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This paper introduces a novel approach for solving first-order stiff initial value problems through the development of a one-step
family of three optimized second-derivative hybrid block methods. The optimization process was integrated into the derivation of
the methods to achieve maximal accuracy. Through a rigorous analysis, it was determined that the methods exhibit properties of
consistency, zero-stability, convergence, and A-stability. The proposed methods were implemented using the waveform relaxation
technique, and the computed results demonstrated the superiority of these schemes over certain existing methods investigated in
the study.
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1. Introduction

First-order differential equations can be solved using various
approaches. However, many of these methods are inefficient
for complex problems. Consequently, scientists continue to
seek techniques that can accurately address these challenges
without introducing additional errors.

In the context of second-derivative methods, Enright [1]
formulated second-derivative multistep methods for solving
first-order stiff ordinary differential equations (ODEs).
Building on Enright’s work, modified second-derivative lin-
ear multistep methods are developed by Ogunfeyitimi and
Ikhile [2] for the solution of first-order initial value problems
(IVPs).

Stability is an important aspect as highlighted by Cash
[3], particularly when solving stiff problems. To overcome
limitations posed by Dahlquist’s theorem (Dahlquist [4]),
several authors have explored hybrid block methods for the
solution of first-order differential equations (see, for exam-
ple, [5–9]). Ngwane and Jator [10] proposed a hybrid
second-derivative method with two equally spaced off-step
points. The method was used to solve first-order stiff IVPs.

Yakubu and Kwami [11] reformulated and developed
some discrete block hybrid schemes into implicit two-
derivative Runge-Kutta collocation methods of order p = 8
and p = 10 to solved equations such as Equation (1) in Sec-
tion 2. Sunday [12] introduced a pair of two-step optimized
second-derivative hybrid methods for solving first-order stiff
systems of ODEs. The methods were developed with equi-
distant and nonequidistant hybrid points, and the results
obtained from the numerical experiments outperformed
the compared methods.

In the quest for more accurate solutions, Ramos [13]
developed an optimized two-step hybrid block method with
two optimal points to solve first-order IVPs. The results
obtained from Ramos’s method were better than some exist-
ing methods. Also, a fifth-order one-step multiderivative
hybrid implicit Runge-Kutta method for the solution of
IVPs was derived by [14], and the results obtained were bet-
ter than the compared methods. More recently, authors such
as [15–17] introduced some numerical methods for the solu-
tion of IVPs, and the obtained results suggested that the
methods are suitable. In addition, authors such as [18, 19]
developed similar methods for the solution of second-order
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ODEs, and the results obtained are better than the reviewed
works. Further, a time-efficient reformulation of the Lobatto
III family of order eight methods for the solution of IVPs
was proposed by Qureshi et al. [20]. The one-step method
by [20] utilized 3 optimal points, and the numerical results
are better than the compared methods. Abdulganiy et al.
[21] developed a functionally fitted block hybrid Falkner
method for the solution of ODEs. The method was applied
to the Kepler equations and related problems, and the results
obtained are very good. In the work of Ramos, Quershi, and
Soomro [22], Simpson’s type block method with time effi-
ciency and order stars was derived for solving ODEs. The
method was implemented in a variable step size, and the
results obtained show that the method is suitable. It is
important to note that many methods in the literature lack
high-order accuracy and the stability properties required
for solving first-order stiff IVPs.

The motivation in this study is to derive a family of one-
step optimized second-derivative hybrid block methods with
optimal points that will give maximum accuracy for solving
equations such as Equation (1) in Section 2 and having
higher order with very good stability characteristics, for
example, A-stability.

2. Derivation of Optimized Hybrid Methods

This section presents the derivation of a one-step optimized
second-derivative hybrid block method for solving first-
order IVPs of the form

y′ x = f x, y x , y x0 = y0, x ∈ a, b 1

where f is continuous within the interval of integration a, b .
We assumed that f satisfies Lipschitz’s condition which guar-
antees the existence and uniqueness of the solution of Equa-
tion (1). The IVPs are well-posed, and the problem is solved
over an interval a ≤ x ≤ b, and a = x0 < x1 <⋯ < xN−1 < xN
= b. The step size is defined as h = xn+1 − xn for n = 0, 1, 2,
⋯,N − 1.

The continuous method is based on approximating the
exact solution y x at grid points xj = xn + jh by a polyno-
mial of the form

y x ≈ Y x = 〠
M+2

j=0
ajx

j 2

where the first and second derivatives of Equation (2) can be
approximated by

y′ x ≈ Y ′ x = 〠
M+2

j=1
jajx

j−1 3

y′′ x ≈ Y ′′ x = 〠
M+2

j=2
j j − 1 ajx

j−2 4

where aj are unknown coefficients that would be obtained by
imposing some interpolation points and collocation points

at specified nodes. The hybrid block methods are formulated
by considering M + 2 points, where M + 2 is the number of
interpolation points and collocation points.

