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In this paper, we develop the theoretical provisions of symmetric cryptographic algorithms based on the polynomial residue
number system for the first time. The main feature of the proposed approach is that when reconstructing the polynomial based
on the method of undetermined coefficients, multiplication is performed not on the found base numbers but on arbitrarily
selected polynomials. The latter, together with pairwise coprime residues of the residue class system, serve as the keys of the
cryptographic algorithm. Schemes and examples of the implementation of the developed polynomial symmetric encryption
algorithm are presented. The analytical expressions of the cryptographic strength estimation are constructed, and their
graphical dependence on the number of modules and polynomial powers is presented. Our studies show that the cryptanalysis
of the proposed algorithm requires combinatorial complexity, which leads to an NP-complete problem.
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1. Introduction

Recently, with the growth of confidential information and
the spread of computer systems, the task of ensuring infor-
mation security has become increasingly important [1–3].
To minimize the risks of unauthorized access, cryptographic
methods of information protection are widely used [4, 5],
which are divided into symmetric and asymmetric [6, 7].
In practice, symmetric cryptographic transformations are
more common for encrypting large amounts of information,
as asymmetric ones are quite laborious [8, 9]. The require-
ments for symmetric methods have become more stringent
in terms of ensuring their cryptographic strength due to
the rapid development of computing tools and their
increased speed. Polynomial algorithms are an alternative
to modern numerical cryptoalgorithms [10–12]. In the ring

Z x , as in any other ring of polynomials, basic cryptographic
operations are performed: addition, multiplication, and divi-
sion with remainder [13–15]. The main idea of using polyno-
mials in cryptography is that they can be used as plaintext,
keys for encrypting and decrypting messages, building elec-
tronic digital signatures, and other cryptographic protocols
[16–18].

The use of the residue number system (RNS) [19–21] in
the implementation of cryptographic algorithms for infor-
mation security based on polynomial arithmetic in the Z x
ring [22, 23], by analogy with the integer RNS [24, 25], leads
to parallelization of the computation process [26, 27] and
reduction of the amount of data that must be processed dur-
ing cryptographic operations [28–30]. In turn, it reduces the
implementation time and improves the efficiency of the
encryption method.
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Therefore, our work is aimed at developing the concept
of polynomial symmetric cryptographic algorithms based
on the RNS and their practical application.

1.1. Our Contribution. In this article, our contributions are
as follows:

1. A theoretical provision for symmetric cryptographic
algorithms based on the polynomial RNS was
developed.

2. Mathematical frameworks and schemes for the pro-
posed polynomial symmetric encryption within the
RNS were devised. To ascertain its resilience, a deep
dive was made into constructing analytical expres-
sions, revealing that the process of cryptanalyzing
the proposed algorithm required dealing with combi-
natorial complexity, ultimately leading to an NP-
complete problem.

3. It was established that cryptographic strength notably
improved with increasing degrees and dimensions of
the Galois field p. The peak of cryptographic strength
was reached when the number of modules equaled
half of the potential count of irreducible polynomials
with the given polynomial degrees and Galois field
orders.

1.2. Related Work. Most modern symmetric cryptographic
algorithms are block-based, and this feature limits the func-
tionality of their implementation. In particular, the key size
must be equal to or larger than the block size, leading to
the encryption algorithm’s multiple uses for a large message.
This procedure reduces the cryptographic strength of the
algorithm, increases the time complexity, and, at the same
time, complicates the implementation. Many authors have
studied symmetric encryption algorithms in the polynomial
number system. For example, Lemaire [31] proposes an 8-
bit encryption algorithm based on the ideas of well-known
symmetric cryptoalgorithms. The authors use divergent
polynomials with variable coefficients, bitwise data opera-
tions, and two-password identification when generating
pseudorandom keys. The hardware implementation of the
proposed approach and comparison of the time characteris-
tics with the AES algorithm of the 8-bit architecture based
on the Arduino Uno microcontroller (ATmega328) were
carried out.

A work [32] is devoted to developing and studying
hardware-implemented methods of fast polynomial arith-
metic for some homomorphic encryption operations based
on the Karatsuba algorithm. In addition, Jayet-Griffon et al.
[33] consider the possibilities of speeding up the polynomial
multiplication operation for homomorphic encryption when
implemented on an FPGA. In [34], a characterization of
polynomial multiplication implementations for GPU-based
homomorphic encryption is presented.

In [35], a highly efficient image encryption method
based on permutation polynomials in finite fields was devel-
oped that is resistant to various types of attacks. In addition,

the proposed encryption algorithm has no rounding errors,
so encryption is lossless.

In the work [36], our effort was dedicated to developing
a multifunctional architecture for the polynomial RNS
within the context of cryptography. Detailed comparisons
with contemporary implementations have indicated the
potential utility of polynomial residue arithmetic in modular
multiplication. Article [37] presents a schematic diagram of
a modular pipeline multiplier, which allows for high-speed
data encryption and decryption based on nonpositional
polynomial RNS. The authors substantiate the efficiency of
the proposed hardware design through a timing diagram.
The developed pipeline device can find application in digital
computing devices, particularly for high-speed data encryp-
tion based on nonpositional polynomial RNS.

In [38], a new method for constructing S-blocks of the
AES algorithm is proposed based on replacing the irreduc-
ible polynomial and affine mapping. The cryptographic
strength of the created S-block is evaluated by several stan-
dard tests (bijectivity, nonlinearity, strict avalanche criterion
(SAC), and bit-independence criterion). It surpasses the
cryptographic strength of the known S-boxes.

An article [39] proposes a method for constructing the
S-block of the AES algorithm based on the smallest number
of selected irreducible polynomials that meet specific cri-
teria. There are 17 such polynomials, and their use sim-
plifies the hardware implementation of the S-block. The
SAC is studied, and it is noted that the polynomial p x =
x8 + x7 + x6 + x + 1 is the best, with an outstanding value
of SAC = 0 5, which indicates the cryptographic strength
and reliability of the constructed S-block.

