knee points, which is a crucial factor. However,
the approach proposed by k-NSGAII only focuses on a small
portion of the PF region when identifying the knee points,
which results in poor diversity during the search process of
k-NSGAIIL For hpaEA, this is mainly due to its proposed
prominent solution protection strategy, which is unable to
maintain a good diversity of solutions on the linear Pareto
front of the WFG test suite.

Taking WFG1 and WFG9 with 10 objectives as examples,
the final solutions obtained by six algorithms in a single run
are shown in Figures 7 and 8, respectively. For the WFG1
problem with 10 objectives, each algorithm encounters some
difficulties in solving this problem, as shown in Figure 7. In
terms of distribution and convergence, both hpaEA and VaEA
perform poorly. Furthermore, the uniformity of the Pareto
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front obtained by k-NSGAII and KnEA is worse than that of
KPEA. Only Pi-MOEA and KPEA show relatively good per-
formance, because their obtained solutions are closer to the
true Pareto front. From Figure 8, the solutions obtained by
KPEA and KnEA are relatively better in terms of both conver-
gence and distribution. While the solutions obtained by k-
NSGAIJ, Pi-MOEA, and hpaEA have all been trapped in local
optima on the Pareto front. The solutions obtained by VaEA
are the worst in terms of both convergence and diversity.

5.2. Analysis of MaF Test Problems. Although WFG
problems are widely used to evaluate the performance of
many-objective optimization algorithms, their benchmark
functions are too regular and monotonous. Furthermore,
WEG problems lack some validation for the complex and
uncertain real-world problems. In contrast, the MaF prob-
lems that focus on evaluating diversity and convergence
have higher complexity and practical significance. In this
study, tests are conducted on the MaF problems to further
validate the performance of KPEA.

The statistical results of the HV values obtained by six
algorithms on the MaF test suite are presented in Table 5.
KPEA outperforms the other five algorithms on 27 instances
out of the 44 test instances. Furthermore, KPEA also
demonstrates strong competitiveness on MaF4 with a
convex Pareto front, MaF8, MaF11 with a disconnected
Pareto front, and MaF13 with irregular mixed Pareto fronts.

The IGD values obtained by the considered algorithms
on the MaF test suite are presented in Table 6. Out of the
44 test instances, KPEA achieves the best IGD value on 26
instances. Additionally, Pi-MOEA also performs well, which
obtains the best IGD value on 6 test instances. Conversely,
the performance of k-NSGAII and KnEA is not as good as
other algorithms.

To illustrate the convergence and distribution of solutions
more intuitively, the final population of six algorithms on sev-
eral representative problems is plotted in Figures 9-12. KPEA,
Pi-MOEA, hpaEA, and VaEA maintain a uniform population
distribution on MaF1 with an irregular PF shape, as shown in
Figure 9. On the contrary, the distribution of solutions
obtained by k-NSGAII and KnEA is relatively poor. The dis-
tribution of solutions obtained by different algorithms on the
MaF5 with three objectives is shown in Figure 10. The solu-
tions with the uniform distribution obtained by Pi-MOEA
and KPEA are closest to the true Pareto front of MaF5. Com-
pared to k-NSGAII and hpaEA, the solutions of KnEA and
VaEA seem to have good convergence. However, both KnEA
and VaEA struggle to maintain population diversity on
MaF5. From Figure 11, the solutions obtained by KnEA,
VAEA, and KPEA are closest to the true Pareto front when
the number of objectives is 10. Moreover, as shown in
Figures 10 and 11. unlike other algorithms, the performance
of KPEA becomes more prominent as the number of objec-
tives increases. MaF8 is a problem of multipoint distance
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TaBLE 8: Mean and standard deviation values of HV metric for KPEA, KPEA-N, KPEA-NR, and KPEA-NK on MaF problems.