The derivation assumes that the solution of the IVPs is
to be approximated over the interval xn, xn+1 . Interpolation
is imposed at xn, and collocation is imposed at xn, xn+1 plus
prescribed off-step points defined as xvi = xn + vih. Here, it is
assumed that 0 < vi < 1 and i = 1, 2,⋯,m where m is the
number of off-step points. Accordingly, a system of M + 2
equations with M + 2 unknowns is obtained from

Y xn = yn 5

Y ′ xn+j = f n+j, j = 0, 1 6

Y ′ xn+vi = f n+vi , i = 1, 2,⋯,m 7

Y ′′ xn+j = gn+j, j = 0, 1 8

Here, g x, y represents the second derivative of Y x
and

g x, y = Y ′′ x = f x x, y + f y x, y f x, y 9

In addition, every off-step point vi is associated with
another point 1 − vi. This requirement is consistent with
the nature of collocation points which are usually symmetric
about some point on the integration grid. For the one-step
methods considered in this work, the symmetric is about
xn+ 1/2 . The first three off-step points have been considered
in the form displayed in Table 1.

Equations (5)–(8) are solved for the unknowns aj, j = 0,
1,⋯,M + 2 to obtain a solution that is in terms of yn, yn+vi ,
yn+1, f n, f n+vi , f n+1, gn, and gn+1 for i = 1, 2,⋯,m. This solu-
tion is substituted into Equation (2) to obtain the continuous
approximation equation which takes the form

Y x = α0 x yn + h 〠
1

j=0
βj x f n+j + 〠

m

i=1
βvi

x f n+vi + h〠
1

j=0
γj x gn+j

10

where α0 x = 1. We remark that for each block of integra-
tion xn, xn+1 , there are m + 1 unknowns:

yn+1, yn+v1 , yn+v2 ,⋯, yn+vm

The specific methods are developed by evaluating Equa-
tion (10) at these unknown points.
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For the first case when m = 1, we obtain

yn+r = hr
−1 + r 2 20 − 5r − 6r2 + 3r3 f n + 10 − 15r + 6r2 f n+r

30 −1 + r 2

+ r3 −10 + 12r − 3r2 f n+1
30 −1 + r 2 + h2 r2 −10 + 20r − 13r2 + 3r3 gn

60 −1 + r

+ r4 −5 + 3r gn+1
60 −1 + r

+ yn

yn+1 =
h −1 + r 2 −1 − 2r + 15r2 f n + f n+r + r2 12 − 28r + 15r2 f n+1

30 −1 + r 2r2

+ h2 2 − 7r + 5r2 gn + 3 − 5r rgn+1
60 −1 + r r

+ yn

11

The value of r is determined by optimizing the local
truncation error of the main method yn+1. The local trunca-
tion error corresponding to yn+1 is

L y xn+1 ; h = −
2r − 1 y 6 xn h

6

7200

−
7r2 + 14r − 9 y 7 xn h

7

151200 + O h8

12

The optimal local truncation error can be obtained by
setting 2r − 1 = 0 in Equation (12). The unique solution
within the range 0 < r < 1 is

r = 1
2 13

By selecting r in Equation (13), the truncation error
reduces to

L y xn+1 ; h = h7y 7 xn
604800 + O h8 14

and the implicit second-derivative hybrid block method is
given by the following system, where v1,1 = 1/2.

yn+v1,1

yn+1
=

yn

yn
+ hf n

131
480
7
30

+ h

128
480 −

19
480

16
30

7
30

f n+v1,1

f n+1

+ h2gn

23
960
1
60

+ h2gn+1

7
960

−
1
60

15

For the second case when m = 2 gives

yn+r = hr
−40 + 175r − 234r2 + 48r3 + 120r4 − 90r5 + 20r6 f n

60 −1 + r 2 −1 + 2r

+ −20 + 65r − 66r2 + 22r3 f n+r + 5r − 6r2 + 2r3 f n+1−r
60 −1 + r 2 −1 + 2r

+ r −5 + 6r + 48r2 − 120r3 + 90r4 − 20r5 f n+1
60 −1 + r 2 −1 + 2r

+ h2r2 −10 + 25r − 19r2 + 5r3 gn + r 5 − 11r + 5r2 gn+1
60 −1 + r

+ yn

yn+1−r = h −1 + r
−1 − r + 30r2 − 28r3 − 30r4 − 30r5 + 20r6 f n +

60r2 −1 + 2r

+ 1 + r − 2r3 f n+r + 1 + r − 22r3 f n+1−r
60r2 −1 + 2r

−
1 + r − 30r2 + 68r3 − 30r4 − 30r5 + 20r6 f n+1

60r2 −1 + 2r

+ h2 −1 + r 2 −1 + 2r + 4r2 + 5r3 gn + 1 − 2r − 4r2 + 5r3 gn+1
60r + yn

yn+1 =
h −1 + 30r2 − 60r3 + 30r4 f n + f n+r + f n+1−r +

60 −1 + r 2r2
−1 + 30r2 − 60r3 + 30r4 f n+1

60 −1 + r 2r2

+ h2 1 − 5r + 5r2 gn − gn+1
60 −1 + r r

+ yn

16

The value of r is determined by optimizing the local
truncation error of yn+1 to obtain

