
Research Article
A New Efficient Hybrid Method Based on FEM and FDM for
Solving Burgers’ Equation with Forcing Term

Aysenur Busra Cakay and Selmahan Selim

Department of Mathematics, Yildiz Technical University, Istanbul 34220, Türkiye

Correspondence should be addressed to Selmahan Selim; sselim@yildiz.edu.tr

Received 15 November 2023; Revised 10 February 2024; Accepted 28 February 2024; Published 2 April 2024

Academic Editor: Fernando Simoes

Copyright © 2024 Aysenur Busra Cakay and Selmahan Selim. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

This paper presents a study on the numerical solutions of the Burgers’ equation with forcing effects. The article proposes three
hybrid methods that combine two-point, three-point, and four-point discretization in time with the Galerkin finite element
method in space (TDFEM2, TDFEM3, and TDFEM4). These methods use backward finite difference in time and the finite
element method in space to solve the Burgers’ equation. The resulting system of the nonlinear ordinary differential equations is
then solved using MATLAB computer codes at each time step. To check the efficiency and accuracy, a comparison between
the three methods is carried out by considering the three Burgers’ problems. The accuracy of the methods is expressed in
terms of the error norms. The combined methods are advantageous for small viscosity and can produce highly accurate
solutions in a shorter time compared to existing numerical schemes in the literature. In contrast to many existing numerical
schemes in the literature developed to solve Burgers’ equation, the methods can exhibit the correct physical behavior for very
small values of viscosity. It has been demonstrated that the TDFEM2, TDFEM3, and TDFEM4 can be competitive numerical
methods for addressing Burgers-type parabolic partial differential equations arising in various fields of science and engineering.

1. Introduction

Burgers’ equation with forcing term is a nonlinear partial
differential equation used to model shock wave theory and
turbulence theory mathematically:

Ut x, t +U x, t Ux x, t − εUxx x, t
= f x, t ,  x, t ∈ a, b × 0, T ,

1

where the small parameter ε > 0means as usual the kinemat-
ics viscosity of the fluid motion.

We have added an inhomogeneous term to the right-
hand side of the classical Burgers’ equation. This term repre-
sents an external source term for a one-dimensional velocity
field which is assumed to be smooth. It is a simple model for
exploring various interesting issues that arise in fluid turbu-
lence. The function f x, t pumps the energy into the system
constantly and has a physical meaning that expresses force

such as gravity, centrifugal, friction force, or electromagnetic
forces on the fluid. The physical situations in which the clas-
sical Burgers’ equation arises tend to be highly idealized due
to the assumptions of the turbulence and constant coeffi-
cients without the forcing term. Equation (1) can provide
us with more realistic models in various physical contexts
such as directed polymers in a random medium, ballistic
deposition, passive random walker dynamics on a growing
surface, large eddy simulation, pinning of vortex lines in
superconductors, and the long-wave propagation in a homo-
geneous two-layer shallow liquid. Hence, Eq. (1) has been
the subject of numerous studies, and there is an enormous
literature dedicated to this model equation.

Equation (1) was originally proposed by Bateman [1] in
a homogeneous form and later used by Burgers [2, 3] as a
mathematical model for turbulence. It represents the basic
competition between nonlinear advection and viscous diffu-
sion. This simple mathematical formulation appears in var-
ious physical problems such as turbulence, viscosity, traffic

Hindawi
Journal of Applied Mathematics
Volume 2024, Article ID 5497604, 14 pages
https://doi.org/10.1155/2024/5497604

https://orcid.org/0000-0001-9838-5145
https://orcid.org/0000-0002-2295-0002
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


flow, sound waves, viscous elastic tubes, chemical reaction,
heat conduction, and thermal radiation.