Problem M KPEA-N KPEA-NK KPEA-NR KPEA
3 2.2089% — 1 (4.29¢ - 4) + 2.2086¢ — 1 (4.75¢ - 4) + 2.2107e—1(3.37e —4) + 2.1988¢ — 1 (6.02¢ — 4)
5 1.0157e -2 (1.37e —4) — 1.0308e — 2 (1.50e — 4) - 1.0240e -2 (1.79¢ — 4) - 1.0997e — 2 (2.40¢e — 4)
MaFl 8 2.1377¢ - 5 (2.59¢ — 6) — 2.2644¢ - 5 (2.76¢ — 6) — 2.1132¢ - 5 (2.07¢ - 6) — 3.1775¢ - 5 (2.88¢ - 6)
10 2.685le-7(1.4le-7) - 2.2828¢ -7 (1.73¢ — 7) — 2.1136¢ 7 (2.07e - 7) - 55111e—7(2.81e-7)
3 1.0347e~1(2.10e—-1) - 2.4796e -2 (1.06e - 1) — 1.9116e -2 (8.28¢ - 2) - 4.5241e-1(1.50e—1)
5 9.9397¢ -3 (3.06e—2) - 1.1778e -3 (4.71e - 3) - 0.0000e + 0 (0.00e +0) - 4.6754e 2 (3.60e - 2)
MaF4 8 2.8676e—4(6.78e—4) - 7.3239¢—7(3.28¢-6) - 1.3434e~5(6.0le-5) - 8.3691e—4(8.10e - 4)
10 0.0000e + 0 (0.00e + 0) — 4.8747¢ -6 (1.68¢—5) = 0.0000e + 0 (0.00e + 0) — 8.1403e — 6 (2.07e - 5)
3 4.8596e-1(1.27e-1) = 5.5865¢—1(8.71e—4) + 5.4846e -1 (4.75e-2) + 5.3746e -1 (5.85e - 2)
5 7.6891e—1(3.10e - 3) - 7.7647e~1(2.07¢-3) = 7.7658¢ — 1 (1.67e - 3) = 7.7107e ~ 1 (2.58¢ - 2)
MaFs 8 9.1862¢ — 1(7.50e - 3) + 9.114le-1(2.02e-3)=  9.0744e—1(3.07¢—3) - 9.1176¢ - 1 (8.41¢ - 3)
10 9.1566e—1(6.96¢ —3) — 9.4286¢ — 1 (3.78¢ - 3) — 9.3816¢— 1 (5.22¢ - 3) - 9.5801¢— 1 (6.93¢ - 3)
3 1.9824¢ — 1 (6.07¢ - 4) — 1.9989¢ — 1 (1.16¢ - 4) + 1.9994¢ — 1 (6.50¢ — 5) + 1.9890¢ — 1 (2.06¢ — 4)
5 1.2791e - 1(8.01e — 4) — 1.2929¢ — 1 (3.54e — 4) + 1.2927¢ — 1 (4.04e — 4) + 1.2882¢ - 1(2.55¢ - 4)
Mare 8 3.7002¢ — 2 (5.17e - 2) — 6.8908¢ - 2 (5.19¢ — 2) = 3.7135¢ - 2 (5.19¢ - 2) — 9.5296¢ - 2 (3.26¢ - 2)
10 0.0000e + 0 (0.00e + 0) — 5.0156¢ — 3 (2.24¢~2)=  0.0000e +0 (0.00e + 0) — 2.0106e - 2 (4.13¢ - 2)
3 2.6851e - 1(3.50e - 3) + 2.7859% — 1 (5.89¢ — 4) + 2.7522¢ — 1(1.16¢ - 2) + 2.6615¢ - 1(2.06¢ - 2)
5 2.1904e - 1(5.72¢ - 3) - 2.5066¢ — 1(4.89¢—3)=  2.5207¢—1(1.82¢—3) + 2.4103¢ - 1(1.75¢ - 2)
MaF7 8 1.0654¢ — 1 (1.56¢ —2) + 1.6928¢ — 1 (8.21e—3) + 1.6443¢— 1 (1.35¢ - 2) + 7.7005¢ — 2 (1.87¢ - 2)
10 3.0526e -2 (1.06e—2) - 1.1904e — 1 (1.07¢ - 2) + 7.5015e -2 (2.21e - 2) + 5.7313e - 2 (9.76¢ - 3)
3 1.5776e~1(6.12e-2) - 2.5758e~1(1.34e-2) + 2.6176e~1(1.69e-2) + 2.118le~1(5.46e-2)
5 4.9496e - 2 (3.86e - 2) = 1.1134e—1(8.48¢-3) + 1.1529¢ -1 (4.84e - 3) + 7.0910e — 2 (3.54e - 2)
