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Given that the Crimean and Congo hemorrhagic fever is one of the deadly viral diseases that occur seasonally due to the activity of
the carrier “tick,” studying and developing a mathematical model simulating this illness are crucial. Due to the delay in the
disease’s incubation time in the sick individual, the paper involved the development of a mathematical model modeling the
transmission of the disease from the carrier to humans and its spread among them. The major objective is to comprehend the
dynamics of illness transmission so that it may be controlled, as well as how time delay affects this. The discussion of every
one of the solution’s qualitative attributes is included. According to the established basic reproduction number, the stability
analysis of the endemic equilibrium point and the disease-free equilibrium point is examined for the presence or absence of
delay. Hopf bifurcation’s triggering circumstance is identified. Using the center manifold theorem and the normal form, the
direction and stability of the bifurcating Hopf bifurcation are explored. The next step is sensitivity analysis, which explains the
set of control settings that have an impact on how the system behaves. Finally, to further comprehend the model’s dynamical
behavior and validate the discovered analytical conclusions, numerical simulation has been used.

1. Introduction

A critical step in determining the potential development of
epidemics and putting preventative and control measures
in place is modeling infectious illnesses. Given their enor-
mous economic cost and grave threat to public health, pan-
demics continue to be a major barrier to humanity’s
continued survival. As a result, lowering the risk of their
spread has been governments’, scientists’, and health organi-
zations’ top goal. Daniel Bernoulli created the first mathe-
matical model in epidemiology for smallpox vaccination in
1760 [1], which was followed by a more comprehensive plan
that gained more traction in 1766 [2]. William Budd’s thor-
ough examination of typhoid fever in 1918, which covered
its traits, modes of transmission, and treatment options,
was another important contribution to the study of infec-
tious diseases [3].

The presence of dangerous microorganisms like viruses,
bacteria, fungi, parasites, and others causes infectious disor-

ders. The spread of these illnesses within society is depen-
dent on a number of disease-specific criteria, such as the
pathogen, mode of transmission, length of incubation and
infection, susceptibility, and resistance. The introduction of
Kermack and McKendrick’s idea [4] in 1927 was a major
turning point for infectious disease modeling. Infectious ill-
ness modeling has since made significant strides, with
models like SIS, SIR, SIRS, SEIS, SEIR, SVIRS, SFIR, and
others enabling researchers to gain a thorough grasp of the
nature and development of the epidemiological trajectory.
Naji and Hussien [5] proposed and studied an epidemic
model that describes the dynamics of the spread of infectious
diseases with two different types of infectious diseases that
spread through both horizontal and vertical transmissions
in the host population. Majeed and Naji [6] proposed and
investigated a partial temporary immunity SIR epidemic
model involving a nonlinear treatment rate. Naji and
Thirthar [7] suggested and discussed an SIS epidemic model
with a saturated incidence rate and treatment function.
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Mohsen and Naji [8] carried out a thorough examination of
the transmission of HIV/AIDS along with the use of the best
control method. Thirthar et al. [9] established a mathemati-
cal model of an SI1I2R epidemic disease with saturated inci-
dence and general recovery functions of the first disease I1.
Kumar et al. evaluated the danger of COVID-19 infection
and its effects on public health [10, 11]. Sun et al., for
instance, employed the SEQIR model [12] to obtain optimal
control when battling epidemic diseases. Many other recent
studies are available for those interested, which deal with
various infectious disease models in addition to those indi-
cated as approved sources in these studies, for example,
[13–21]. To produce a more accurate depiction of system
dynamics, there are also important studies aimed at adding
the idea of time delay to epidemiological models. In this
regard, Thirthar and Naji [22] devised and investigated an
SIS epidemic model with two delays; it is assumed that the
saturation function represents the incidence rate and treat-
ment rate. Goel et al. [23–25] provided insightful informa-
tion about the impact of delay in several epidemic models.
By using a nonlinear Monod-Haldane infection rate, Hus-
sien and Naji significantly improved our understanding of
how media coverage affects the dynamics of a delayed SEIR
epidemic model [26]. However, researchers looked at the
dynamic behavior of a cancer model in a polluted environ-
ment while taking into account the time lag it took for the
environment to be cleared of contamination [27]. Many
other studies of epidemic models including delay role are
available, for example, [28–35].

More than 700,000 people die each year as a result of
vector-borne diseases, according to the most recent World
Health Organization (WHO) reports, which are shown in
[36, 37]. Typically, pathogens (such as ticks, mosquitoes, or
livestock) spread among populations by infecting a host,
who is frequently a human or an animal; see [38] for more
information. Some of the most well-known and widespread
vector-borne illnesses are malaria, dengue fever, St. Louis
encephalitis, Crimean-Congo hemorrhagic fever, Zika virus,
West Nile fever, and plague. The most economically deprived
groups of the population are disproportionately affected, and
it is most severe in tropical and subtropical areas.

Significant outbreaks of vector-borne diseases have
recently harmed communities, resulted in fatalities, and put a
strain on the healthcare system in a number of nations. In
order to combat and contain these epidemics, scientists and
researchers have accepted the responsibility for putting neces-
sary safeguards in place. Mohammadi et al. [39] created a
model to study the Crimean-Congo Fever virus’s cycle of
transmission among people, pets, and ticks. Hoch et al. Refer-
ence [40] produced a thorough investigation of the Crimean-
Congo fever virus’s proliferation in Turkey’s Central Anatolia
region, along with recommendations for its management.
Please see [39, 41–48] for more information regarding the
vector-borne diseases. This research seeks to develop a delayed
SEIRV epidemiological model that simulates pathogen dynam-
ics and Crimean-Congo hemorrhagic fever virus outbreaks in
human populations. Additionally, we determined the funda-
mental diffusion coefficient R0, examined the model’s stabil-
ity, and examined how the epidemic trajectory behaved.

2. Model Construction

In this section, a mathematical model of the Crimean-Congo
hemorrhagic fever virus (CCHF) has been developed and is
analytically examined to reduce the spread of illnesses and
maintain the health and welfare of communities and popula-
tions. Both the human (host) population and the vector pop-
ulation (such as ticks or cattle), defined by their densities at
time t as N t and V t , respectively, are included in the
model. When a viral infection spreads, N t will be divided
into several compartments, with the susceptible being repre-
sented by S t , which stands for healthy individuals at risk of
disease, exposed individuals being those having early symp-
toms but not yet infectious (E t ), infected individuals being
those having visible symptoms and can transmit the disease
(I t ), and recovered individuals from disease (R t ), and
N t = S t + E t + I t + R t . A thorough representation
of the dynamic interactions used to create the CCHF virus
model is shown in Figure 1.