L y xn+1 ; h = −
14r2 − 14r + 3 y 7 xn h

7

302400

−
14r2 − 14r + 3 y 8 xn h

8

604800

−
3r4 − 6r3 + 27r2 − 24r + 5 y 9 xn h

9

3628800 + 0 h10

17

The optimal local truncation error can be obtained by
setting the coefficient of the term h7 to zero in Equation
(17), which has a unique solution with 0 < r < 1 − r < 1.
The optimized value of r is

r = 1
14 7 − 7 18

Using r as given in Equation (18), the truncation error
reduces to

L y xn+1 ; h = −
h9y 9 xn
711244800 + O h10 19

Table 1: Distribution of the first three off-step points.

m Off-step points

1 r

2 r, 1 − r

3 r, 12 , 1 − r
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Substituting the value of r into (16) gives the follow-
ing system of equation, where v2,1 = 1/14 7 − 7 and
v2,2 = 1/14 7 + 7 .

yn+v2,1

yn+v2,2

yn+1

=

yn

yn

yn

+ hf n

−51541 + 4675 7

52920 −7 + 7

−19271 + 3649 7

17640 −7 + 7

37
270

+ h

196 −359 + 65 7

52920 −7 + 7

392 −247 + 100 7

52920 −7 + 7

7049 − 3695 7

52920 −7 + 7

−196 64 + 34 7

17640 −7 + 7

−196 109 − 11 7

17640 −7 + 7

259 + 859 7

17640 −7 + 7

98
270

98
270

37
270

f n+v2,1

f n+v2,2

f n+1

+ h2gn

− 1393 + 5 7

35280 −7 + 7

−623 + 157 7

11760 −7 + 7

1
180

+ h2gn+1

− 497 − 275 7

35280 −7 + 7

− 7 + 67 7

11760 −7 + 7

−1
180

20

The third case, when m = 3, is obtained in a similar
way. However, due to the cumbersome derivation pro-
cess, the full equations are not included here. The local
truncation error corresponding to the main method
yn+1 is

L y xn+1 ; h = −
6r2 − 6r + 1 y 9 xn h

9

203212800

−
6r2 − 6r + 1 y 10 xn h

10

406425600

−
88r4 − 176r3 + 1166r2 − 1078r + 177 y 11 xn h

11

268240896000
+ 0 h12

21

Here, the local truncation error is optimized by selecting
r to be the root of 6r2 − 6r + 1. Thus, the unique solution
within the range 0 < r < 1/2 < 1 − r < 1 is

r = 1
6 3 − 3 22

With this value of r, the truncation error becomes

L y xn+1 ; h = −
h11y 11 xn

1207084032000 + O h12 23

The block method equations are given in Equation (24),
with v3,1 = 1/6 3 − 3 , v3,2 = 1/2, and v3,3 = 1/6 3 + 3 :

yn+v3,1

yn+v3,2

yn+v3,3

yn+1

=

yn

yn

yn

yn

+ hf n

2 797 + 44 3
15120
257
3360

1594 − 88 3
15120
38
420

+ h

24 81 − 8 3
15120

64 36 − 23 3
15120

24 81 − 43 3
15120

−226 + 88 3
15120

9 48 + 35 3
3360

512
3360

9 48 − 35 3
3360

47
3360

24 81 + 43 3
15120

64 36 + 23 3
15120

24 81 + 8 3
15120

−2 113 + 44 3
15120

108
420

128
420

108
420

38
420

f n+v3,1

f n+v3,2

f n+v3,3

f n+1

+ h2gn

− 1393 + 5 3
15120
4

3360

53 − 6 3
15120
1
420

+ h2gn+1

− 1393 + 5 3
15120
−4
3360

17 + 6 3
15120
−1
420

24

3. Analysis of the Methods

In this section, we present and analyze the properties of the
one-step block hybrid methods derived using the m off-step
points, in particular, truncation error and order, zero-stabil-
ity, and linear stability. The method is reformulated into a
linear equation as