MaF8 8 1.0392¢ —2(8.88e-3) = 2.7399¢-2(1.91e-3) + 2.7955¢ -2 (2.03e - 3) + 1.3337e - 2(1.05e - 2)
10 3.0468¢ — 3 (2.96¢ - 3) 8.4438¢ -3 (1.64e-3) + 8.9080e — 3 (1.04¢ - 3) + 4.4683¢ -3 (4.01le - 3)
3 6.4323¢ — 1 (8.40e - 2) — 6.3004¢ — 1(3.74¢ - 2) — 6.3182¢ — 1 (3.76¢ - 2) — 8.0297¢ — 1 (1.26¢ - 2)
5 1.5440¢ — 1 (9.01e - 2) — 1.7294¢ — 1 (6.32¢ - 2) — 1.6515¢— 1 (5.91e—2) — 2.6738¢ - 1(1.58¢ - 2)
Mal? 8 8.4353¢ — 4 (2.58¢ - 3) — 1.1598¢ - 2 (1.26e — 2) — 9.8085¢ — 3 (9.34¢ - 3) — 3.3563¢ 2 (3.16¢ - 3)
10 4.9652¢ —3(3.20e - 3) - 1.0867e —2(3.02e - 3) + 8.2588¢ -3 (2.57e-3) = 8.6205¢ — 3 (1.19¢ - 3)
3 3.8120e -1 (2.86e-2) - 6.0320e — 1 (2.44e-2) - 8.3539¢ — 1 (2.46e-2) - 9.1376e - 1(1.92e - 2)
4.4763¢—1 (4.16e - 2) — 6.9871e—~1(3.79% - 2) - 7.3122e 1 (4.63e - 2) — 9.3890e — 1(3.20e - 2)
MaF10 3.5522e —1(4.08e—-2) — 6.0066e — 1 (5.95¢ - 2) — 6.2230e - 1(3.63e-2) - 8.2514e 1 (6.79¢ - 2)
10 3.0918e—1(4.95e-2) - 5.6976e — 1 (4.75¢—2) = 5.8848¢—1(5.32¢-2) + 5.6479e —1(9.82¢ - 2)
3 9.0938¢ — 1 (4.80e - 3) — 9.0585¢ — 1(9.03¢ - 3) — 9.2773¢ — 1 (2.41e - 3) - 9.3479¢ - 1 (1.03¢ - 3)
9.4812¢—1(8.35e-3) - 9.3286e—1(1.74e-2) - 9.8274e~1(3.67e~3) - 9.9377e~1(9.73e - 4)
Marll 9.5226¢ — 1 (1.08¢ - 2) — 9.5909¢ — 1 (8.12¢ - 3) — 9.8842¢ — 1 (2.77¢ - 3) - 9.9471e—1(1.79 - 3)
10 9.48%¢—1(9.53¢—3) - 9.6433¢—1(9.35¢ - 3) — 9.8716¢— 1 (5.59% — 3) — 9.9092¢ — 1 (2.46¢ — 3)
3 5.2372e—1(3.56e - 3) — 5.2860e — 1 (4.14e - 3) — 5.3250e — 1 (3.80e - 3) — 5.3619e — 1 (4.26e - 3)
6.8959% — 1 (1.85¢ —2) — 7.1681e - 1 (8.43¢ - 3) + 7.2182¢ -1 (6.58¢ - 3) + 7.0763¢ — 1 (1.08¢ - 2)
MaF12 7.3725¢ - 1 (4.8% - 2) — 8.1452¢ — 1 (3.44e - 2) + 8.2499% -1 (1.01e - 2) + 7.9307¢ — 1 (1.46¢ - 2)
10 7.4826e—1(3.94¢—2) - 8.3485¢ — 1 (1.23¢ - 2) = 8.2515¢—1(3.65e—2)=  8.2902¢—1(1.37¢-2)
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TaBLE 8: Continued.
Problem M KPEA-N KPEA-NK KPEA-NR KPEA
3 49582¢—1(1.67e-2)=  5.1793¢—1(8.66¢ — 3) + 49792¢—1(1.68¢-2)=  4.9983¢—1(l.4le-2)
5 2.3591e— 1 (1.76e —2) — 251660 1(8.49e—3)=  2.1398¢—1(2.87e—2) - 2.5636¢ — 1 (8.44¢ - 3)
MaF13
8 1.3714e — 1 (8.44¢ - 3) — 1.4881e—1(5.82¢ - 3) — 1.2333¢— 1 (1.85¢ - 2) — 1.6289¢ — 1 (4.20¢ — 3)
10 1.0115e—1(1.65¢—2) - 1.1908¢ — 1 (6.03¢ — 3) — 9.9478¢ — 2 (1.08¢ - 2) — 1.3634¢ — 1 (1.59 - 3)
+/-1= 4/35/5 15/20/9 15/25/4