Based on the above flowchart of epidemic transmission,
we assumed that, in the absence of the disease, all members
of the host belong to the healthy compartment and that the
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Figure 1: Basic flowchart of epidemic transmission.
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disease, if found, is not transmitted from infected parents to
newborns. The disease is transmitted through exposure to
environmental pathogens as well as direct contact with
infected individuals. Since there is an incubation period for
the disease, newly infected individuals move to the cabin of
infected individuals by passing through the cabin of exposed
individuals, with the assumption that there is a delay period
for the transition process and for many reasons, the most
important of which is the immunity of people. As a result,
the disease cannot transmitted by contact between suscepti-
ble individuals and exposed individuals. At the same time,
individuals move from the infected compartment to the
recovered compartment at a certain percentage because of
the treatment used or the body’s severe resistance to the
host, which eliminates the disease. Finally, the disease multi-
plies in two ways, the first by the virus released from infected
individuals and the second by the vector community such as
ticks and cattle, while the disease directly results in decay as
a result of the natural death of the virus. Based on the above
medically known assumptions, we simulate the process of
disease transmission mathematically through the set of non-
linear delayed differential equations below:

dS
dt

=Λ − σ1S t − τ V t − τ − σ2S t − τ I t − τ − μ1S,

dE
dt

= σ1S t − τ V t − τ + σ2S t − τ I t − τ − α1E − μ1E,

dI
dt

= α1E − α2I − μ1I − μ2I,

dR
dt

= α2I − μ1R,

dV
dt

= r1I + r2V − μ3V

1

Concerning system parameters, they are assumed to be
positive and can be described in Table 1.

For ecological reasons, it is assumed throughout the
work that μ3 > r2 is true since if it were false, the virus
(and therefore the diseases) would always exist. In addition,

the following beginning conditions for the CCHF model are
satisfied:

S θ = φ1 θ , E θ = φ2 θ , I θ = φ3 θ , R θ = φ4 θ ,V θ = φ5 θ

φi θ ≥ 0, θ ∈ −τ, 0 , φi 0 > 0  i = 1, 2, 3, 4, 5
,

2

where φ = φ1, φ2, φ3, φ4, φ5
T ∈ C = C −τ, 0 ,ℝ5

+ . Here, C
denotes the Banach space of continuous functions mapping
the interval −τ, 0 into ℝ5

+.

3. Positivity and Boundedness of Solutions

The model should be well-posted, which implies that the
solutions of the system 1 should be nonnegative and
bounded, in order to ensure biological correspondence
between the reality of the situation and the mathematical
structure of the model 1. That will be shown by the ensuing
theorem.

Theorem 1. The entire model 1’s solutions initiated in the
interior of ℝ5

+ are always positive and bounded.

Proof. According to the exposed equation of model 1, it is
obtained that

E′ t = E
σ1V t − τ + σ2I t − τ

E t
S t − τ − α1 + μ1

3

By integration, the result is

E t = E 0 exp
t

0

σ1V ε − τ + σ2I ε − τ

E ε

S ε − τ − α1 + μ1 d ε > 0
4

Table 1: Symbolization description within the CCHF model.

Parameters Description Units

Λ Host population recruitment rate Density(day-1)

σ1 Infection rate through exposure to environmental pathogens (Density-1)(day-1)

σ2 Infection rate through contact with infected individuals (Density-1)(day-1)

μ1 and μ2 Host natural and diseased death rates, respectively Day-1

α1 The rate at which an infected person becomes contagious Day-1

α2 Host recovery rate Day-1

r1 Pathogen growth rate due to infected host Day-1

r2 Pathogen growth rate due to infected vector Day-1

μ3 Pathogen decay rate Day-1

τ Delay rate Day
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Likewise, we have

I t = I 0 exp −
t

0
α2 + μ1 + μ2 d ε > 0, for I 0 > 0,

R t = R 0 exp −
t

0
μ1d ε > 0, forR 0 > 0,

V t = V 0 exp −
t

0
μ3 − r2 d ε > 0, forV 0 > 0

5

Moreover, to show the positivity of the susceptible equa-
tion solution for all t ≥ 0, we assume otherwise. Then, there
exists a first-time t1 > 0 such that S t1 = 0. Thus, by Eq.
(1) of the CCHF model, we have S′ t1 =Λ > 0, and
hence, S t < 0 for t ∈ t1 − ε, t1 , where ε > 0 is sufficiently
small. This contradicts S t > 0 for t ∈ 0, t1 Hence, S t >
0 for t > 0.

Now, in terms of ensuring the solution’s boundedness,
we define

N t = S t + E t + I t + R t 6

Subsequently, the following is obtained:

dN
dt

=Λ − μ1S + μ1E + μ1 + μ2 I + μ1R ≤Λ − μ1N , 7

which implies

lim
t⟶+∞

sup N t ≤
Λ

μ1
8

Furthermore, the virus population equation of model 1
gives

dV
dt

≤ r1
Λ

μ
− μ3 − r2 V , 9

which yields

lim
t⟶+∞

sup V t ≤ r1
Λ

μ
μ3 − r2

−1 10

Therefore, the solution S t , E t , I t , R t , V t of
model 1 remains bounded. Hence,

Ω = S, E, I, R, V ∈ℝ5
+ 0 ≤ S + E + I + R ≤

Λ

μ
, 0 ≤ V ≤ r1

Λ

μ
μ3 − r2

−1

11

is positively invariant set for model 1.
It is important to note that model 1 includes population

dynamics for all relevant parameters and maintains nonneg-
ative state variables. It also becomes clear that the first three
equations in model 1, together with the fifth equation,
appear to be independent of the fourth equation. As a result,

by focusing on the following subsystem, model 1 can be
examined without sacrificing generality:

dS
dt

=Λ − σ1S t − τ V t − τ − σ2S t − τ I t − τ − μ1S,

dE
dt

= σ1S t − τ V t − τ + σ2S t − τ I t − τ − α1E − μ1E,

dI
dt

= α1E − α2I − μ1I − μ2I,

dV
dt

= r1I + r2V − μ3V

12

The fourth equation of system 1 can thus be solved
directly by inserting the value of I from the solution of (2)
in the fourth equation, which is a part of model 1.