A1Yn+1 = A0Yn + h B0Fn + B1Fn+1 + h2 C0Gn + C1Gn+1

25

where

A0 =

0 0 ⋯ 1

0 0 ⋯ 1

⋮ ⋮ ⋮ ⋮

0 0 ⋯ 1

, A1 =

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋮ ⋮

0 0 ⋯ 1

,

B0 =

0 0 ⋯ β1,0

0 0 ⋯ β2,0

⋮ ⋮ ⋮ ⋮

0 0 ⋯ βm,0

, B1 =

β1,1 β1,2 ⋯ β1,m

β2,1 β2,2 ⋯ β2,m

⋮ ⋮ ⋮ ⋮

βm,1 βm,2 ⋯ βm,m

,

C1 =

0 0 ⋯ γ1,1

0 0 ⋯ γ2,1

⋮ ⋮ ⋮ ⋮

0 0 ⋯ γm,1

, C0 =

0 0 ⋯ γ1,0

0 0 ⋯ γ2,0

⋮ ⋮ ⋮ ⋮

0 0 ⋯ γm,0
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The vectors Yn, Yn+1, Fn, Fn+1,Gn and Gn+1 are defined as

Yn = yn−v1 ,⋯, yn−vm , yn
τ
, Yn+1 = yn+v1 ,⋯, yn+vm , yn+1

τ

Fn = f n−v1 ,⋯, f n−vm , f n
τ
, Fn+1 = f n+v1 ,⋯, f n+vm , f n+1

τ

Gn = gn−v1 ,⋯, gn−vm
, gn

τ
,Gn+1 = gn+v1 ,⋯, gn+vm , gn+1

τ

3.1. Local Truncation Error

Theorem 1. The local truncation error in the integration
block xn, xn+1 , for the hybrid block method, is defined as

yn+vi = yn + h〠
m

j=0
βi,j f n+vj + h2 〠

1

j=0
γi,jgn+j 26

and this is given by

L i y xn ; h = hm+2

m + 2
vm+2
i − m + 2 〠

m

j=0
βi,jv

m+1
j

− m + 3 m + 2 〠
1

j=0
γi,j j

m+1

y m+4 xn + 0 hm+5

27

For i = 1 1 m, when considering the grid points

xn < xn+v1 <⋯ < xn+vm < xn+1

Proof 1. Given a sufficiently differentiable function y x , the
truncation error of the hybrid block method can be written
in terms of a linear operator L i as

L i y xn ; h = y xn + vih − y xn − h〠
m

j=0
βi,jy′ xn + vjh

− h2 〠
1

j=0
γi,jy′′ xn + jh , i = 1 1 m

28

Using the Taylor series to expand Equation (28) gives

L i y xn ; h = 〠
K

k=1

vki
k
hky k xn − 〠

K

k=1

hkk
k

〠
m

j=0
βi,jv

k−1
j y k xn

− 〠
K

k=1

hkk k − 1
k

〠
1

j=0
γi,j j

k−2 y k xn + O hK+1

= 〠
m+1

k=2

hk

k
vki − k〠

m

j=0
βi,jv

k−1
j − k k − 1 〠

1

j=0
γi,j j

k−2 y k xn

+ 〠
K

k=m+3

hk

k
vki − k〠

m

j=0
βi,jv

k−1
j − k k − 1 〠

1

j=0
γi,j j

k−2

y k xn + O hK+1

29

where K ≥m + 4 is a positive integer. We note the identity

〠
m

j=0
βi,jv

k−1
j + 〠

1

j=0
γi,j j

k−2 = vki
k
, for k = 3,⋯,m + 1 30

It is worth noting that Equation (30) is an extension of
the work of Butcher [23] who presented a related study on
implicit Runge-Kutta methods. Substituting the identity in
Equation (29) gives the result in Equation (27). In Equation
(28), y xn is a sufficiently differentiable function, and by
expanding the terms y xn + vih , y′ xn + vjh , and y′′ xn +
jh around xn and collecting terms of order h, Equation
(28) becomes

L y xn ; h = C0y xn + C1hy′ xn + C2h
2y′′ xn

+⋯+Cph
pyp xn +⋯

31

where Cj, j = 0, 1, 2,⋯,N are constant vectors. The method
is said to be of order p if C0 = C1 = C2 =⋯ = Cp = 0 and
Cp+1 ≠ 0.

The vector Cp+1 is the error constant (see Kashkari and
Syam [24]).

The local truncation errors for the block methods withm
off-step points, for the optimal off-step points, are presented
below.