minimization [43]. From Figure 12, KPEA demonstrates the
best convergence and diversity performance on MaF8. How-
ever, the distribution of k-NSGAII, Pi-MOEA, and KnEA is
quite unsatisfactory. The solutions obtained by hpaEA and
VaEA cannot converge to the Pareto front on MaF8. This also
proves the effectiveness of the proposed KPEA.

5.3. Sensitivity of Parameter r. To investigate the sensitivity
of parameter r of preprocessing in KPEA, the performance
with varying r from 0 to 5 on 3, 5, and 10 objective test prob-
lems is evaluated. Seven representative problems in Table 7
are selected for testing and comparison. The average IGD
values in 30 iterations for each problem are calculated.

From Figure 13, on MaF2 and WFG9 problems with
concave and scaled Pareto fronts, the performance of KPEA
is insensitive to r. On MaF1 with degenerate Pareto front,
the analysis needs to be conducted based on the number of
objectives. As shown in Figures 13(a) and 13(b), when the
number of objectives is less than 10, the IGD value of KPEA
slightly fluctuates as the value of r increases. However, when
the number of objectives reaches 10, the variation of r has a
significant impact on the performance of KPEA. Firstly, as r
increases from 0 to 1.5, the IGD value consistently decreases.
Then, as r continues to increase, the IGD value gradually
increases. Moreover, on WFG1 and MaF9, the IGD value
also slightly fluctuates as the r value increases. However,
no matter how the r value fluctuates, the IGD values of
KPEA are always the smallest at r=1.5. On WFG2 and
MaF6, the IGD values rapidly decrease until r = 0.5 and then
tends to stabilize with the increase of r.

Therefore, r = 1.5 is the best choice to improve the per-
formance of KPEA. The parameter setting of r = 1.5 can sig-
nificantly enhance the applicability of the algorithm.