A paper [40] proposes improving the symmetric AES
encryption algorithm using dynamic S-blocks whose param-
eters depend on the key, dynamic irreducible polynomials,
and affine constants.

A paper [41] presents the most commonly used symmet-
ric cryptosystem AES in the ring of polynomials today. The
main idea is to choose an irreducible polynomial on the basis
of which the encryption algorithm is built. The proposed
approach was implemented in MATLAB for 30 different irre-
ducible polynomials. As a result of the numerical experiments,
it was possible to establish a negligible effect of changing
irreducible polynomials on the level of the avalanche.

The authors in [42] proposed a novel method to enhance
AES security against fault attacks using the polynomial RNS.
The authors parallelize byte-level AES operations over GF
28 by utilizing residues over smaller fields, introducing
extended functionalities into AES for side-channel vulnera-
bility analysis.

Polynomial arithmetic has also been used for asymmet-
ric cryptosystems. In particular, in [43], modified arithmetic
was developed for the RSA cryptosystem with Gauss integers
and polynomials over finite fields. The analysis of the
described computational procedures made it possible to
determine their advantages over the classical ones. In [44],
algorithmic support for the Rabin cryptosystem in the poly-
nomial number system was proposed.

The analysis of the literary sources shows the relevance
and importance of polynomial algorithms for protecting
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information flows. Accordingly, the development of new
methods that are resistant to attacks of various types is an
important direction in the development of modern crypto-
systems. In particular, the combination of polynomial
arithmetic and RNS in a ring of polynomials will allow
parallelizing the process of performing basic operations in a
ring of polynomials, which, in turn, will increase the speed
of software implementation and reduce the time complexity
of the algorithm, providing the required level of security.

1.3. Organization. Section 2 of this article discusses in detail
the theoretical foundations for constructing symmetric
cryptographic algorithms based on a polynomial RNS. Sub-
sequently, in Section 3, the cryptographic strength of a poly-
nomial symmetric encryption algorithm in the system of
residual classes was evaluated. Finally, in Section 4, the con-
tent of this article is summarized.

2. Materials and Methods

In Subsection 2.1, the theoretical foundations for construct-
ing symmetric cryptographic algorithms based on a poly-
nomial RNS are proposed. Subsection 2.2 described the
features of developing polynomial symmetric encryption
methods in the RNS. An example of symmetric polynomial
encryption in RNS presents in Subsection 2.3. In Subsection
2.4, the polynomial symmetric encryption method based on
the Chinese remainder theorem (CRT) is proposed.

2.1. Theoretical Foundations of Polynomial RNS. An arbi-
trary polynomial N x in the RNS is represented as the
residuals bi x from dividing N x by each of the systems
of pairwise mutually simple modulo-polynomials pi x
[45–47]:

bi x =N x mod pi x 1

The recovery of the polynomial N x is usually based on
the CRT [48–50] in the ring of polynomials Z x :

N x = 〠
s

i=1
bi x Mi x mi x mod P x 2

where P x = s
i=1pi x , Mi x = P x /pi x , mi x is sought

from the expression mi x =M−1
i x mod pi x , and s is the

number of modules. For polynomial powers, the inequality
deg N x < deg P x must be satisfied.

2.2. Development of Polynomial Symmetric Encryption
Methods in the RNS. The essence of one of the methods of
polynomial symmetric encryption in RNS is that when
recovering a polynomial from its residuals in the sum (2),
the multiplication is not by the parameters mi x =M−1

i
mod pi x , but by arbitrarily chosen polynomials ki x ,
mutually prime with pi x .

Therefore, to generate keys, both subscribers must choose
module systems known only to them pi x and the correspond-
ing polynomials ki x , for which the following conditions are
met: 1 < deg ki x < deg pi x and GCD ki x , pi x = 1,

where GCD denotes greatest common divisor. If pi x is an
irreducible polynomial, then the second condition is always
met. Accordingly, both the sender and the receiver know the
parameters Mi x and mi x .

For encryption, alphabetic information must be written
in numerical form. The most common classical method is
to replace the letter with its number in the alphabet, with
the numbering starting from 0. After that, it must be repre-
sented as a polynomial with coefficients that reflect the
alphabetic information, so the plaintext N x = anx

n + an−1
xn−1 +⋯+a0xo, where ai is the sequence of digital represen-
tation of letters and i = 0⋯ n, n + 1 is the length of the
message. Next, the plaintext block N x is written to the
RNS according to expression (1). Encryption occurs when
the number is restored to the positional number system
according to the following expression:

N ′ x = 〠
s

i=1
bi x Mi x ki x mod P x 3

The found polynomial is a ciphertext that is transmitted
over an open communication channel from one subscriber
to another.

When decrypting, the following values are first calcu-
lated:

qi x = mi x · k−1i x mod pi x mod pi x

bi′ x =N ′ x mod pi x
4

To obtain the true residuals bi x , you need to perform
the conversion according to the following ratio:

bi x = bi′ x qi x mod pi x

= bi′ x mi x k−1i x mod pi x mod pi x
5

Accordingly, the recovery of the plaintext polynomial
N x is carried out according to Formula (2) or the expres-
sion that follows from it can be used:

N x = 〠
s

i=1
Mi x mi x bi′ x mi x k−1i x mod pi x

mod pi x mod P x

= 〠
s

i=1
Mi x mi x bi′ x qi x mod pi x mod P x

6

Figure 1 shows a schematic of the proposed polynomial
encryption method based on the RNS.