The Burgers’ equation can be solved exactly via the
Hopf-Cole transformation for any given initial and bound-
ary conditions. The Hopf-Cole transformation converts the
nonlinear Burgers’ equation to the linear diffusion equation
[4], and the exact solution of the model equation was pro-
vided by Cole [5] in this way. Since the equation has an exact
solution, it is often used to control more complex nonlinear
partial differential equations and is the first case study for
testing and comparing computational techniques. Therefore,
the Burgers’ equation has been extensively studied in litera-
ture with a variety of initial and boundary conditions from
an analytical perspective, resulting in various solutions and
properties being discussed [6].

The numerical techniques are valuable equipment for
understanding the process of the physical model, and for
this reason, many numerical studies have been developed
in the literature, and we mention some of them in this study,
for example, the implicit finite difference method [7], the
implicit fourth-order compact finite difference scheme [8],
the seventh-order weighted essentially nonoscillatory
(WENO) schemes [9], a nonlinear Hopf-Cole transforma-
tion and backward differentiation formula method [10],
the finite element method based on the method of discretiza-
tion in time [11], a simple finite element approximation to
the Burgers’ equation diminished by Hopf-Cole transforma-
tion [12], and a weak finite element method [13]. Recently,
spline functions with some numerical schemes have been
used in acquiring numerical solutions of the Burgers’
equation such as cubic and quadratic B-spline collocation
method [14], modified cubic B-spline collocation method
[15], B-spline Galerkin method and B-spline collocation
method [16], collocation method based on Hermite formula
and cubic B-splines [17], a cubic B-spline Galerkin method
with higher order splitting approaches [18], cubic B-spline
and fourth-order compact finite difference method [19],
and cubic B-spline and differential quadrature method
[20]. Also, implicit fractional step θ-scheme and conforming
finite element method [21], radial basis functions (RBF)
meshless method [22], nonstandard finite difference method
[23], and a sixth-order compact finite difference scheme for
space integration and Crank-Nicolson scheme for time dis-
cretization were used in [24].

Much effort has been spent in solving the Burgers’ equa-
tion, and the effort of finding a more accurate numerical
scheme is still in progress. Investigating an accurate and effi-
cient numerical scheme encourages us to produce the newly
combined methods based on the finite element method for
the Burgers’ equation with forcing effects. These methods
are the two-, three-, and four-point backward finite differ-
ence schemes in time and the Galerkin finite element
method (GFEM) in space. To the best of our knowledge,
the three combined methods are applied to the model
equation for the first time in this study. We use the two-,
three-, and four-point backward finite difference scheme
derived for the first order derivative to discretize the term
Ut in the model equation since the method is easily applica-
ble and converges very rapidly to the solution. Since

ordinary differential equation systems obtained after discre-
tization in time are exceptionally large, the computational
proficiency of the finite difference approach becomes critical.
In such cases, the performance of the scheme is weakened
due to instability. The GFEM is one of the best choices in
such situations since the method is easy to implement and
has the required accuracy. It is a general technique for con-
structing approximate solutions to boundary value problems
that arise in science and engineering applications. The
GFEM gives a polynomial at each point instead of a value,
and it can give value at any point within the domain. In this
method, one can easily use the finite element shape func-
tions instead of trial functions [25]. For this reason, the
GFEM has become a very popular technique used in solving
differential equations.

Most of the existing numerical schemes in the litera-
ture developed to solve Burgers’ equation cannot exhibit
its correct physical behavior for very small viscosity values.
A distinctive feature of the hybrid methods over the exist-
ing numerical schemes is taking advantage of the fact that
a small viscosity parameter ε is accounted for in the
accuracy. The methods can solve the classical Burgers’
equation up to ε = 0 0002 and Burgers’ equation with forc-
ing term up to ε = 0 00005. The capacity of the proposed
methods surpasses the methods cited in the literature that
we have referenced.

The advantages of the hybrid methods are seen especially
from the steep behavior of the produced results. We show
that our methods stabilize the solutions much earlier than
the methods suggested by some literature [8–24, 26]. The
present works of literature are aimed at obtaining numerical
solutions accurately. However, these numerical results are
confined to a high viscosity value. Therefore, we put more
emphasis on the accuracy of the solution at low values of vis-
cosity parameter in this article. Also, the three combined
methods have been applied directly without using the linear-
ization or any restrictive assumptions.