4. Equilibrium States and Basic
Reproduction Number

Examining the existence of equilibrium states is crucial for
understanding the qualitative dynamics of the CCHF model
2. Thus, it has been demonstrated in this section that model
2 displays two unique nonnegative equilibrium points:

(1) Disease-free equilibrium point (DFEP): E0 = S0, 0, 0
, 0 , where S0 =Λ/μ1

(2) Endemic equilibrium point (EEP): E1 = S∗, E∗, I∗,
V∗ , where

S∗ = α1 + μ1 α2 + μ1 + μ2 μ3 − r2
α1 r1σ1 + σ2 μ3 − r2

> 0,

E∗ = α2 + μ1 + μ2 μ3 − r2 V∗

α1 r1
,

I∗ = μ3 − r2 V∗

r1
, V∗ = α1 r1 μ1 S0 − S∗

α1 + μ1 α2 + μ1 + μ2 μ3 − r2
13

The reproduction number R0, which measures the typ-
ical number of secondary infections resulting from a single
infected individual in a population that is fully susceptible
to infection, is a scale used in epidemiology to evaluate the
potential spread of infectious diseases in a population. Con-
sider

dΧ
dt

=F i X −H i X , 14

where X = E, I, V T , F i X signifies the matrix of total
incoming inflows from new infections within compartment

4 Journal of Applied Mathematics



i, while H i X encompasses the remaining items across
compartments, giving

F i X =

σ1SV + σ2SI

0

0

,

H i X =

α1 + μ1 E

α2 + μ1 + μ2 I − α1E

μ3V − r1I − r2V

15

Subsequently, the Jacobian matrix of F i X and H i X
at E0 = S0, 0, 0, 0 can be expressed as

DF =
0 σ2S

0 σ1S
0

0 0 0
0 0 0

,

DH =
α1 + μ1 0 0
−α1 α2 + μ1 + μ2 0
0 −r1 μ3 − r2

16

Thus, R0 is the spectral radius of a square matrix D

F DH
−1, which means R0 is the maximum of the abso-

lute values of its eigenvalues, where

This gives

R0 =
α1S

0 σ1r1 + σ2 μ3 − r2
α1 + μ1 α2 + μ1 + μ2 μ3 − r2

18

Consequently, we may determine the reproduction
number by translating the endemic equilibrium E1 into that
form.

S∗ = S0

R0
> 0, E∗ = α2 + μ1 + μ2 μ3 − r2 V∗

α1 r1
, I∗ = μ3 − r2 V∗

r1
,

V∗ = α1r1μ1 S
0

α1 + μ1 α2 + μ1 + μ2 μ3 − r2
1 − 1

R0

19

The reproduction number R0 governs the existence of
the CCHF model’s equilibrium points as follows:

(i) If R0 ≤ 1⟹ E0 is the only equilibrium in Ω

(ii) If R0 > 1⟹ E0 remains, and an additional distinct
endemic equilibrium E1 emerges within the set Ω

5. Analysis of Stability

A CCHF model’s equilibrium responses are examined as
part of stability analysis to see how resilient they are to dis-
turbances. In this section, we describe in more detail how to
move the equilibria to the origin and linearize model 2 so
that it revolves around it as follows. Define Ê = Ŝ, Ê, Î, V̂
that denotes any arbitrary equilibrium point of model 2.

Moreover, let S t =U1 t + Ŝ, E t =U2 t + Ê, I t =U3 t
+ Î, and V t =U4 t + V̂ . Then, we have

U1 t = a11U1 t + b11U1 t − τ + b13U3 t − τ + b14U4 t − τ ,

U2 t = b21U1 t − τ + a22U22 t + b23U3 t − τ + b24U4 t − τ ,

U3 t = a32U2 t + a33U3 t ,

U4 t = a43U3 t + a44U4 t

20

This constitutes a transfer form, where

a11 = −μ1, a22 = − α1 + μ1 , a32 = α1,
a33 = − α2 + μ1 + μ2 , a43 = r1, a44 = − μ3 − r2 ,

b11 = − σ1V̂ + σ2 Î , b13 = −σ2S,b14 = −σ1Ŝ,

b21 = σ1V̂ + σ2 Î , b23 = σ2Ŝ, b24 = σ1Ŝ

21

As a result, the Jacobianmatrix JÊ of the model (2) is given
as

JÊ =

a11 + b11e
−λτ 0 b13e

−λτ b14e
−λτ

b21e
−λτ a22 b23e

−λτ b24e
−λτ

0 a32 a33 0
0 0 a43 a44

, 22

DF DH −1 =

α1S
0 σ1r1 + σ2 μ3 − r2

α1 + μ1 α2 + μ1 + μ2 μ3 − r2

S0 σ1r1 + σ2 μ3 − r2
μ3 − r2 α2 + μ1 + μ2

σ1S
0

μ3 − r2
0 0 0
0 0 0

17
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which leads to

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 + B1λ
3 + B2λ

2 + B3λ + B4 e−λτ = 0,
23

where

A1 = μ1 + α1 + μ1 + α2 + μ1 + μ2 + μ3 − r2 > 0,

A2 = α2 + μ1 + μ2 μ1 + α1 + μ1 + μ3 − r2
+ μ3 − r2 μ1 + α1 + μ1 + μ1 α1 + μ1 > 0,

A3 = − μ1 α1 + μ1 α2 + μ1 + μ2 + α1 + μ1 μ3 − r2
+ μ3 − r2 α2 + μ1 + μ2 + α1 + μ1
α2 + μ1 + μ2 μ3 − r2 < 0,

A4 = μ1 α1 + μ1 α2 + μ1 + μ2 μ3 − r2 > 0,

B1 = σ1V̂ + σ2 Î > 0,

B2 = σ1V̂ + σ2 Î α1 + μ1 + α2 + μ1 + μ2 + μ3 − r2

− α1σ2Ŝ,

B3 = σ1V̂ + σ2 Î α2 + μ1 + μ2 α1 + μ1

+ μ3 − r2 + α1 + μ1 μ3 − r2
− r1α1σ1Ŝ + α1μ1σ2Ŝ + μ3 − r2 α1σ2Ŝ ,

B4 = μ3 − r2 α2 + μ1 + μ2 σ1V̂ + σ2 Î

− μ3 − r2 α1μ1σ2Ŝ + r1α1μ1σ1Ŝ
24

Next, we elaborate on the main result, namely, the local
stability of both the disease-free equilibrium E0 and the
endemic equilibrium E1 in the context of model 2 for all
τ ≥ 0, through the following theorems.

Theorem 2. The DFEP is locally asymptotically stable in Ω
for R0 < 1 and unstable for R0 > 1.