The correctness of the proposed cryptosystem is estab-
lished by a formal proof from the properties of congruences,
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taking into account the divisibility P x by pi x and the
equality mi x =M−1

i x mod pi x . Then, we get

bi x = bi′ x qi x mod pi x = N ′ x mod pi x

mi x k−1i x mod pi x mod pi x mod pi x

= 〠
s

j=1
bj x kj x Mj x mod P x mod pi x

mi x k−1i x mod pi x mod pi x mod pi x

= bi x ki x Mi x mod P x mi x k−1i x

mod pi x mod pi x mod pi x

= bi x mi x Mi x mod pi x = bi x

7

2.3. An Example of Symmetric Polynomial Encryption in RNS.
Let us consider the plaintext PSMFSRD = 15181205181703 ,
which corresponds to the polynomial N x = 15x6 + 18x5 +
12x4 + 5x3 + 18x2 + 17x + 3. According to the developed
polynomial symmetric cryptosystem for three modules s =
3 , p1 x = x2 + x + 1, p2 x = x3 + x + 1, and p3 x = x2 + 1
and the chosen coefficients k1 x = x2 + 2x + 3, k2 x = x3 +
x2 + 1, and k3 x = x2 + 3x + 2, all the parameters are calcu-
lated as follows: P x = p1 x p2 x p3 x = x7 + x6 + 3x5 + 3
x4 + 4x3 + 3x2 + 2x + 1, M1 x = P x /p1 x = x7 + x6 + 3x5
+ 3x4 + 4x3 + 3x2 + 2x + 1 / x2 + x + 1 = x5 + 2x3 + x2 + x
+ 1, M2 x = P x /p2 x = x7 + x6 + 3x5 + 3x4 + 4x3 + 3x2

+ 2x + 1 / x3 + x + 1 = x4 + x3 + 2x2 + x + 1, and M3 x = P
x /p3 x = x7 + x6 + 3x5 + 3x4 + 4x3 + 3x2 + 2x + 1 / x2 +
1 = x5 + x4 + 2x3 + 2x2 + 2x + 1.

The search for mi x =M−1
i mod pi x is performed

using the method of undetermined coefficients. Firstly, we
look for mi x =M−1

1 mod p1 x = x5 + 2x3 + x2 + x + 1 −1

mod x2 + x + 1 = x + 2 −1 mod x2 + x + 1 . To do this,
we write the equation x + 2 Ax + B mod x2 + x + 1 = 1,
and after transformations, we obtain Ax2 + 2A + B x + 2B
mod x2 + x + 1 = A + B x + 2B − A = 1. From the last
equation, it follows that 2B − A = 1 and B + A = 0 and takes
the form A = 1/3 and B = 2/3. So, the sought-after inverse
polynomial takes the formm1 x = x + 2 −1 mod x2 + x + 1
= 1/3 x + 2/3. Similarly, the search for m2 x =M−1

2 mod
p2 x = x4 + x3 + 2x2 + x + 1 −1 mod x3 + x + 1 = x2 − x −1

mod x3 + x + 1 is carried out. We write x2 − x Ax2 + Bx
+ C mod x3 + x + 1 = 1, where Ax2 + Bx + C is the inverse
polynomial modulo. We need to find the coefficients A, B,
and C that satisfies the equation. After transformations 2A
x4 + 2Bx3 + A + 2C x2 + Bx + C mod x3 + x + 1 = C − A
− B x2 + −C − B x + A − B = 1, we obtain 2C − A = 0, C −
B − A = 0, −C − B = 0, and A − B = 1. From here, A = 2/3, B
= −1/3, and C = 1/3. So, the inverse polynomial takes the fol-
lowing form: m2 x = x2 − x −1 mod x3 + x + 1 = 2/3 x2

− 1/3 x + 1/3. Similarly, the value m3 x =M−1
3 mod p3 x

= x5 + x4 + 2x3 + 2x2 + 2x + 1 −1 mod x2 + 1 = x −1 mod
x2 + 1 is computed. By applying the method of undeter-
mined coefficients, the following transformations can be per-
formed: x Ax + B mod x2 + 1 = Ax2 + Bx mod x2 + 1

Key sources

Decorder

Scrambler 

Message source

А

Cryptanalysts

Private
channel

Recipient

В

Private
channel

Figure 1: Scheme of the proposed polynomial symmetric encryption in RNS.
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⇒ Bx − A = 1. The last equation leads to a system of equa-
tions that allows us to compute the coefficients’ values A =
−1 and B = 0 and thereby find the inverse polynomial mod-
ulo m3 x = −x. Thus, b1 x =N x mod p1 x = 15x6 + 18
x5 +12x4 +5x3 + 18x2 +17x + 3 mod x2 + x + 1 = − 7x − 13
, b2 x =N x mod p2 x = 15x6 + 18x5 + 12x4 + 5x3 + 18
x2 + 17x + 3 mod x3 + x + 1 = 3x2 + 48x + 31, and b3 x =
N x mod p3 x = 15x6 + 18x5 + 12x4 + 5x3 + 18x2 + 17x +
3 mod x2 + 1 = 30x − 18.

Therefore, according to expression (3), the ciphertext is
given by N ′ x = ∑s

i=1bi x Mi x ki x mod P x = x5 +
2x3 + x2 + x + 1 −7x − 13 x2 + 2x + 3 + x4 + x3 + 2x2 + x
+ 1 3x2 + 48x + 31 x3 + x2 + 1 + x5 + x4 + 2x3 + 2x2 + 2x
+ 1 30x − 18 x2 + 3x + 2 mod x7 + x6 + 3x5 + 3x4 + 4x3
+ 3x2 + 2x + 1 = −64x6 − 250x5 − 360x4 − 545x3 − 492x2 −
403x − 172.