The current study is aimed at demonstrating that the
newly combined methods are powerful, quite accurate, and
capable of solving the model equation with forcing effects
effectively and comparatively. For this, three test examples
are included, and the numerical computations are per-
formed for various values of viscosity by computer codes
generated in MATLAB. The presented schemes have been
compared with each other and some literature [14, 17, 26]
to determine their advantages and disadvantages for differ-
ent types of problems. The more advantageous combined
method of the three in comparison to the other two can be
seen for the specific cases of the proposed problems elabo-
rately. The results are presented by the tables and figures
compared with some error norms.

The remainder layout of the paper is organized as fol-
lows. In Section 2 and its subsections, the numerical scheme
based on the Galerkin finite element method with two-point,
three-point, and four-point finite difference schemes is
explained and implemented to the model equation. Section
3 compares numerical results with other some numerical
techniques available in the literature. Section 4 summarizes
the conclusions and recommendations of this study.

2 Journal of Applied Mathematics



2. Materials and Methods

We consider the Burgers’ equation given in Eq. (1) with the
initial condition,

U x, 0 =U0 x , a ≤ x ≤ b, 2

and the Dirichlet boundary conditions,

U 0, t =U 1, t = 0, t ∈ 0, T 3

The method of discretization in time through the back-
ward finite difference method converts a second-order initial
boundary value problem in two variables x, t into the solu-
tion of m ordinary differential equations with corresponding
boundary conditions. In addition, the finite element method
is a well-known technique for solving both partial and ordi-
nary differential equations. Its main idea is to decompose the
entire region of the problem domain into a finite element
system associated with nodes and to choose the most appro-
priate element type that models the real physical behavior in
the best way possible [25]. The article focuses on the
Galerkin finite element method which uses linear basis func-
tions as weight and trial functions over the finite element.
These basis functions are selected because they are conve-
nient and advantageous. The combined methods presented
in the article are introduced in the following subsections.

2.1. Two-Point Discretization in Time and Galerkin Finite
Element Method (TDFEM2). We study Eq. (1) with initial
condition (2) and boundary conditions (3). In the method of
discretization in time using two-point backward finite dif-
ference approximation, the compact time interval 0, T is
divided into m subintervals of lengths Δt = T/m such as
I j = t j−1, t j , j = 1, 2,⋯,m , where T is final time and
m is a positive integer. θj x is defined as approximation
of the function U x, t for t = t j. After replacing deriva-
tive Ut x, t by the backward difference approximation
θj x − θj−1 x /Δt, j = 1, 2,⋯,m a discretization of the
model problem in the direction of the time-axis is established
[27]. The method of discretization in time employing two-
point backward finite difference gives

−εθj″ x + θj x θj ′ x +
1
Δt

θj x − θj−1 x = f x, t j , 4

θj 0 = 0, θ j 1 = 0, 5

where θ0 =U x, 0 . The method of two-point discretization in
time includes seeking the functions θj j = 1, 2,⋯,m such
that boundary conditions given in Eq. (4) are satisfied. Since
the exact solution of the boundary value problem (4) becomes
more difficult with increasing values of j, we propose the
GFEM to solve it. The FEM gives a systematic means of gen-
erating numerical solutions to a problem formulating the
model problems [25]. Thus, the GFEM is applied to solve each
of Burgers’ equation problems. The weak form of Eq. (4) is
given by