Proof. Substituting the value of E0 in Eqs. (22) and (23)
gives, respectively, that

JE0 =

−μ1
0
0
0

0
− α1 + μ1

α1

0

−σ2S
0 e−λτ

σ2S
0 e−λτ

− α2 + μ1 + μ2

r1

−σ1S
0 e−λτ

σ1S
0 e−λτ

0
− μ3 − r2

,

25

−μ1 − λ λ3 + A10λ
2 + A20λ + A30 − B10λ + B20 e−λτ = 0,

26

where

A10 = α1 + μ1 + α2 + μ1 + μ2 + μ3 − r2 > 0,

A20 = α2 + μ1 + μ2 α1 + μ1 + μ3 − r2 + α1 + μ1 μ3 − r2 > 0,

A30 = α1 + μ1 α2 + μ1 + μ2 μ3 − r2 > 0,

B10 = α1σ2S
0 > 0,

B20 = α1 r1σ1 + μ3 − r2 σ2 S
0 > 0

27

Obviously, the first eigenvalue is always negative and
given by λ10 = −μ1 < 0, while the other three eigenvalues
can be obtained from the third-degree polynomial in Eq.
(26) in two cases.

For τ = 0, the third-degree polynomial in Eq. (26) trans-
fers to

λ3 + A10λ
2 + A20 − B10 λ + A30 1 −R0 = 0 28

According to the Routh-Hurwitz (R-H) criterion, all
roots of Eq. (28) are negative or have negative real parts if
and only if A10 > 0, A30 1 −R0 > 0, and A10 A20 − B10 −
A30 1 −R0 > 0. Direct computation shows that the R-H
requirements follow if R0 < 1 and violate if R0 > 1. There-
fore, when τ = 0, the DFEP is locally asymptotically stable
if R0 < 1 and saddle point if R0 > 1.

Now, for τ > 0, the third-degree polynomial in Eq. Eq.
(26) can be rewritten in the form

F λ =G λ , 29

where F λ = λ3 + A10λ
2 + A20λ and G λ = A30 B10/A30λ

+R0 e−λτ − 1 ; then, the following is obtained.
When R0 > 1, it is observed that F 0 = 0 and lim

λ⟶+∞
F λ =∞, while G 0 = A30 R0 − 1 > 0 and lim

λ⟶+∞
G λ

= −A30 < 0, which means that G λ is decreasing. Therefore,
F λ and G λ must intersect for some λ∗ > 0. Hence, Eq.
(29) has a positive real solution, and that makes E0 unstable.

However, when R0 < 1, it is obtained that for λ ≥ 0,
F λ becomes an increasing function while G λ remains
a decreasing function of λ, with G 0 = A4 R0 − 1 < 0. So,
there is no guarantee to have a positive intersection point
as in the above case. Consequently, to verify that, let us
assume that λ = iω1 ω1 > 0 , which satisfies Eq. (29). Then,
after some mathematical manipulation, it is obtained that

ω6
1 + A10

2 − 2A20 ω4
1 + A20

2 − 2A10A30 − A10
2 ω2

1 + A30
2 − B20

2 = 0
30

Setω2
1 = Z1yields

Z3
1 + A10

2 − 2A20 Z2
1 + A20

2 − 2A10A30 − A10
2 Z1 + A30

2 − B20
2 = 0,
31
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where

A10
2 − 2A20 > 0,

A20
2 − 2A10A30 − A10

2,
A30

2 − B20
2 = A30

2 1 −R0
2 > 0

32

According to Descartes’ Rule of Signs, if A20
2 − 2A10

A30 − A10
2 > 0, then there is no positive root for Eq. (31),

and hence, Eq. (26) does not have positive eigenvalues.
However, if A20

2 − 2A10A30 − A10
2 < 0, then Eq. (31) has

either two or no positive roots, which means there is no
firm decision to have a positive root that leads to a peri-
odic solution around the DFEP. Suppose such a periodic
solution exists, since the existence of a periodic solution
around the DFEP requires that at least one of the axes
that represent solutions be cut, this contradicts the
uniqueness of the solution. Therefore, there is no positive
root for Eq. (31), so the DFEP is stable.

Theorem 3. The EEP is locally asymptotically stable in Ω for
R0 > 1 with τ ∈ 0, τ0 provided that

B∗
3 > A3

σ1V
∗ + σ2I

∗ > μ1 α1 + μ1

A1 + B∗
1 A2 + B∗

2 A3 + B∗
3 > A3 + B∗

3
2 + A1 + B∗

1
2 A4 + B∗

4

33

It is an unstable for τ > τ0, provided that

A2
4 − B∗2

4 < 0 34

Proof. Substituting E1 = S∗, E∗, I∗, V∗ instead of Ê = Ŝ, Ê,
Î, V̂ in Eqs. (22) and (23) leads after some algebraic compu-
tation to the following characteristic equation.

λ4 + A1λ
3 + A2λ

2 + A3λ + A4 + B∗
1λ

3 + B∗
2λ

2 + B∗
3λ + B∗

4 e−λτ = 0,
35

whereAi,i = 1, 2, 3, 4, is given in Eq. (23) with

B∗
1 = σ1V

∗ + σ2I
∗,

B∗
2 = σ1V

∗ + σ2I
∗ α1 + μ1 + α2 + μ1 + μ2 + μ3 − r2

− α1σ2S
∗,

B∗
3 = σ1V

∗ + σ2I
∗ α2 + μ1 + μ2 α1 + μ1

+ μ3 − r2 + α1 + μ1 μ3 − r2
− r1α1σ1S

∗ + α1μ1σ2S
∗ + μ3 − r2 α1σ2S

∗ ,

B∗
4 = μ3 − r2 α2 + μ1 + μ2 σ1V

∗ + σ2I
∗

− μ3 − r2 α1μ1σ2S
∗ + r1α1μ1σ1S

∗ 36

Now, for τ = 0, Eq. (35) transfers to

λ4 + A1 + B∗
1 λ3 + A2 + B∗

2 λ2 + A3 + B∗
3 λ + A4 + B∗

4 = 0
37

Thus, according to the R-H criterion, all roots of Eq. (37)
have negative real parts provided that A1 + B∗

1 > 0, A3 +
B∗
3 > 0, A4 + B∗

4 > 0, and A1 + B∗
1 A2 + B∗

2 A3 + B∗
3 >

A3 + B∗
3

2 + A1 + B∗
1

2 A4 + B∗
4 . Direct computation

shows that these conditions are satisfied if the condition
set (33) holds. Hence, the EEP is locally asymptotically
stable.