The parameters k−1i x mod pi x are computed using
the method of undetermined coefficients. To find the inverse
polynomial k−11 x mod p1 x = x2 + 2x + 3 −1 mod x2 + x
+ 1 = x + 2 −1 mod x2 + x + 1 , we write x + 2 Ax + B
mod x2 + x + 1 = 1⇒ Ax2 + 2A + B x + 2B mod x2 + x
+ 1 = A + B x + 2B − A = 1, where Ax + B is the desired
value. To determine the coefficients A and B, we compute
the remainder and equate the corresponding values: A + B
x + 2B − A = 1; from here, A = −1/3, and B = 1/3. Thus,
k−11 x mod p1 x = 1/3 −x + 1 .

Similarly, we search for k−12 x mod p2 x = x3 + x2 +
1 −1 mod x3 + x + 1 = x2 − x −1 mod x3 + x + 1 ⟶ x2

− x Ax2 + Bx + C mod x3 + x + 1 = 1, where Ax2 + Bx +
C is the inverse polynomial modulo. After the transforma-
tion 2Ax4 + 2Bx3 + A + 2C x2 + Bx + C mod x3 + x + 1
= C − A − B x2 + −C − B x + A − B = 1, we obtain a system
of three equations with three unknowns: C − B − A = 0, −C
− B = 0, and A − B = 1. From here, A = 2/3, B = −1/3, and
C = 1/3. Therefore, the sought inverse polynomial in Z x
will take the following form: k−12 mod p2 x = x2 − x −1

mod x3 + x + 1 = 2/3 x2 − 1/3 x + 1/3; similarly, we can
obtain k−13 x mod p3 x = − 3/10 x + 1/10.

In the next step, the following quantities are computed:
b1′ x =N ′ x mod p1 x = −64x6 − 250x5 − 360x4 − 545x3
− 492x2 − 403x − 172 mod x2 + x + 1 = −21x − 39, b2′ x
= N ′ x mod p2 x = −64x6 − 250x5 − 360x4 − 545x3 −
492x2 − 403x − 172 mod x3 + x + 1 = 54x2 + 124x + 59,
and b3′ x =N ′ x mod p3 x = −64x6 − 250x5 − 360x4 −
545x3 − 492x2 − 403x − 172 mod x2 + 1 = −108x + 24.

Additionally, for decryption, the following parameters
need to be found: q1 x = m1 x k−11 x mod p1 x mod
p1 x = 1/3 x + 2/3 − 1/3 x + 1/3 mod x2 + x + 1 =
1/3, q2 x = m2 x k−12 x mod p2 x mod p2 x = 2/3
x2 − 1/3 x + 1/3 2/3 x2 − 1/3 x + 1/3 mod x3 + x + 1
= 10/27 x4 + 7/27 x3 − 20/27 x2 + 8/27 x − 7/27 mod
x3 + x + 1 = 1/9 x2 − 2/9 x + 5/9, and q3 x = m3 x k−13
x mod p3 x mod p3 x = −x − 3/10 x + 1/10 mod
x3 + x2 + x + 3 = 3/10 x2 − 1/10 x mod x2 + 1 = − 1/
10 x − 3/10.

Then, according to Formula (6), the original message is
recovered as the plaintext: N x = ∑s

i=1Mi x mi x bi′ x mi

x k−1i x mod pi x mod pi x mod P x = ∑s
i=1Mi x

mi x bi′ x qi x mod pi x mod P x = x5 + 2x3 +
x2 + x + 1 1/3 x + 2/3 1/3 −21x − 39 mod x2 + x +
1 + x4 + x3 + 2x2 + x + 1 2/3 x2 − 1/3 x + 1/3 1/9
x2 − 2/9 x + 5/9 54x2 + 124x + 59 mod x3 + x + 1 +
x5 + x4 + 2x3 + 2x2 + 2x + 1 −x −108x + 24 − 1/10 x

− 3/10 mod x2 + 1 mod x7 + x6 + 3x5 + 3x4 + 4x3 + 3
x2 + 2x + 1 = 15x6 + 18x5 + 12x4 + 5x3 + 18x2 + 17x + 3.

Accelerating the encryption and decryption process can
be achieved if the participants choose parameters ki x = 1.
However, this will lead to a reduction in the cryptographic
system’s resilience. The encryption process is simplified by
using the following formula:

N ′ x = 〠
s

i=1
bi x Mi x mod P x 8

It should be noted that the operation of finding the
inverse polynomial modulo and multiplying it in Formula
(4) disappears because qi x =mi x . The restoration of the
plaintext is based on the following relationships:

bi x = bi′ x mi x mod pi x

N x = 〠
s

i=1
Mi x mi x bi′ x mi x mod pi x mod P x

9

For the same input parameters as in the previous example,
according to Formulas (8) and (9), the following ciphertext is
obtained: N ′ x = ∑s

i=1bi x Mi x mod P x = x5 + 2x3
+ x2 + x + 1 −7x − 13 + x4 + x3 + 2x2 + x + 1 3x2 + 48x
+ 31 + x5 +x4 +2x3 + 2x2 + 2x + 1 30x − 18 mod x7 +
x6 + 3x5 + 3x4 + 4x3 + 3x2 + 2x + 1 = 26x6 + 50x5 + 113x4
+ 121x3 + 117x2 + 53x. To decrypt, it is necessary to compute
additional parameters according to Formula (4): b1′ x = N ′
x mod p1 x = 26x6 + 50x5 + 113x4 + 121x3 + 117x2 + 53
x mod x2 + x + 1 = −x − 20 ; b2′ x = N ′ x mod p2 x
= 26x6 + 50x5 + 113x4 + 121x3 + 117x2 + 53x mod x3 +
x + 1 = − 20x2 − 79x − 45 ; b3′ x = N ′ x mod p3 x =
26x6 + 50x5 + 113x4 + 121x3 + 117x2 + 53x mod x2 + 1 =
−18x − 30.