1

0
w x −εθj″ x + θj x θj ′ x +

1
Δt

θj x − θj−1 x − f x, t j dx = 0,

6

where w x is the test function. The test function w x and its
derivativew′ x exist and are square integrable on the interval
0, 1 . The Hilbert space H 0, 1 denotes the linear space of all
test functions. To create the test functionsw x , we select a set
of N + 1 test basis functions ψ1 x , ψ2 x ,⋯, ψN+1 x
that are finite linearly independent, where ψi x ∈H 0, 1 .
Therefore, we can express the test functionw x in the follow-
ing manner:

w x = 〠
N+1

i=1
αiψi x , 7

where the coefficients αi are arbitrary real numbers [11]. Due
to the boundary conditions, we know that w 0 =w 1 = 0.
We obtain approximate solution of Eq. (6) applying GFEM.
We define the Galerkin approximation of the θj x by,

θ j
N = 〠

N+1

i=1
bji φi x , 8

where φi x ∈H 0, 1 are linearly independent trial basis func-

tions and the coefficients bji are to be determined later. In the
GFEM, trial basis functions and test functions are chosen to
be the same, namely,

ψi x = φi x , i = 1, 2,⋯,N + 1 9

The interval 0, 1 is partitioned into N subintervals ɤ1,
ɤ2,⋯, ɤN of equal length h. If xi and xi+1 are the end points
of i -th element ɤi,

ɤi = xi, xi+1 , h = xi+1 − xi, 10

so that x1 = 0 and xN+1 = 1. These end points are known as
nodes.ψi x linear trial basis functions can be defined by using
the following equality:

ψi x =

x − xi−1
h

, x ∈ ɤi−1,

1 −
x − xi
h

, x ∈ ɤi,

0, x ∉ ɤi−1 ∪ ɤi

11

Substituting (7) and (8) into the weak form Eq. (6) and
after boundary conditions adapted into the system, we delete
the first and last equations from the system and eliminate

3Journal of Applied Mathematics



the coefficients bj1 and b
j
N+1 from the system. Thus, we obtain a

system of equations in the following form:

ε〠
N

n=2
bjn Akn + 〠

N

n=2
〠
N

p=2
bjn b

j
p Bknp +

1
Δt

〠
N

n=2
bjnCkn =

1
Δt

〠
N

n=2
bj−1n Ckn + Ej

k,

12

where k = 2, 3,⋯,N , j = 1, 2,⋯,m. For each j, Eq. (12) is a
nonlinear system consisting of N − 1 equations and
unknowns. Akn and Ckn are the coefficient matrices with the
dimension N − 1 × N − 1 , and Bknp is the element matrix
with the dimension N − 1 × N − 1 × N − 1 . These matri-
ces are derived from following integrals:

Akn =
1

0
φk

′φn
′ dx, Bknp =

1

0
φkφnφp

′dx, Ckn =
1

0
φkφndx

13

The above system can be written in terms of matrices as

εAbj + B bj bj +
1
Δt

Cbj =
1
Δt

Cbj−1 + E, 14

where j = 1, 2,⋯,m and bj = bj2,⋯, bjN
T
. Before starting the

iteration procedure, initial vector b0 must also be determined
using initial condition. After that, we solve the system of non-
linear algebraic equations resulting from the nonlinear Bur-
gers equation implemented through the built-in function
fsolve of MATLAB.

2.2. Three-Point Discretization in Time and Galerkin Finite
Element Method (TDFEM3). In this subsection, we consider
again the model Eq. (1) with initial and boundary conditions
given in (2) and (3), and replacing derivative Ut x, t
by the three-point backward difference approximation
3θj − 4θj−1 + θj−2 /2Δt, j = 2, 3,⋯,m , we get following
boundary value problem:

−εθj″ x + θj x θj ′ x +
1
2Δt

3θj x − 4θj−1 x + θj−2 x = f x, t j ,

θj 0 = 0, θj 1 = 0,

15

where θ0 =U x, 0 . Since the exact solution of the boundary
value problem (15) becomes more difficult with increasing j,
similar to Section 2.1, the GFEM is applied to solve each of
the problems. The weak form of Eq. (15) is given by