5.4. Performance Comparison of KPEA and Its Different
Variants. The performance of KPEA is compared with its
three variants in this section. The experimental results are
used to validate the effectiveness of penalty, the effectiveness
of preprocessing, and the necessity of knee point guidance.
KPEA-N represents a variant of KPEA. During the environ-
ment selection of KPEA-N, solutions are selected based on
the worse-elimination principle in VaEA, rather than on
the penalty mechanism. This variant contains only prepro-
cessing strategy and knee point guidance. KPEA-NR denotes
a variant of KPEA that does not eliminate DRSs. KPEA-NK
represents a variant of KPEA without a knee point-driven
strategy. The IGD and HV results of KPEA, KPEA-N,

KPEA-NR, and KPEA-NK on the MaF test suite are given
in Tables 8 and 9, respectively.

Specifically, in terms of HV values, KPEA outperforms
the other three variants on all test instances of the MaF4
and MaF11 problems. In terms of IGD values, KPEA outper-
forms KPEA-N, KPEA-NR, and KPEA-NK on 29 instances
out of the 44 test instances. As shown in Table 8, for the
MaF8 problem with distance minimization, there is no need
to use preprocessing to eliminate DRSs. For problems with
nonseparable Pareto fronts, the solutions obtained by
KPEA-NR are very close to the final Pareto optimal front.
In other words, the preprocessing strategy of KPEA may
not be beneficial for optimization on such problems.

As shown in Table 9, for the MaF7 problem with
concave-convex Pareto fronts, KPEA-NK performs signifi-
cantly better than KPEA. This may be due to the fact that
MaF7 is a multimodal problem that contains a large number
of segmented Pareto-optimal fronts, which results in the
KPEA easily falling into local Pareto optimality when driven
by knee points.

It is important to note that on the MaF test suite, the
performance of the KPEA-N is relatively the worst in both
HV and IGD metrics. It is difficult for this variant to achieve
relatively better performance on any problem. The adaptive
penalty mechanism selects the individuals with the best
convergence one by one, which achieves comprehensive
coverage of the Pareto front. Compared to the worse-
elimination principle in KPEA-N, the penalty mechanism
in KPEA can better balance the convergence and diversity
of the population.

However, both for IGD and HV values, KPEA has a sig-
nificant advantage over the variant algorithms KPEA-N,
KPEA-NR, and KPEA-NK in most test instances. Overall,
the combination of the penalty mechanism, knee-point-
driven strategy, and elimination of DRS strategy is more
suitable for most problems.

5.5. Overall Performance Analysis. In this section, two
statistical tests (i.e., the Wilcoxon rank-sum test and the
Friedman test) are used to validate the comprehensive per-
formance of KPEA in terms of convergence and diversity.
The statistical results based on the Wilcoxon rank-sum
test are listed in Table 10. Specifically, in terms of the IGD
metric, the proportion of the test instances where KPEA out-
performs k-NSGAII, KnEA, Pi-MOEA, hpaEA, and VaEA
with statistical significance is 50/80, 62/80, 69/80, 77/80,
and 60/80, respectively. In terms of the HV metric, the pro-
portion of the test instances where KPEA outperforms
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TABLE 9: Mean and standard deviation values of IGD metric for KPEA, KPEA-N, KPEA-NR, and KPEA-NK on MaF problems.

Problem M KPEA-N KPEA-NK KPEA-NR KPEA
3 4.0391e—2 (4.61e—4) + 4.0302¢ - 2 (5.82¢ — 4) + 4.0226¢ -2 (3.57¢ — 4) + 2.1988¢ - 1 (6.02¢ — 4)
5 1.2929¢ — 1 (1.15¢ - 3) — 1.2824e — 1 (1.34e - 3) — 1.2931e - 1 (2.00e - 3) - 1.0997¢ - 2 (2.40e — 4)
MaFl 8 2.1941e—1(2.94¢ - 3) - 2.2086¢ - 1 (2.46¢ - 3) — 2.2223¢—1(2.29¢ - 3) - 3.1775¢ - 5 (2.88¢ - 6)
10 2.604% —1(3.93¢—3) - 2.655le—1(4.91e - 3) - 2.6649¢ — 1 (5.24¢ - 3) — 5.5111e—7(2.81e-7)
3 1.7742e+1(1.21e+1) - 2.8287e+1(2.02e+1) - 1.9268e+1(8.91e +0) — 4.5241e-1(1.50e—1)
5 1.1676e +2(9.09¢ + 1) — 1.5897e+2(1.04e+2) - 1.4215e+2(7.28e+1) - 4.6754e -2 (3.60e - 2)
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Problem M KPEA-N KPEA-NK KPEA-NR KPEA
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+/-1= 5/3217 11/29/4 10/30/4