The transfer from the stable case to unstable required
that the real part of at least one of the eigenvalues intersect
the imaginary axis. Therefore, to check the possibility of
transferring the behavior of EEP from stable to unstable
for the case τ > 0, λ = iω2 ω2 > 0 is substituted into Eq.
(35); then, after doing some algebraic steps, the following
are obtained:

ω4
2 − A2ω

2
2 + A4 = B∗

2ω
2
2 − B∗

4 cos ω2τ

+ B∗
1ω

3
2 − B∗

3ω2 sin ω2τ ,
38

A3ω2 − A1ω
3
2 = B∗

1ω
3
2 − B∗

3ω2 cos ω2τ

− B∗
2ω

2
2 − B∗

4 sin ω2τ
39

Now, by squaring and adding, the following is obtained:

ω8
2 + A2

1 − 2A2 + B∗2

1 ω6
2

+ 2 A4 + B∗
1B

∗
3 − A2

2 + 2A1A3 + B∗2

2 ω4
2

+ A2
3 + 2B∗

2B
∗
4 − 2A2A4 + B∗2

3 ω2
2 + A2

4 − B∗2

4 = 0

40

Taking ω2
2 = Z2, Eq. (40) becomes

Z4
2 +q1Z

3
2 +q2Z

2
2 +q3Z2 +q4 = 0, 41

where

q1 = A2
1 − 2A2 + B∗2

1 ,

q2 = 2 A4 + B∗
1B

∗
3 − A2

2 + 2A1A3 + B∗2

2 ,

q3 = A2
3 + 2B∗

2B
∗
4 − 2A2A4 + B∗2

3 ,

q4 = A2
4 − B∗2

4

42

Obviously, condition (34) guarantees the existence of at
least one positive root for Eq. (41). Therefore, Z20 denotes
the positive root of Eq. (41), leading to Eq. (35) having two
imaginary roots ±iω20 = ±i Z20. That leads to the fact that
there is a vital pointτ0 > 0 so that EEP becomes unstable
for τ > τ0 > 0.
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Now, by utilizing Eqs. (38) and (39), the relevant critical
delay value for ω20 can be determined as

τ0 =
1
ω20

cos−1 h1ω
6
2 +h2ω

4
2 +h3ω

2
2 +h4

ℊ1ω
6
2 + ℊ2ω

4
2 + ℊ3ω

2
2 + ℊ4

, 43

where

h1 = B∗
2 − B∗

1A1,

h2 = B∗
1A3 + B∗

3A1 − B∗
2A2 + B∗

4 ,

h3 = B∗
2A4 + B∗

4A2 − B∗
3A3,

h4 = −B∗
4A4,

ℊ1 = B∗2

1 ,

ℊ2 = B∗2

2 − 2B∗
1B

∗
3 ,

ℊ3 = B∗2

3 − B∗
2B

∗
4 ,

ℊ4 = B∗2

4

44

In the next section, we will delve into the condition when
τ = τ0 , and its impact on the dynamic equilibrium of the
CCHF model will be examined.

6. Hopf Bifurcation Analysis

In this section, the conditions under which Hopf bifurcation
arises are established, employing the time lag τ as the bifur-
cation parameter while considering the stipulation ofR0 > 1
, to signify the existence of EEP, through the next theorem.

Theorem 4. The EEP of model 2 becomes unstable, and a
Hopf bifurcation at τ = τ0 is born provided that

C1M −C2N ≠ 0, 45

where M, N , C1, and C2 are defined in the proof.

Proof. According to Theorem 3, model 2 has pure imaginary
eigenvalues at τ = τ0, and hence, the EEP became unstable
for τ > τ0. Now, to prove that a Hopf bifurcation is born, it
is sufficient to show that d/dτ Re λ τ τ=τ0 ≠ 0.
Substituting λ τ = α2 τ + iω2 τ into Eq. (35) conse-
quently yields the following result:

M τ
dα2
dτ

+N τ
dω2
dτ

=C1 τ ,

−N τ
dα2
dτ

+M τ
dω2
dτ

=C2 τ ,
46

where

M τ = A3 − 3A1ω
2
2 + τ B∗

2ω
2
2 − B∗

4 − 3B∗
1ω

2
2 − B∗

3

cos ω2τ + τ B∗
1ω

3
2 − B∗

3ω2 + 2B∗
2ω

2
2 sin ω2τ ,

N τ = 4ω4
2 − 2A2ω2 + τ B∗

3ω2 − B∗
1ω

3
2 − 2B∗

2ω2 cos ω2τ

+ τ B∗
2ω

2
2 − B∗

4 − 3B∗
1ω

2
2 − B∗

3 sin ω2τ ,

C1 τ = ω2 B∗
2ω

2
2 − B∗

4 sin ω2τ − B∗
1ω

3
2 − B∗

3ω2 cos ω2τ ,

C2 τ = ω2 B∗
1ω

3
2 − B∗

3ω2 sin ω2τ + B∗
2ω

2
2 − B∗

4 cos ω2τ

47

Following Cramer’s rule, we obtain

dα2
dτ τ=τ0

ω2=ω20

= C1M −C2N

M2 +N 2 48

Thus, d/dτ Re λ τ τ=τ0
ω2=ω20

≠ 0, if precondition

(45) is met. This concludes the proof.

7. Direction and Stability of the
Hopf Bifurcation

This section presents in detail the precise formulas that,
using τ0 as the bifurcation parameter, determine the direc-
tion, stability, and period of periodic solutions bifurcating
in a CCHF model 2 around E1.

Let U1 t = S t − S∗,U2 t = E t − E∗,U3 t = I t −
I∗,U4 t =V t −V∗, and γ = τ − τ0, where γ ∈ℝ and at γ
= 0 gives the parameter of the Hopf bifurcation. By normal-
izing time as t⟶ t/τ, model 2 may be represented as

U t = Tγ Ut + F γ,Ut , 49

where U t = U1 t ,U2 t ,U3 t ,U4 t T ∈ℝ4, Tγ C
⟶ℝ4, F ℝ × C⟶ℝ4, and C = C −1, 0 ,ℝ4

+ . Thus,
for φ = φ1, φ2, φ3, φ4

T ∈ C, we obtain

Tγ φ = τ0 + γ Aφ 0 +Bφ −1 ,

F γ, φ = τ0 + γ

F1

F2

F3

F4

,
50
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with

A =

f 1
1000

0
0

0

0

f 2
1000

f 3
0100

0

0

0

f 3
0010

f 4
0010

0

0
0

f 4
0001

=

a11

0
0

0

0

a22

a32

0

0

0
a33

a43

0

0
0

a44

,

B =

f 1
0100

f 2
0100

0

0

0

0
0

0

f 1
0010

f 2
0010

0

0

f 1
0001

f 2
0001

0

0

=

b11

b21

0

0

0

0
0

0

b13

b23

0

0

b14

b24

0

0

51

In this context, the notations aij and bij represent the ele-
ments in Eq. (20). Moreover,