The decryption process is carried out according to For-
mula (9): N x = ∑s

i=1Mi x mi x bi′ x mi x mod pi x
mod P x = x5 + 2x3 + x2 + x + 1 1/3 x + 2/3 1/3 x
+ 2/3 −x − 20 mod x2 + x + 1 + x4 + x3 + 2x2 + x + 1
2/3 x2 − 1/3 x + 1/3 2/3 x2 − 1/3 x + 1/3 −20x2 − 79

x − 45 mod x3 + x + 1 + x5 + x4 + 2x3 + 2x2 + 2x + 1
−x −18x − 30 −x mod x2 + 1 mod x7 + x6 + 3x5
+ 3x4 + 4x3 + 3x2 + 2x + 1 = 15x6 + 18x5 + 12x4 + 5x3 + 18
x2 + 17x + 3.
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This simplification reduces computational complexity by
avoiding the operation of finding the parameters qi x and
k−11 x mod pi.

2.4. Polynomial Symmetric Encryption Method Based on
CRT. Another polynomial method of symmetric encryption
based on the CRT involves breaking the plaintext N x into
blocks—polynomials Ni x of lower order than the selected
polynomial modules. These blocks will act as remainders bi
x modulo the chosen moduli, such that if deg pi x = n,
then deg Ni x ≤ n − 1; that is, Ni x = an−1x

n−1 + an−2x
n−2

+⋯+a0x0. After selecting the encryption parameters, the
encryption is performed according to the expression (3).
The ciphertext will be the value N ′ x .

Decryption is carried out using Formulas (4) and (5),
which are used to find the parameters qi x , bi x =Ni x
mod pi x =Ni′ x and bi′ x . Concatenating the coefficients
an−1 of the polynomials Ni x forms the plaintext. It should
be noted that in the case of requiring fast decryption, the
ciphertext can also be represented by the parameters bi x .

Figure 2 depicts the scheme of the polynomial symmetric
encryption method in the CRT-based encryption system.

To encrypt using the aforementioned method, the cho-
sen plaintext PSMFSRND = 1518120518171303 is divided
into four blocks of two characters each: PS = 1518, MF =
1205, SR = 1817, and ND = 1303. Then, the plaintexts are
formed as polynomials, N1 x = 15x + 18, N2 x = 12x + 5,
N3 x = 18x + 17, and N4 x = 13x + 3, which are remain-
ders modulo the chosen moduli p1 x = x2 + x + 1, p2 x =
x3 + x + 1, and p3 x = x2 + 1, and the corresponding coeffi-
cients k1 x = x2 + 2x + 3, k2 x = x3 + x2 + 1, and k3 x =
x2 + 3x + 2. The ciphertext for the first block is computed

based on Formula (3): N1′ x = ∑s
i=1bi x Mi x ki x mod

P x = 15x + 18 x5 + 2x3 + x2 + x + 1 x2 + 2x + 3 + x4 +
x3 + 2x2 + x + 1 15x + 18 x3 + x2 + 1 + x5 + x4 + 2x3 + 2
x2 + 2x + 1 15x + 18 x2 + 3x + 2 mod x7 + x6 + 3x5 + 3
x4 + 4x3 + 3x2 + 2x + 1 = 105x6 + 33x5 + 135x4 + 81x3 + 78
x2 + 21x − 21.

Upon decryption using Formulas (4) and (5), the follow-

ing results are obtained: b1′1 x = 45x + 54, b1′2 x = 15x2 + 48
x + 36, and b1′3 x = −27x − 69. The message is reconstructed
based on the relation (5): b11 x = 45x + 54 1/3 x + 2/3
− 1/3 x + 1/3 mod x2 + x + 1 = 45x + 54 − 1/9 x2 −
1/9 x + 2/9 mod x2 + x + 1 = −5x3 − 11x2 + 4x + 12
mod x2 + x + 1 = 15x + 18.

For the second block of the input message N2 x = 12x
+ 5, the following ciphertext value is obtained: N2 x ′ =
∑s

i=1bi x Mi x ki x mod P x = 12x + 5 x5 + 2x3 + x2

+ x + 1 x2 + 2x + 3 + x4 + x3 + 2x2 + x + 1 12x + 5 x3 +
x2 + 1 + x5 +x4 + 2x3 + 2x2 + 2x + 1 12x + 5 x2 + 3x + 2
mod x7 + x6 + 3x5 + 3x4 + 4x3 + 3x2 + 2x + 1 = 37x6 − 30
x5 + 14x4 − 48x3 − 41x2 − 49x − 45.

According to Formula (4), the remainders obtained are

b2′1 x = 36x + 15, b2′2 x = 12x2 + 29x + 10, and b2′3 x = −31
x − 27. The restoration of the second block of the input mes-
sage is done using relation (5): b21 x = 36x + 15 1/3 x
+ 2/3 − 1/3 x + 1/3 mod x2 + x + 1 = 36x + 15 − 1/
9 x2 − 1/9 x + 2/9 mod x2 + x + 1 = −4x3 − 17/3 x2 +
19/3 x + 10/3 mod x2 + x + 1 = 12x + 5.

The ciphertext for the third block of the input message
N3 x = 18x + 17 will have the following form: N3′ x =
∑s

i=1bi x Mi x ki x mod P x = 18x + 17 x5 + 2x3 + x2

+ x + 1 x2 + 2x + 3 + x4 + x3 + 2x2 + x + 1 18x + 17 x3

…
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Figure 2: Polynomial symmetric encryption method in RNS.
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+ x2 + 1 + x5 + x4 + 2x3 + 2x2 + 2x + 1 18x + 17 x2 + 3x
+ 2 mod x7 + x6 + 3x5 + 3x4 + 4x3 + 3x2 + 2x + 1 = 103
x6 + 12x5 + 116x4 + 42x3 + 43x2 − 7x − 39.