The method with m = 1 gives

L y xn ; h =
−
h6y 6 xn
46080 + O h7

h7y 7 xn
604800 + O h8

32

Thus, m = 1 gives

C6 = −
1

46080 , 0
τ

indicating that the method has order p = 5.
In the method with m = 2, we obtain

L y xn ; h =

3h7y 7 xn
3073280 7

+ O h8

−
3h7y 7 xn
3073280 7

+ O h8

h9y 9 xn
711244800 + O h10

33

When m = 2, we have

C7 =
3

3073280 7
,− 3
3073280 7

, 0
τ

indicating that the method has order p = 6.
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For three off-step points m = 3 , the truncation errors
are

L y xn ; h =

−
h8y 8 xn
156764160 + O h9

h8y 8 xn
92897280 + O h9

−
h8y 8 xn
156764160 + O h9

h11y 11 xn
1207084032000 + O h12

34

Therefore, the method with m = 3 gives

C8 = −
1

156764160 ,
1

92897280 ,−
1

156764160 , 0
τ

indicating that the method with m = 3 has order p = 7.
From the above results, it can be deduced that the pro-

posed methods are consistent because the order p > 1 for
any number of off-step points (see Sunday et al. [25]). Fur-
ther, for a given m off-step points, the error constant is
Cm+5 indicating that the method has order p =m + 4.

3.2. Zero-Stability. Zero-stability is an indication of the sta-
bility of the method, and this can be determined from Equa-
tion (25), in the limit h⟶ 0. In this limit, Equation (25)
becomes

A1Yn+1 = A0Yn 35

The characteristic polynomial ρ λ is defined as

ρ λ = det λA1 − A0 36

The characteristic polynomials of the methods when
m = 1, 2, 3 are ρ λ = λ λ − 1 , ρ λ = λ2 λ − 1 , and ρ λ
= λ3 λ − 1 , respectively.

A numerical method is said to be zero-stable if the roots
λi, i = 1, 2,⋯, s of the characteristic polynomial ρ λ satisfy
λi ≤ 1, and for those roots with λi = 1, the multiplicity
must not exceed the order of the differential equation in
consideration (see Lawal, Yahaya, and Yakubu [26]).

This result shows that all the derived methods are zero-
stable. Since all the methods satisfied the condition of con-
sistency and zero-stability, it can be inferred from Dahl-
quist’s theorem that they are all convergent.

3.3. Linear Stability. The stability region shows the behavior
of the method, and this is determined as follows. By
applying the method in Equation (25) on the following
Dahlquist [4] test equations, y′ = λy and y′′ = λ2y where
λ ∈ R. Setting z = λh, this yields Yn+1 =M z Yn, where

M z = A1 − zB1 − z2C1
−1

A0 + zB0 + z2C0

is the amplification matrix. The methods derived with
m = 1, 2, 3 have the following spectral radii, respectively.

ρ z = −120 + 60z + 12z2 + z3

−120 + 60z − 12z2 + z3

ρ z = 1680 + 840z + 180z2 + 20z3 + z4

1680 − 840z + 180z2 − 20z3 + z4

ρ z = −30240 + 15120z + 3360z2 + 420z3 + 30z4 + z5

−30240 + 15120z − 3360z2 + 420z3 − 30z4 + z5

The stability regions are given in Figure 1.
A numerical method is said to be A-stable if its region of

absolute stability contains the entire negative (left) complex
half-plane C (see Lambert [27]). The methods with m = 1,
2, 3 are all A-stable as indicated in Figure 1.

4. Implementation of Hybrid Methods

In this section, the implementation details of the methods
were discussed through numerical experiments. The term
gn+j, j = 0, 1 in Equation (10) which approximates the sec-
ond derivative at xn+j, j = 0, 1 is calculated using Equation
(9). We first linearize the nonlinear system of IVPs as shown
below.

Consider a nonlinear system of first-order IVPs of the
form

y′s = f s x, y1, y2,⋯, yq

=L s x, y1,⋯, ys−1, ys+1,⋯, yq ys

+N s x, y1, y2,⋯, ys−1, ys, ys+1,⋯, yq

37

whereL s x,⋯ is a nonlinear function with coefficient ys in
the s-th equation, and N s x,⋯ is the remaining compo-
nent which may or may not be a nonlinear function in ys,
s = 1, 2,⋯, q. Here, s runs from 1 to q, where q is the number
of equations.

The method is sequentially applied iteratively to Equa-
tion (37), with the solution of one decoupled equation used
immediately when solving the next equation. The iterative
scheme is in the form

y′s,r+1 =L s x, y1,r+1, y2,r+1,⋯, ys−1,r+1, ys+1,r ,⋯, yq,r ys,r+1

+N s x, y1,r+1, y2,r+1,⋯, ys−1,r+1, ys,r ,⋯, yq,r
38

The linearization method used the Gauss-Seidel method
for decoupling and solving large systems of nonlinear equa-
tions that are otherwise cumbersome to implement. This
approach was adopted from the waveform relaxation tech-
nique as discussed in [28–30].
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Figure 1: Continued.
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Since Equation (38) is linear, it can be applied to the
method by decomposing the function as

f x, y = ψ x + ϕ x y

where

ϕ x =L s x, y1,r+1,⋯, ys,r andψ x =N s x, y1,r+1,⋯, ys,r

The matrix equation form of Equation (25) becomes

A1Yn+1 = A0Yn + hB0 Φ d
n Yn +Ψn

+ hB1 Φ
d
n+1Yn+1 +Ψn+1 + h2C0 Φn

d Yn +Ψn

+ h2C1 Φ
d
n+1Yn+1 +Ψn+1

39
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Figure 1: Stability regions of the three methods.