F1 = 〠
a+j+k+l≥2

1
a j k l

f 1
ajkl φ

a
1 0 φj

1 −1 φk
3 −1 φl

4 −1 ,

F2 = 〠
b+j+k+l≥2

1
b j k l

f 2
bjkl φ

b
2 0 φj

1 −1 φk
3 −1 φl

4 −1 ,

F3 = 〠
b+c≥2

1
b c

f 3
bc φb

2 0 φc
3 0 ,

F4 = 〠
c+d≥2

1
c d

f 4
cd φc

3 0 φd
4 0 ,

52

where a, b, c, d, j, k, and l ≥ 0 are integer numbers. Next, we
define

f 1 φ1, φ1, φ3, φ4 =Λ − σ1φ1φ4 + σ1V
∗φ1

+ σ1S
∗φ4 + σ1S

∗V∗+σ2φ1φ3
+ σ2I

∗φ1 + σ2S
∗φ3 + σ2S

∗I∗

+ μ1 S∗ + φ1 ,

f 2 φ2, φ1, φ3, φ4 = σ1φ1φ4 + σ1V
∗φ1

+ σ1S
∗φ4 + σ1S

∗V∗ + σ2φ1φ3
+ σ2I

∗φ1 + σ2S
∗φ3 + σ2S

∗I∗

− α1 + μ1 E∗ + φ2 ,

f 3 φ2, φ3 = α1 E∗ + φ2 − α2 + μ1 + μ2 I∗ + φ3 ,

f 4 φ3, φ4 = r1 I∗ + φ3 − μ3 − r2 V∗ + φ4 ,

f 1
ajkl =

∂a+j+k+l f 1

∂φa
1 φ

j
1φ

k
3φ

l
4 φ1,φ1,φ3,φ4 = 0,−1,−1,−1

,

f 2
bjkl =

∂b+j+k+l f 2

∂φb
2 φ

j
1φ

k
3φ

l
4 φ2,φ1,φ3,φ4 = 0,−1,−1,−1

,

f 3
bc = ∂b+c f 3

∂φb
2 φ

c
3 φ2,φ3 = 0,0,0,0

,

f 4
cd = ∂c+d f 4

∂φc
3 φ

d
4 φ3,φ4 = 0,0,0,0

53

A 4 × 4 matrix function ψ χ, γ with entries having a
bounded variation for χ ∈ −1, 0 can be found by using the
Riesz representation theorem [49], allowing for the follow-
ing:

Tγ φ =
0

−1
dψ χ, γ φ χ , forφ ∈ C 54

In fact, we have a choice.

ψ χ, γ = τ0 + γ Aδ χ −Bδ χ + 1 55

In this case, δ χ stands for the Dirac delta function. For
φ ∈ C1 −1, 0 ,ℝ4

+ , define that

Q γ φ χ =

dφ χ

dχ
, −1 ≤ χ < 0,

0

−1
d ψ χ, γ φ χ , χ = 0,

R γ φ χ =
0, −1 ≤ χ < 0,
F γ, φ , χ = 0

56

Then, model 2 can be expressed as

U t =Q γ Ut + R γ Ut , 57

where Ut χ =U t + χ for χ ∈ −1, 0
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Furthermore, for Ψ ∈ C1 0, 1 , ℝ4
+

∗ , the adjoint oper-
ator Q∗ of Q 0 is given by

Q∗Ψ κ =
−
dΨ κ

dκ
, 0 < κ ≤ 1,

0

−1
d ψT t, 0 Ψ −t , κ = 0

58

That is connected to a bilinear form

Ψ κ , φ χ =Ψ 0 φ 0 −
0

χ=−1

χ

υ=0
ψ ω − χ d ψ χ φ υ dυ,

59

where ψ χ = ψ χ, 0 .
Obviously, model 2 contains ±iω20τ0, which are defined

as the eigenvalues of Q 0 and Q∗. Therefore, by conducting
a straightforward calculation similar to the one shown in
[50], we can derive the following:

q χ = 1, q2, q3, q4 Teiω20τ0χ

q∗ κ =D 1, q∗2 , q∗3 , q∗4 Te−iω20τ0κ
, 60

where

q2 =
− f 3

0010 − iω20 q3

f 3
0100

,

q3 =
− f 4

0001 − iω20 q4

f 4
0010

,

q4 =
iω20 f

4
0010 − f 1

1000 f
4
0010 + f 1

0100 f
4
0010 e

−iω20τ0

f 1
0001 f

4
0010 + iω20 f

1
0010 − f 1

0010 f
4
0001 e−iω20τ0

,

q∗2 =
− f 1

1000 + f 1
0100 e

−iω20τ0 + iω20

f 2
0100 e−iω20τ0

,

q∗3 =
f 2
1000 + iω20 f 1

1000 + f 1
0100 e

−iω20τ0 + iω20

f 2
0100 f 3

0100 e−iω20τ0
,

q∗4 =
f 1
0001 + f 2

0001 f 1
1000 + f 1

0100 e
−iω20τ0 + iω20

f 4
0001 + iω20 f 2

0100

61

Derived from Eq. (59), one can deduce the following:

q∗ κ , q χ =D 1 + q2 q
∗
2 + q3 q

∗
3 + q4 q

∗
4

+ τ0 f 1
0100 + q3 f

1
0010+q4 f

1
0001

+ q∗2 f 2
0100 + q3 f

2
0010 + q4 f

2
0001 e−iω20τ0 ,

62

which gives

D = 1 + q2 q
∗
2 + q3 q

∗
3 + q4 q

∗
4

+ τ0 f 1
0100 + q3 f

1
0010 + q4 f

1
0001

+ q∗2 f 2
0100 + q3 f

2
0010 + q4 f

2
0001 e−iω20τ0

−1
,

63

such that q∗ κ , q χ = 1 and q∗ κ , q χ = 0.
Using the same methodology described in [51], we can

then reach the following conclusions:

g z,z = q∗ 0 F0 z,z = τ0 D 1, q∗2 , q∗3 , q∗4
J 1 z

2 + J 2 zz + J 3 z
2 + J 4 z

2z+⋯

J 5 z
2 + J 6 zz + J 7 z

2 + J 8 z
2z+⋯

0

0
= P1 z

2 + P2 zz + P3 z
2 + P4 z

2z + h o i
64

Here, “h.o.i.” denotes higher-order items, which gives
the following:

g20 = 2P1

g11 = P2

g02 = 2P3

g21 = 2P4

, 65

where

P1 = τ0 D J 1 + q∗2 J 5 ,

P2 = τ0 D J 2 + q∗2 J 6 ,

P3 = τ0 D J 3 + q∗2 J 7 ,

P4 = τ0 D J 4 + q∗2 J 8 ,

66
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with

J 1 = q3 f
1
0110 + q4 f

1
0101 e−2iω20τ0 ,

J 2 = q3 + q3 f 1
0110 + q4 + q4 f 1

0101,

J 3 = q3 f
1
0110 + q4 f

1
0101 e2iω20τ0 ,

J 4 = ξ1 f
1
0110 + ξ2 f

1
0101,

J 5 = q3 f
2
0110 + q4 f

2
0101 e−2iω20τ0 ,

J 6 = q3 + q3 f 2
0110 + q4 + q4 f 2

0101,

J 7 = q3 f
2
0110 + q4 f

2
0101 e2iω20τ0 ,

J 8 = ξ1 f
2
0110 + ξ2 f

2
0101

67

Here,

ξ1 = q3 U
1
11 −1 +U 3

11 −1 e−iω20τ0 ,

ξ2 =
1
2 q3 U

1
20 −1 +U 3

20 −1 eiω20τ0

68

It is stated that computing U20 χ and U11 χ must be
prioritized in order to determine the value g21. This indi-
cates that