Then, according to Formula (4), the remainders obtained

are b3′1 x = 54x + 51, b3′2 x = 18x2 + 53x + 34, and b3′3 x =
−37x − 69. The restoration is done using relation (5): b3i x

= b3′i x qi x mod pi x = b3′i x mi x k−1i x mod pi x
mod pi x . Hence, b31 x = 54x + 51 1/3 x + 2/3 − 1/3
x + 1/3 mod x2 + x + 1 = 54x + 51 − 1/9 x2− 1/9 x + 2/
9 mod x2 + x + 1 = −6x3− 35/3 x2 + 19/3 x + 34/3 mod
x2 + x + 1 = 18x + 17.

Therefore, the encrypted message for the fourth block,
N4 x = 13x + 3 according to (3), will be the following poly-
nomial: N4′ x = 13x + 3 x5 + 2x3 + x2 + x + 1 x2 + 2x +
3 + x4 + x3 + 2x2 + x + 1 13x + 3 x3 + x2 + 1 + x5 + x4 +
2x3 +2x2 +2x + 1 13x + 3 x2 + 3x + 2 mod x7 + x6 + 3x5
+3x4 +4x3 + 3x2 + 2x + 1 = 28x6 − 47x5 − 9x4 − 81x3 − 71x2
− 70x − 56.

Then, according to Formula (4), the obtained remain-
ders are b4′1 x = 39x + 9, b4′2 x = 13x2 + 29x + 6, and b4′3 x
= −36x − 22. The restoration of the fourth block is done

based on expression (5): b4i x = b4′i x qi x mod pi x =
b4′i x mi x k−1i x mod pi x mod pi x and b41 x =
39x + 9 1/3 x + 2/3 − 1/3 x + 1/3 mod x2 + x + 1 =
39x + 9 − 1/9 x2 − 1/9 x + 2/9 mod x2 + x + 1 = −
13/3 x3− 16/3 x2 + 23/3 x + 2 mod x2 + x + 1 = 13x + 3.

The concatenation of the coefficients of the remain-
ders bji x corresponds to the input text PSMFSRND =
1518120518171303. According to the agreements between
the participants, the ciphertext can be either the parameter

Ni x , or the remainders bj′i x , where j is the block number
of the message.

3. Results

In this section, we evaluate the cryptographic strength of a
polynomial symmetric encryption algorithm in the system
of residual classes.

The proposed polynomial symmetric encryption method
based on the CRT is cryptographically strong due to the
complexity of finding all possible parameter variants and
cryptotransform modules. For its cryptanalysis, it is neces-
sary to perform a complete search of all mutually prime
polynomials in the ring Z x over a simple Galois field
GF p , where p is the prime number. The biggest chal-
lenge will be if the polynomial f x = anx

n + an−1x
n−1 +

an−2x
n−2 +⋯+a0x0 is irreducible. Quantity Sp n irreduc-

ible polynomials of degree n can be calculated by the fol-
lowing formula [51]:

Sp n = 1
n
〠
n/d

μ d pn/d 10

where μ d is the Möbius function. It is equal to 1 if d is a
divisor of degree n with an even number of prime factors,

−1 if d is a divisor of degree n with an odd number of
prime factors, and 0 if d contains a square of a prime fac-
tor. Accordingly, the number of modules l cannot exceed Sp
n . Table 1 shows the Möbius functions for the first 64 posi-
tive integers.

So, to find the number of irreducible polynomials f x
= anx

n + an−1x
n−1 + an−2x

n−2 +⋯+a0x0 over GF p , you
need to determine all divisors of degree n, calculate the
Möbius function for each of them, substitute them into For-
mula (10), and sum them. For example, for irreducible poly-
nomials over GF p of degree n = 3 with divisors 1 (the value
of the Möbius function is 1) and 3 (the value of the Möbius
function is −1), their number can be found by the following
formula: Sp n = 1/3 ∑n/dμ d pn/d = 1/3 μ 1 p3/1 + μ 3
p3/3 = p3 − p /3.

For a polynomial of degree 32 (the divisors are 1, 2, 4, 8,
16, and 32) over GF 2 , according to Formula (10), the
number of irreducible polynomials is as follows: S2 32 =
1/32 ∑32/dμ d 232/d = 1/32 μ 1 232/1 + μ 2 232/2 + μ 4
232/4 + μ 8 232/8 + μ 16 232/16 + μ 32 232/32 = 1/32 232 −
216 = 227 − 211 = 134215680.

Below is an example of calculating the number of irre-
ducible polynomials for n = 32 in GF p , where p = 3, 5,
7,11,13,17,19,23,29,31,37,43:

S3 32 = 1
32 〠

32/d
μ d 332/d = μ 1 332/1 + μ 2 332/2

+ μ 4 332/4 + μ 8 332/8 + μ 16 332/16

+ μ 32 332/32 = 1
32 332 − 316 = 57906879556410

Table 1: The Möbius functions for the first 64 positive
integers [29].

d 1 2 3 4 5 6 7 8

μ d 1 −1 −1 0 −1 1 −1 0

d 9 10 11 12 13 14 15 16

μ d 0 1 −1 0 −1 1 1 0

d 17 18 19 20 21 22 23 24

μ d −1 0 −1 0 1 1 −1 0

d 25 26 27 28 29 30 31 32

μ d 0 1 0 0 −1 −1 −1 0

d 33 34 35 36 37 38 39 40

μ d −1 1 1 0 −1 1 1 0

d 41 42 43 44 45 46 47 48

μ d −1 −1 −1 0 0 1 −1 0

d 49 50 51 52 53 54 55 56

μ d 0 0 1 0 −1 0 1 0

d 57 58 59 60 61 62 63 64

μ d 1 1 −1 0 −1 1 0 0
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S5 32 = 1
32 〠