Table 2: Data for Example 2.

Steps
NMm1

MaxErr (rate)
NMm2

MaxErr (rate)
GSDLMMs3 [2]
MaxErr (rate)

MBGAMs2 [31]
MaxErr (rate)

p = 5 p = 6 p = 5 p = 6

20
3 36 × 10−3 2 64 × 10−4 3 0 × 10−2 7 79 × 10−2

(- -) (- -) (- -) (- -)

40
1 18 × 10−4 1 80 × 10−6 3 55 × 10−3 1 26 × 10−2

(4.83) (7.19) (3.07) (2.61)

80
2 42 × 10−6 1 87 × 10−8 2 26 × 10−4 1 99 × 10−4

(5.61) (6.59) (3.97) (6.00)

160
4 10 × 10−8 1 64 × 10−10 5 86 × 10−6 1 55 × 10−6

(5.88) (6.84) (5.27) (6.99)

320
6 57 × 10−10 1 34 × 10−12 1 14 × 10−7 3 14 × 10−8

(5.97) (6.93) (5.69) (5.62)
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where Φ is defined as a diagonal matrix whose coefficients
are obtained from ϕ x . Similarly, Ψ is a matrix whose coef-
ficients are obtained from ψ x . Thus, simplifying Equation
(39) gives the following equation:

PnYn+1 =Qn 40

where

Pn = I − hB1Φn+1
d − h2C1Φn+1

d

Qn = A0 + hB0Φn
d Yn + h B0Ψn + B1Ψn+1

+ A0 + h2C0Φn
d Yn + h2 C0Ψn + C1Ψn+1

The numerical examples are solved using the scheme
(Equation (40)) applied iteratively, over 10 iterations for
each integration block xn, xn+1 . The numerical experimen-
tation suggests that sufficient convergence would have
occurred before the 10th iteration level for all n values. By

Table 3: Data for Example 2.

Steps
GAMs5 [32]
MaxErr (rate)

Amodio and Mazzia [33]
MaxErr (rate)

NMm3
MaxErr (rate)

GAMs7 [32]
MaxErr (rate)

p = 6 p = 6 p = 7 p = 7

20
2 25 × 10−1 5 70 × 10−2 1 07 × 10−5 1 26 × 10−1

(- -) (- -) (- -) (- -)

40
4 41 × 10−2 8 70 × 10−3 7 07 × 10−8 1 45 × 10−2

(3.31) (2.70) (7.25) (2.40)

80
6 49 × 10−3 4 90 × 10−4 3 75 × 10−10 1 51 × 10−3

(3.21) (4.20) (7.56) (5.72)

160
8 86 × 10−4 1 20 × 10−5 2 01 × 10−12 1 11 × 10−4

(5.05) (5.40) (7.54) (7.27)

320
9 88 × 10−5 2 20 × 10−7 9 02 × 10−15 4 87 × 10−6

(5.59) (5.80) (7.80) (7.46)

Table 4: Data for Example 3.

h
NMm1

MaxErr (rate)
NMm2

MaxErr (rate)
NMm3

MaxErr (rate)
HBSDBDF [5]
MaxErr (rate)

p = 5 p = 6 p = 7 p = 7

0.4
4 9671 × 10−4 1 1102 × 10−8 1 6127 × 10−11 8 9924 × 10−7

(- -) (- -) (- -) (- -)

0.2
2 2598 × 10−9 1 3610 × 10−11 5 3367 × 10−14 5 9042 × 10−9

(17.75) (9.67) (8.24) (7.25)

0.1
3 9370 × 10−11 1 0859 × 10−13 2 1648 × 10−16 4 5695 × 10−11

(5.84) (6.97) (7.95) (7.01)

0.05
6 4592 × 10−13 8 5665 × 10−16 8 8123 × 10−19 2 9376 × 10−13

(5.93) (6.99) (7.94) (7.28)

Table 5: Data for Example 1.