TaBLE 10: Overall performance comparison based on the Wilcoxon rank-sum test based on HV and IGD metrics on the entire benchmark

problem.
Problem k-NSGAII KnEA Pi-MOEA hpaEA VaEA
Overall performance comparison based on the inverted generational distance
MaF 40/4/0 32/7/5 31/9/4 32/6/6 34/4/6
MaF 40/4/0 32/7/5 31/9/4 32/6/6 34/4/6
KPEA (-/=/+)
WEG 33/3/0 21/12/3 16/12/8 36/0/0 30/2/4
Overall 731710 53/19/8 47/21/12 68/6/6 64/6/10
Overall performance comparison based on the hypervolume
MaF 41/3/0 33/6/5 33/9/2 29/10/5 40/4/0
KPEA (-/=/+) WEG 33/1/2 17/9/10 13/21/2 33/3/0 33/2/1
Overall 741412 50/15/15 46/30/4 62/13/5 73/6/1

KPEA outperforms k-NSGAII, KnEA, Pi-MOEA, hpaEA,
and VaEA with statistical significance is 74/80, 50/80, 46/
80, 62/80, and 73/80, respectively. Moreover, the superiority
of KPEA in terms of convergence and diversity is visually
validated by Figure 14. These bar charts clearly indicate that
KPEA achieves the best results of both HV and IGD indica-
tors in most test instances.

Furthermore, in order to quantify the overall perfor-
mance of each algorithm, a more effective statistical test,
namely, the Friedman test, is also employed. The Friedman
test ranks based on the IGD and HV results are presented
in Table 11. KPEA ranks 1st in both HV and IGD metrics
of the combined test suite. In addition, the bar chart in
Figure 15 also intuitively shows that KPEA performs much
better than the other five state-of-the-art algorithms in terms
of the Friedman test ranking.

Both the results of the Wilcoxon rank-sum test and the
average performance ranks indicate that KPEA has signifi-
cant advantages in terms of convergence and diversity.

6. Discussions

In KPEA, a good balance between convergence and diversity
is achieved through an adaptive switching mechanism. The
knee point-driven selection mechanism increases selection
pressure. The convergence and diversity of KPEA are main-
tained alternatively by the penalty mechanism. The experi-
mental results in Section 5 demonstrate that KPEA can
effectively solve optimization problems with different PFs.
In KPEA, when the number of nondominated solutions
is less than the population size, knee points are first pre-

served by the selection mechanism, which increases selection
pressure and improves convergence. Then, the remaining
solutions are selected based on the principle of maximum-
vector-angle-first, which maintains diversity. It is worth
mentioning that both KnEA and k-NSGALII are knee point-
driven algorithms that use adaptive neighborhood strategies
to identify knee points. In addition, Pi-MOEA uses the aver-
age ranking method to identify pivot solutions within the
neighborhood, which is similar to the strategy of identifying
knee points. However, in KnEA and Pi-MOEA, the remain-
ing nondominated solutions are selected based on the
distance of each solution to the hyperplane. Therefore, this
selection strategy emphasizes convergence too much but
neglects the importance of diversity. Similarly, k-NSGAII
uses parameter # to control the width of the neighborhood,
which leads to difficulty in maintaining satisfactory diversity.