U20 χ = U 1
20 χ ,U 2

20 χ ,U 3
20 χ ,U 4

20 χ
T
,

U11 χ = U 1
11 χ ,U 2

11 χ ,U 3
11 χ ,U 4

11 χ
T

69

can be computed as

U20 χ = ig20
ω20τ0

q 0 eiω20τ0χ + ig20
3ω20τ0

q 0 e−iω20τ0χ +R1e
2iω20τ0χ

U11 χ = −
ig11
ω20τ0

q 0 eiω20τ0χ + ig11
ω20τ0

q 0 e−iω20τ0χ +R2

,

70

where Ri = R
1
i ,R 2

i ,R 3
i ,R 4

i

T
∈ℝ4

+ for i = 1, 2 repre-
sents constant vectors, obtained from the following
equations:

Applying Cramer’s rule, we have the following:

R
i
1 = D1i

D1
,R i

2 = D2i
D2

 for i = 1, 2, 3, 4, 72

2iω20 − f 1
1000 + f 1

0100 e
2iω20τ0χ

−f 2
0100 e

2iω20τ0χ

0
0

0
2iω20 − f 2

1000

−f 3
0100

0

−f 1
0010 e

2iω20τ0χ

−f 2
0010 e

2iω20τ0χ

2iω20 − f 3
0010

−f 4
0010

−f 1
0001e

2iω20τ0χ

−f 2
0001e

2iω20τ0χ

0
2iω20 − f 4

0001

R
1
1

R
2
1

R
3
1

R
4
1

= 2

J 1

J 5

0
0

,

−f 1
1000

0
0
0

0
−f 2

1000

−f 3
0100

0

0
0

−f 3
0010

−f 4
0010

0
0
0

−f 4
0001

R
1
2

R
2
2

R
3
2

R
4
2

=

J 2

J 6

0
0

71
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where

Similarly, D2i can be calculated for i = 1, 2, 3, 4. As an
outcome, it is now possible to compute both U20 χ and
U11 χ , as described in (70), using the information provided
in (72). Additionally, it becomes simple to identify the g21
parameter. The formula for C1 0 can be found after that:

C1 0 = i
2ω20τ0

g11 g20 − 2 g11 2 −
1
3 g02

2 + 1
2 g21

74

D1 =

2iω20 − f 1
1000 + f 1

0100 e
2iω20τ0χ

−f 2
0100 e

2iω20τ0χ

0

0

0

2iω20 − f 2
1000

−f 3
0100

0

−f 1
0010 e

2iω20τ0χ

−f 2
0010 e

2iω20τ0χ

2iω20 − f 3
0010

−f 4
0010

−f 1
0001e

2iω20τ0χ

−f 2
0001e

2iω20τ0χ

0

2iω20 − f 4
0001

,

D2 =

−f 1
1000

0
0

0

0

−f 2
1000

−f 3
0100

0

0

0

−f 3
0010

−f 4
0010

0

0
0

−f 4
0001

,

D11 =

J 1

J 5

0

0

0

2iω20 − f 2
1000

−f 3
0100

0

−f 1
0010 e

2iω20τ0χ

−f 2
0010 e

2iω20τ0χ

2iω20 − f 3
0010

−f 4
0010

−f 1
0001e

2iω20τ0χ

−f 2
0001e

2iω20τ0χ

0

2iω20 − f 4
0001

,

D12 =

2iω20 − f 1
1000 + f 1

0100 e
2iω20τ0χ

−f 2
0100 e

2iω20τ0χ

0

0

J 1

J 5

0

0

−f 1
0010 e

2iω20τ0χ

−f 2
0010 e

2iω20τ0χ

2iω20 − f 3
0010

−f 4
0010

−f 1
0001e

2iω20τ0χ

−f 2
0001e

2iω20τ0χ

0

2iω20 − f 4
0001

,

D13 =

2iω20 − f 1
1000 + f 1

0100 e
2iω20τ0χ

−f 2
0100 e

2iω20τ0χ

0

0

0

2iω20 − f 2
1000

−f 3
0100

0

J 1

J 5

0

0

−f 1
0001e

2iω20τ0χ

−f 2
0001e

2iω20τ0χ

0

2iω20 − f 4
0001

,

D14 =

2iω20 − f 1
1000 + f 1

0100 e
2iω20τ0χ

−f 2
0100 e

2iω20τ0χ

0

0

0

2iω20 − f 2
1000

−f 3
0100

0

−f 1
0010 e

2iω20τ0χ

−f 2
0010 e

2iω20τ0χ

2iω20 − f 3
0010

−f 4
0010

J 1

J 5

0

0

73
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Moreover, we have

M2 = −
Re C1 0
Re λ′ τ0

Y2 = 2 Re C1 0

T 2 = −
Im C1 0 +M2 Im Re λ′ τ0

ω20τ0

75

The dynamical properties of the manifold periodic solu-
tions will be determined at the bifurcation parameter τ0
based on the sign of the variables M2,Y2, and T 2. Further,
according to the methodology described in [51], the follow-
ing theorem is obtained directly.

Theorem 5. For CCHF model 2,

(1) If M2 > 0 M2 < 0 , then the Hopf bifurcation is
supercritical (subcritical)

(2) If Y2 < 0 Y2 > 0 , then the bifurcation periodic tra-
jectories are stable (unstable)

(3) If T 2 > 0 T 2 < 0 , then the bifurcating periodic tra-
jectories increase (decrease)

8. Numerical Simulations

To support the theoretical analysis presented above in this
study, a numerical simulation is used in this section. To
comprehend the impact of these parameters on the spread
of disease, the sensitivity analysis of system 1 is also included
using the following estimated set of parameter values.