Method Order h MaxErr y1 MaxErr y2

NMm1 5 0.02 1 17 × 10−14 1 44 × 10−15

Ramos [13] 5 0.02 1 226 × 10−13 2 456 × 10−15

GSDLMMs3 [2] 5 0.02 1 46 × 10−12 1 46 × 10−12

Ehigie et al. [6] 5 0.02 3 20 × 10−12 3 02 × 10−12

NMm1 5 0.008 9 94 × 10−17 5 92 × 10−18

Ehigie et al. [6] 5 0.008 3 88 × 10−14 3 10 × 10−14

GSDLMMs3 [2] 5 0.008 6 88 × 10−15 3 33 × 10−15

NMm2 6 0.02 2 32 × 10−17 5 16 × 10−19

Akinfenwa et al. [34] 6 0.02 9 110 × 10−13 1 253 × 10−12

NMm2 6 0.008 6 86 × 10−20 8 34 × 10−22

Jator and Sahi [35] 6 0.008 1 63 × 10−14 0.00

NMm3 7 0.002 6 61 × 10−28 2 83 × 10−30

Wu and Xia [36] 7 0.002 2 56 × 10−7 8 02 × 10−8
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the linearization of nonlinear IVPs via partitioning, the opti-
mized hybrid block method defined by Equation (40) is
referred to as the waveform relaxation optimized second-
derivative hybrid block method. The method is implemented

efficiently as one-step block numerical integrators for the
solution of Equation (1), simultaneously obtaining the
approximations yn+v1 ,⋯, yn+1

τ for n = 0, 1,⋯,N − 1 over
the subintervals x0, x1 ,⋯, xN−1, xN .
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Figure 2: Convergence plot of Example 1 with NMm1.

nodes
pr
p1

0.0 0.2 0.4 0.6 0.8 1.0

1.×10–15

2.×10–15

5.×10–15

1.×10–14

x

Er
ro

r (
y

1)

(a) Error of y1

nodes
pr
p1

0.0 0.2 0.4 0.6 0.8 1.0

5.×10–18

1.×10–17

5.×10–17

1.×10–16

5.×10–16

1.×10–15

x

Er
ro

r (
y

2)

(b) Error of y2

Figure 3: Absolute error of Example 1 with NMm1.
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The rate of convergence is computed using Equation
(41) with two different step sizes h and h/2, as given in
Tables 2–4. Since this is available for Examples 2 and 3.
The formula for the rate of convergence is given as

Rate = log2
max
1<i<m

yi x − yi,h

max
1<i<m

yi x − yi,h/2
, i = 1 1 m, 0 < x ≤ 1

41

5. Results and Discussion

In this section, we present numerical results obtained from
applications of the methods to selected problems that have
been previously used in some published studies for numeri-
cal experimentation. To illustrate the improvement in the
accuracy of our methods, we have compared the results
against results generated by some selected published studies.

The new methods derived when m = 1, 2, 3 are denoted
as NMm1, NMm2, and NMm3, respectively.

Example 1. Consider the system of nonlinear stiff IVPs.

y1′ = −1002y1 + 1000y22, y1 0 = 1, y2′ = y1 − y2 1 + y2 , y2 0 = 1

The exact solution is y1 x = e−2x and y2 x = e−x.

It is worth noting that this problem was previously
solved using generalized second derivative linear multistep
methods by [2] among others. This serves as a point of com-
parison for the accuracy.

Example 2. Consider the linear stiff systems solved by [2, 13].

y1′ = −21y1 + 19y2 − 20y3, y1 0 = 1, y2′
= 19y1 − 21y2 + 20y3, y2 0
= 0, y3′ = 40y1 − 40y2 − 40y3, y3 0 = −1

with the exact solution of

y1 x = 1
2 e−2x + e−40x cos 40x + sin 40x ,

y2 x = 1
2 e−2x − e−40x cos 40x + sin 40x ,

y3 x = e−40x sin 40x − cos 40x

For comparison, the numerical results of the present
methods are tabulated in Tables 2 and 3 with those in refer-
ences [2, 31–33].
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Figure 4: Absolute error and convergence plot of Example 1 with NMm2.
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Example 3. Consider the linear stiff systems solved by [5, 12].

y1′ = −2y1 + y2 + 2 sin x , y1 0 = 2, y2′
= 998y1 − 999y2 + 999 cos x − sin x , y2 0 = 3

The exact solution is

y1 x = sin x + 2e−x, y2 x = cos x + 2e−x

For comparison, the numerical results for NMm1,
NMm2, and NMm3 are presented in Table 4 alongside the
results from [5].

Example 4. Consider an electric circuit problem with two
capacitors and two resistors in series. The voltage across
the capacitors, V1 and V2, are modeled into the following
system of differential equations:

dV1
dt

= −
1

R1C1
V1 −

1
R1C1

V2, V1 0 =V10

dV2
dt

= 1
R2C2

V1 −
1

R2C2
V2, V2 0 = 0

where R1 and R2 are resistances, C1 and C2 are capacitances,
and V1 and V2 are the voltages. The following values are
given:

R1 = 1000Ω (1 kOhm) is the resistance of the first resis-
tor, R2 = 2000Ω (2 kOhm) is the resistance of the second
resistor, C1 = 0 0001F (100μF) is the capacitance of the first
capacitor, C2 = 0 0002F (200μF) is the capacitance of the
second capacitor, and V10 = 10V is the initial voltage. The
problem is solved with h = 0 01

Example 5. Consider the Van der Pol oscillator [32].

y1′ = y2, y1 0 = 2

y′2 = μ 1 − y21 y2 − y1, y2 0 = 0

where μ = 5 (the stiffness parameter) and the problem is
solved with h = 0 01.