32/d
μ d 532/d = μ 1 532/1 + μ 2 532/2

+ μ 4 532/4 + μ 8 532/8 + μ 16 532/16 + μ 32 532/32

= 1
32 532 − 516 = 727595761413574 ∗ 106

S7 32 = 1
32 〠

32/d
μ d 732/d = μ 1 732/1 + μ 2 732/2

+ μ 4 732/4 + μ 8 732/8 + μ 16 732/16 + μ 32 732/32

= 1
32 732 − 716 = 34513364820121 ∗ 1011

S11 32 = 1
32 〠

32/d
μ d 1132/d = μ 1 1132/1 + μ 2 1132/2

+ μ 4 1132/4 + μ 8 1132/8 + μ 16 1132/16

+ μ 32 1132/32 = 1
32 1132 − 1116

= 65980552329226 ∗ 1017

S13 32 = 1
32 〠

32/d
μ d 1332/d = μ 1 1332/1 + μ 2 1332/2

+ μ 4 1332/4 + μ 8 1332/8 + μ 16 1332/16

+ μ 32 1332/32 = 1
32 1332 − 1316

= 138368519930263 ∗ 1020

S17 32 = 1
32 〠

32/d
μ d 1732/d = μ 1 1732/1 + μ 2 1732/2

+ μ 4 1732/4 + μ 8 1732/8 + μ 16 1732/16

+ μ 32 1732/32 = 1
32 1732 − 1716

= 739972373362646 ∗ 1023

S19 32 = 1
32 〠

32/d
μ d 1932/d = μ 1 1932/1 + μ 2 1932/2

+ μ 4 1932/4 + μ 8 1932/8 + μ 16 1932/16

+ μ 32 1932/32 = 1
32 1932 − 1916

= 259995153315273 ∗ 1025

S23 32 = 1
32 〠

32/d
μ d 2332/d = μ 1 2332/1 + μ 2 2332/2

+ μ 4 2332/4 + μ 8 2332/8 + μ 16 2332/16

+ μ 32 2332/32 = 1
32 2332 − 2316

= 117527845345372 ∗ 1028

S29 32 = 1
32 〠

32/d
μ d 2932/d = μ 1 2932/1 + μ 2 2932/2

+ μ 4 2932/4 + μ 8 2932/8 + μ 16 2932/16

+ μ 32 2932/32 = 1
32 2932 − 2916

= 195697804967027 ∗ 1031

S31 32 = 1
32 〠

32/d
μ d 3132/d = μ 1 3132/1 + μ 2 3132/2

+ μ 4 3132/4 + μ 8 3132/8 + μ 16 3132/16

+ μ 32 3132/32 = 1
32 3132 − 3116

= 165357624391381 ∗ 1032

S37 32 = 1
32 〠

32/d
μ d 3732/d = μ 1 3732/1 + μ 2 3732/2

+ μ 4 3732/4 + μ 8 3732/8 + μ 16 3732/16

+ μ 32 3732/32 = 1
32 3732 − 3716

= 475669375729533 ∗ 1034

S43 32 = 1
32 〠

32/d
μ d 4332/d = μ 1 4332/1 + μ 2 4332/2

+ μ 4 4332/4 + μ 8 4332/8 + μ 16 4332/16

+ μ 32 4332/32 = 1
32 4332 − 4316

= 583231000811536 ∗ 1036

Table 2 shows the number of irreducible polynomials for
powers of n = 4, 8, 16, 32, 64, 96, and 128 and parameter
p = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, and 43.

The numerical experiment shows that the number of
irreducible polynomials increases with the expansion of the
Galois field and the growth of the power. For the specified
parameters p and n, it will lie in the following ranges: 30 ≤
Sp 8 ≤ 1 4612, 4048 ≤ Sp 16 ≤ 8 54 ∗ 1024, 1 34 ∗ 108 ≤ Sp
32 ≤ 5 832 ∗ 1050, 2 8823 ∗ 1017 ≤ Sp 64 ≤ 5 4425 ∗ 10104,
8 25293 ∗ 1026 ≤ Sp 96 ≤ 6 7717 ∗ 10154, and 2 65846 ∗ 1036
≤ Sp n ≤ 9 4788 ∗ 10206. In addition, a given number of irre-
ducible polynomials can be obtained either by changing the
degree n or by expanding the field GF p . For instance, S43
8 ≈ S7 16 , S43 16 ≈ S7 32 , S43 32 ≈ S7 64 , S43 64 ≈ S7
96 , and S43 96 ≈ S7 128 .

Figure 3 shows the graphical dependence of the number
of irreducible polynomials on these parameters on a loga-
rithmic scale with base 10.

In general, the security of the proposed cryptosystem
with l modules will be defined as the total time of complete
search of all irreducible polynomials and the complexity of
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performing calculations with each one according to the fol-
lowing formula:

O n, l = Cl
Sp n n

2 log l =
Sp n ∗n2 log l
Sp n − l ∗l

11

For instance, we can calculate the time (in clock cycles)
needed to cryptanalyze the proposed encryption system with
l = 5 and n = 32 in the Galois field GF 3 as follows: O 32, 5
= C5

57906879556410 ∗ 322 log 5 = 57906879556410 / 5790687
9556405 ∗5 322 log 5 ≈ 1 29 ∗ 1070.

Table 3 estimates the cryptanalysis time in clock cycles
for different parameter values of l, n, and Sp n . Notably,
the modern symmetric encryption algorithm AES-128
requires around 2128 ≈ 1037 clock cycles for resilience.
Table 3 indicates that the proposed cryptosystem achieves
a comparable level of security with the following parameters:
S31 4 , l = 7, and n = 4; S11 8 , l = 5, and n = 8; S3 16 , l = 6,
and n = 16; S2 32 , l = 3, and n = 32; and S2 64 , l = 2, and
n = 64.