Compared to the worse-elimination principle in VaEA,
the penalty mechanism in KPEA can better balance the con-
vergence and diversity of the population. However, the pen-
alty mechanism uses a fixed neighborhood range to penalize
solutions, which may be not suitable for addressing the
problem with mixed PFs.

It is a challenging task to set an appropriate neighbor-
hood range for the solution. Because too high or too low
thresholds will affect the performance of the algorithm. Esti-
mating the shape of the PFs or adaptively adjusting the
neighborhood range may be a feasible approach.

Furthermore, recent research has pointed out that DRSs
can have a significant impact on the performance of
MaOEAs. Currently, scholars have proposed various strate-
gies to eliminate DRSs, such as the direct identification of
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FIGURE 14: A comparison of the Wilcoxon rank-sum test performance on benchmark problems between KPEA and state-of-the-art algorithms.
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TaBLE 11: Overall performance comparison based on the Friedman test ranking based on HV and IGD metrics on the entire benchmark
problem.

Problem k-NSGAII KnEA Pi-MOEA hpaEA VaEA KPEA
Friedman’s rank based on inverted generational distance
MaF 5.0455 3.3636 3.2273 3.3636 4.2500 1.7500
WEG 4.7222 2.8611 1.9861 5.9444 3.6806 1.7056
Overall 4.9000 3.1375 2.6688 4.5250 3.9937 1.7750
Friedman’s rank based on hypervolume
MaF 4.9886 3.4091 2.7955 3.3409 4.9432 1.5227
WEG 4.5139 2.4889 2.3667 5.5972 4.3194 2.0139
Overall 4.7750 2.9500 2.5125 4.3563 4.6625 1.7437
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F1GURE 15: The average ranks of the Friedman test among all considered MaOEAs on WFG and MaF problems. (a) Average ranks of all
considered MaOEAs based on all IGD results. (b) Average ranks of all considered MaOEAs based on all HV results.

DRSs and the indirect elimination of DRSs by identifying
boundary solutions. However, some boundary solutions of
the extremely convex Pareto front (ECPF) are often mistak-
enly identified as DRSs. Indirect elimination of DRSs also
cannot guarantee the identification of all boundary solu-
tions. In real-world applications, such as unmanned aerial
vehicle route planning [66] and software product line con-
figuration [67], it is crucial to preserve ECPF boundary solu-
tions. Therefore, it is necessary to accurately identify DRSs
on the ECPF.

7. Conclusions

As the number of objectives increases, the performance of
algorithms based on the Pareto dominance is severely
affected. Recently, the angle-based selection strategies have
been demonstrated to effectively address this problem. Moti-
vated by this, this paper proposes a knee point-driven many-
objective evolutionary algorithm with adaptive switching
mechanism (KPEA). KPEA incorporates the knee points
and the weighted distance into its mating strategy to increase
the probability of generating excellent offspring. And an

interquartile range method is introduced to detect and elim-
inate DRSs in the population. Moreover, in the environmen-
tal selection, an adaptive switching mechanism between
angle-based selection and penalty is designed to balance
convergence and diversity.

The performance of KPEA is compared with five state-
of-the-art algorithms, namely, k-NSGAII, KnEA, Pi-MOEA,
hpaEA, and VaEA, on WFG and MaF problems. The exper-
imental results indicate that, in terms of IGD and HV, KPEA
outperforms its competitors in most test instances. Addi-
tionally, this paper also discusses the sensitivity of parameter
r and provides recommendations for parameter settings.

KPEA still has some issues that require further research.
First, when dealing with MaOPs with complex PFs, the
neighborhood range of solutions will affect the coverage of
the population on the Pareto front. Adaptively adjusting
the neighborhood range during the evolutionary process is
a feasible research direction. In addition, the DRS elimina-
tion strategy may face a dilemma between eliminating DRSs
and preserving boundary solutions on some problems.
Future research will focus on designing an effective strategy
to differentiate between DRSs and boundary solutions.
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