Λ = 1, σ1 = 0 1, σ2 = 0 1, μ1 = 0 1, α1 = 0 05, α2 = 0 5,
μ2 = 0 5, r1 = 0 1, r2 = 0 1, μ3 = 0 11

76

It is observed that for this set of data, the value of the
basic reproduction number is R0 = 3 3333, and hence, the
system approaches asymptotically to EEP which is given by
E1 = 3,4 66,0 21,1 06,2 12 as shown in the Figure 2(a),
while it approaches DFEP which is given by E0 = 2, 0, 0, 0,
0 when the value of Λ < 0 3, due to the falling value of
R0 in the range R0 ≤ 1, as presented in Figure 2(b).
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Figure 2: The trajectory of system 1 using the set (76). (a) Approaches to EEP when Λ = 1 withR0 = 3 333. (b) Approaches to DFEP when
Λ = 0 2 with R0 = 0 6667.
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Figure 3: Sensitivity of basic reproduction number using data set
given Eq. (76).
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According to Figure 2, it is concluded that the obtained
analytical results are verified, and increasing the value of Λ
increases the spread of disease. Now that it understands
the influence of other parameters, the sensitivity analysis of
the basic reproduction number is used.

When researching infectious illness models, one of the
most crucial factors to consider is the fundamental repro-
duction number. The fundamental reproduction number of
the model was discovered using Eq. (18). A sensitivity anal-
ysis is currently being done on the fundamental reproduc-
tion number. We can learn from such studies the
importance of each variable in the transmission of disease.
Sensitivity analysis is widely used to evaluate how parameter
values affect model forecasts since errors in data collection
and expected parameter values are frequent. It is used to pin-
point variables that should be the subject of intervention
efforts because they significantly affect R0. To put it more
precisely, sensitivity measures allow you to quantify the pro-
portional alteration in a variable when a parameter is altered.
This is accomplished using the normalized forward sensitiv-
ity index of a variable, which is the ratio of the relative

change in the variable to the relative change in the parame-
ter. If the variable in question is differentiable with respect to
the parameter, the sensitivity index is constructed using par-
tial derivatives as follows.

The standardized forward sensitivity index of R0, calcu-
lated by [52], is differentiable for a parameter.

SEN R0, Γ = ∂R0
∂Γ

· Γ

R0
77

As a result, the following can be used to compute the
standardized forward sensitivity index of R0 with regard
to model 2’s parameters:

SEN R0,Λ = 1,

SEN R0, σ1 = r1σ1
r1σ1 + μ3 − r2 σ2

,

SEN R0, σ2 = 1 − r1σ1
r1σ1 + μ3 − r2 σ2

,
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Figure 4: The trajectory of system 1 using data (76) with τ = 10 5. (a) Time series of the solution approaches to periodic dynamics. (b) The
projection on SEV space. (c) The projection on SIV space. (d) The projection on EIV space.

14 Journal of Applied Mathematics



SEN R0, μ1 = −2 + α1
α1 + μ1

−
μ1

α2 + μ1 + μ2
,

SEN R0, α1 = μ1
α1 + μ1

,

SEN R0, α2 = −
α2

α2 + μ1 + μ2
,

SEN R0, μ2 = −
μ2

α2 + μ1 + μ2
,

SEN R0, r1 = r1σ1
r1σ1 + μ3 − r2 σ2

,

SEN R0, r2 = r1r2σ1
r2 − μ3 −r1σ1 + r2 − μ3 σ2

,

SEN R0, μ3 = −
r1μ3σ1

r2 − μ3 −r1σ1 + r2 − μ3 σ2
78

Consequently, utilizing the data set given by Eq. (76), it
is obtained that

SEN R0,Λ = 1,

SEN R0, σ1 = 0 9090909090909093,

SEN R0, σ2 = 0 09090909090909083,

SEN R0, μ1 = −1 7575757575757576,

SEN R0, α1 = 0 6666666666666666,

SEN R0, α2 = −0 45454545454545453,

SEN R0, μ2 = −0 45454545454545453,

SEN R0, r1 = 0 9090909090909093,

SEN R0, r2 = 9 090909090909097,

SEN R0, μ3 = −10

79

Therefore, in the following Figure 3, the sensitivity anal-
ysis is represented.

According to Figure 3, the set of parameters that are pos-
itively proportional with R0 is given by Λ, σ1, σ2, α1, r1, r2,
while the set of parameters that are negatively proportional
with R0 is given by μl, α2, μ2, μ3. However, the parameters
that do not affect R0 are τ.

To comprehend the effect of the delay parameterτ,
which has no effect onR0as illustrated in Figure 3, as seen
in the aforementioned sections, the value of τ is gradually
increased in order to find the critical value τ0. It is noted that
for the data (76) with τ > τ0 = 10 45, the system becomes
unstable, and a Hopf bifurcation takes place; see Figure 4
for the value of τ = 10 5.

Obviously, Figure 4 indicates the occurrence of Hopf
bifurcation as τ > τ0 = 10 45, which confirms the analytical
results.

9. Discussion

In this paper, an epidemic model of the Crimean-Congo
hemorrhagic fever virus has been suggested and analyzed,
with direct transmission resulting through contact with
infected individuals as well as indirect transmission via path-
ogens. It was considered that the delay was brought on by
the system’s incubation period for the infection. The goal
of the study is to comprehend how illness transmission can
be managed as well as the impact of delay on model dynam-
ics. Two equilibrium points in the system have been
observed. The basic reproduction number stability require-
ments for both places were determined with and without a
time delay. The DFEP is seen to be asymptotically stable
for τ ≥ 0 for R0 < 1, but unstable when R0 > 1. However,
the EEP is unstable with the occurrence of periodic Hopf
bifurcation for τ ≥ τ0 and asymptotically stable for τ < τ0
with R0 > 1. The central manifold theory is used to explore
the characteristics of the bifurcating Hopf bifurcation.

In order to validate the obtained analytical results and
comprehend the control set of characteristics that affect the
transmission of disease, a numerical simulation has lastly
been applied utilizing an estimated data set (76) on the sam-
ple population. To pinpoint the impact of the parameters on
the illness outbreak, the sensitivity analysis has been used
with the same set of data. It is discovered that all of the ana-
lytical findings are reliable. While the EEP is asymptotically
stable when R0 > 1 and τ < 10 45 and Hopf bifurcation
occurs for τ = 10 45 with an increase in the magnitude of
the period as τ > 10 45, the DFEP is asymptotically stable
when R0 < 1 for all values of τ. The host population recruit-
ment rate, infection rates, the rate at which an infected per-
son becomes contagious, and pathogen growth rates are
found to be the characteristics that increase the outbreak of
disease as their value increases. The host natural and dis-
eased death rates, the host recovery rate, and the pathogen
decay rate, on the other hand, are the variables that regulate
the spread of illness as their values rise.

Data Availability

All the data is within the text.
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