Table 3 shows that adding one module for parameters
n = 4 and S31 4 increases the strength by about 5 orders of
magnitude, for n = 8 and S11 8 by 7 orders of magnitude,
for n = 16 and S3 16 by 6 orders of magnitude, for n = 32

Table 2: The number of irreducible polynomials for different powers of n and values of the parameter p.

p/n 4 8 16 32 64 96 128

2 3 30 4080 134215680 2 88 × 1017 8 25 × 1026 2 66 × 1036

3 18 810 2690010 5 79 × 1013 5 37 × 1028 6 63 × 1043 9 21 × 1058

5 150 48750 9 54 × 109 7 28 × 1020 8 47 × 1042 1 31 × 1065 2 29 × 1087

7 588 720300 2 08 × 1012 3 45 × 1025 1 90 × 1052 1 40 × 1079 1 16 × 10106

11 3630 26793030 2 87 × 1015 6 60 × 1031 6 97 × 1064 9 80 × 1097 1 55 × 10131

13 7098 1 02 × 108 4 16 × 1016 1 38 × 1034 3 06 × 1069 9 04 × 10104 3 00 × 10140

17 20808 8 72 × 108 3 04 × 1018 7 40 × 1037 8 76 × 1076 1 38 × 10116 2 46 × 10155

19 32490 2 12 × 109 1 8 × 1019 2 60 × 1039 1 08 × 1080 5 99 × 10120 3 74 × 10161

23 69828 9 79 × 109 3 83 × 1020 1 18 × 1042 2 21 × 1085 5 54 × 10128 1 56 × 10172

29 176610 6 25 × 1010 1 56 × 1022 1 96 × 1045 6 12 × 1091 2 55 × 10138 1 20 × 10185

31 230640 1 07 × 1011 4 55 × 1022 1 65 × 1046 4 37 × 1093 1 54 × 10141 6 12 × 10188

37 468198 4 39 × 1011 7 71 × 1023 4 75 × 1048 3 62 × 1098 3 67 × 10148 4 19 × 10198

41 706020 9 98 × 1011 3 98 × 1024 1 27 × 1050 2 58 × 10101 6 99 × 10152 2 13 × 10204

43 854238 1 46 × 1011 8 54 × 1024 5 83 × 1050 5 44 × 10102 6 77 × 10154 9 47 × 10206
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Figure 3: Number of mutually prime modules Sp n depending on the Galois field p and degree n.
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and S2 32 by 13 orders of magnitude, and for n = 64 and
S2 64 by 17 orders of magnitude.

Figure 4 shows the graphs of cryptographic strength
dependencies O n, l on a logarithmic scale with a base of
10 of the proposed symmetric polynomial encryption algo-
rithm in RNS on the number of modules l for the polyno-
mial powers n = 4 and 8 and the parameters p = 2, p = 3,
p = 5, and p = 7. The horizontal line 6 corresponds to the
strength of the modern symmetric encryption algorithm
AES-128.

The figure shows that all graphs have the same bell-
shaped character. The cryptographic strength increases sig-
nificantly with increasing degree and dimension of the
Galois field p and reaches its maximum at l = Sp n /2. This
means that the cryptanalysis of the proposed algorithm
requires combinatorial complexity, which leads to an NP-
complete problem.

4. Conclusion

In this article, we first developed symmetric cryptographic
algorithms based on the polynomial RNS. The mathematical
support and schemes of the proposed polynomial symmetric
encryption in the RNS are developed. To evaluate its robust-
ness, we have studied and constructed analytical expressions
that indicate that the cryptanalysis of the proposed algo-

rithm requires combinatorial complexity, which leads to an
NP-complete problem. It is established that the crypto-
graphic strength increases significantly with the increasing
degree and dimension of the Galois field p and reaches its
maximum in the case when the number of modules is equal
to half the possible number of irreducible polynomials with
given polynomial degrees and Galois field orders. This
means that finding an efficient algorithm to solve this prob-
lem requires significant computing resources and time.

We compare the strength of the proposed encryption
method with the modern symmetric encryption algorithm
AES-128. As a result of numerical experiments, it was found
that the developed polynomial encryption methods in the
RNS provide a level of resistance similar to AES-128 with
the following parameters: S31 4 , l = 7, and n = 4; S11 8 ,
l = 5, and n = 8; S3 16 , l = 6, and n = 16; S2 32 , l = 3,
and n = 32; and S2 64 , l = 2, and n = 64.

Thus, the proposed cryptographic algorithm based on
the polynomial RNS can be used to ensure reliable protec-
tion of confidential information in systems with limited
computing resources.

Data Availability Statement

The authors confirm that the data supporting the findings of
this study are available within the article.

1
2

3

5

Lo
g 10

 O
 (n

,l
)

500

400

300

200

100

0
0 100 200 300 400 500 600 700 800

6

4

Figure 4: Graphs of cryptographic strength dependencies O n, l in a logarithmic scale with base 10 of the proposed symmetric polynomial
encryption algorithm in RNS from the number of modules l and the powers of the polynomial n (line 1, p = 2, n = 4; line 2, p = 2, n = 8; line
3, p = 5, n = 4; line 4, p = 7, n = 4; line 5, p = 3, n = 8; and line 6, algorithm AES-128).

Table 3: Estimation of cryptanalysis time in clock cycles for various parameter values of l, n, and Sp n .

l/n Sp n 4 S31 4 8 S11 8 16 S3 16 32 S2 32 64 S2 64
2 1 5 × 1011 7 9 × 1015 3 17 × 1014 5 879 × 1029 5 8 × 1037

3 1 7 × 1016 1 03 × 1023 4 2 × 1020 1 674 × 1043 8 3 × 1054

4 3 8 × 1021 2 8 × 1030 1 1 × 1027 9 595 × 1056 2 4 × 1072

5 2 02 × 1026 1 7 × 1037 6 98 × 1032 1 29 × 1070 1 6 × 1089

6 8 6 × 1031 8 5 × 1043 3 5 × 1038 1 386 × 1083 8 4 × 10105

7 3 09 × 1035 3 5 × 1050 1 5 × 1044 1 245 × 1096 3 8 × 10122
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