Example 6. A chemical reaction occurs involving 2 species A
and B, where each species reacts with one another and one
reaction occurs much faster than the other. The problem is
model

dCA

dt
= −k1CA − k2C

2
A, CA 0 = 50

dCB

dt
= k1CA, CB 0 = 0
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Figure 5: Absolute error and convergence plot of Example 1 with NMm3.
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where CA and CB are the concentration of species A and B
and the reaction rates are k1 and k2. We choose k1 = 0 1
and k2 = 0 01 to illustrate the phenomenon of stiffness.

Example 7. Consider a chain of radioactive decay involving
two isotopes, where each isotope decays into the next with
different decay rates. The problem is modeled into a system
of first-order ODEs.

dN1
dt

= −λ1N1,N1 0 = 1000

dN2
dt

= λ1N1 − λ2N2,N2 0 = 0

where N1 and N2 are the concentration of the isotope and λ1
and λ2 are the decay rates. The problem is solved with λ1
= 0 1 and λ2 = 0 01 to illustrate the stiffness.

Table 5 presents a comparison of the maximum error
(MaxErr) of y1 and y2. The result in Table 5 shows a sig-
nificant difference between the new methods and the
compared methods. This indicates that the new methods
outperformed the compared methods. Figures 2(a) and
2(b) show the rate of convergence of the methods with
h = 0 02, while Figures 3(a) and 3(b) show how the error
trends progress towards the endpoint when using h = 0 02
for Example 1.

For the NMm2, Figures 4(a) and 4(b) analyze the con-
vergence at the iteration level, and Figures 4(c) and 4(d) dis-
play the error trends using h = 0 008 for Example 1.

For the NMm3, Figures 5(a) and 5(b) show the conver-
gence at each iteration, and Figures 5(c) and 5(d) analyze
the errors at different nodes using h = 0 002 for Example 1.

Tables 2 and 3 present the comparison of maximum
errors and convergence rates using different step sizes. The
results in Tables 2 and 3 clearly explain that NMm1,
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Figure 6: Absolute error of Example 2 with NMm3.
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NMm2, and NMm3 have better accuracy than the General-
ized Adams Methods (GAMs) by [32] and the variable-step
boundary value methods based on the reverse Adams’s
method by [33]. The calculated rates are consistent with
the order of the methods.

Furthermore, we present the following Figures 6(a)–6(c)
to illustrate the error trends of y1, y2, and y3 of Example 2
with NMm3. These figures were obtained with a step size
h = 0 00625.

The results in Table 4 show the performance of our
new methods against the compared method. The new
methods exhibit higher accuracy than the three-step hybrid
block second-derivative backward differentiation formula

(HBSDBDF) derived with three off-step points by [5]. Notably,
the NMm3 gives a better convergence rate than HBSDBDF.
This rate aligns with the order of the derived schemes.

Figures 7(a) and 7(b) show the solution profile of Exam-
ple 4. The example was solved with NMm1 in the interval
[0-10]. Similarly, Figures 8(a) and 8(b) show the solution
profile of example 4. Example 4 was solved in the interval
[0-20] with NMm2.

The results displayed in Figures 9(a)–9(d) show the solu-
tion profile of the Van der Pol oscillatory problem. The results
from Figures 9(a) and 9(b) were obtained with NMm2 in the
interval [0-40], while the results from Figures 9(c) and 9(d)
are obtained in the interval [0-60] with NMm3.
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Figure 9: Solution profile of Example 5 with NMm2 and NMm3.
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Figures 10(a) and 10(b) present the solution profile of
the chemical reaction problem of Example 6. The example
was solved with NMm1 using h = 0 01 in the interval [0-10].

The radioactive decay in Example 7 was solved with
NMm2 using h = 0 01 in the interval [0-5]. The solution
profile is shown in Figures 11(a) and 11(b).

6. Conclusion

This study provided a systematic approach that developed
one-step optimized second-derivative hybrid block methods
for solving first-order IVPs. These methods are found to be
zero-stable, consistent, convergence, and A-stable and have
an order of accuracy p =m + 4, where m is the number of
off-step points. Importantly, all three methods were success-
fully implemented without requiring initial starting values.

The numerical experiments validated the superior accu-
racy of the methods when compared to existing approaches
in the literature. Further, the rate of convergence is consis-
tent with the order of the methods. The results underscore
the effectiveness and enhanced performance of the new
methods, suggesting their suitability for solving stiff first-
order ODEs and giving accurate solutions even with larger
step sizes. Further research may be carried out on this study.
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