1

0
w x −εθj″ x + θ j x θj ′ x +

1
2Δt

3θj x − 4θj−1 x

+ θj−2 x − f x, t j dx = 0

16

Substituting (7) and (8) into the weak form Eq. (16) and
after boundary conditions adapted into the system, we delete

the first and last equations from the system and eliminate
the coefficients bj1 and bjN+1 from the system. Thus, we obtain
a system of equations in the unknown parameters bjn:

ε〠
N

n=2
bjn Akn + 〠

N

n=2
〠
N

p=2
bjn b

j
p Bknp +

3
2Δt

〠
N

n=2
bjnCkn

−
2
Δt

〠
N

n=2
bj−1n Ckn +

1
2Δt

〠
N

n=2
bj−2n Ckn = Ej

k,

17

where k = 2, 3,⋯,N , j = 2, 3,⋯,m. The system given in Eq.
(17) can be written in terms of matrices as

εAbj + Bbj bj +
3
2Δt

Cbj −
2
Δt

Cbj−1 +
1
2Δt

Cbj−2 = E,

18

where bj = bj2,⋯, bjN
T
, j = 2, 3,⋯,m. It is seen that Eq. (18)

is used only for 2 ≤ j ≤m, so we must compute the values of
j = 1 by another method. For this, we choose a predictor-
corrector method. Before starting the iteration, the initial
vector b0 must be determined by setting by θ0 =U x, 0 . After
an inner iteration, we obtain the values of b1. In this
stage, Eq. (18) is used for the computation other values
of bj, j = 2, 3,⋯,m , and we solve the system of nonlinear
algebraic equations resulting from the nonlinear Burgers'
equation implemented through the built-in function fsolve of
MATLAB.

2.3. Four-Point Discretization in Time and Galerkin Finite
Element Method (TDFEM4). We have detailed information
about the discretization in time and the GFEM in Subsec-
tions 2.1 and 2.2. In this subsection, what we have done is
to use the four-point backward difference approximation to
establish a discretization of the given problem in the direc-
tion of the time-axis.

Replacing derivative Ut x, t by the four-point backward
finite difference approximation, 11θj − 18θ j−1 + 9θj−2 +
2θj−3 /6Δt, j = 3, 4,⋯,m , the method of discretization in
time through four-point backward difference gives the bound-
ary value problem as follows:

−εθj″ x + θj x θj ′ x +
1
6Δt

11θj − 18θj−1 + 9θj−2 + 2θj−3 = f x, t j ,

θj 0 = 0, θj 1 = 0

19

Applying the GFEM, the weak form of Eq. (19) is given by

1

0
w x −εθj ′′ x + θj x θj ′ x +

1
6Δt

11θj − 18θj−1

+ 9θ j−2 + 2θj−3 − f x, t j dx = 0,

20

4 Journal of Applied Mathematics



and substituting (7) and (8) into the weak form Eq. (20) and
after boundary conditions imposed to the system, we delete
first and last equations from the system and eliminate the coef-
ficients bj1 and b

j
N+1 from the system. Thus, we obtain a system

of equations in the unknown parameters bjn:

ε〠
N

n=2
bjn Akn + 〠

N

n=2
〠
N

p=2
bjn b

j
p Bknp +

11
6Δt

〠
N

n=2
bjnCkn

−
3
Δt

〠
N

n=2
bj−1n Ckn +

3
2Δt

〠
N

n=2
bj−2n Ckn

+
1
3Δt

〠
N

n=2
bj−3n Ckn = Ej

k,

21

where k = 2, 3,⋯,N , j = 3, 4⋯ ,m. The nonlinear sys-
tems obtained from Eq. (20) for each value of the j can be
solved using computer codes produced in MATLAB. We pre-
fer to write the above system in terms of matrix form as

εAbj + Bbj bj +
11
6Δt

Cbj −
3
Δt

Cbj−1 +
3
2Δt

Cbj−2

+
1
3Δt

Cbj−3 = E,
22

where bj = bj2,⋯, bjN
T
, j = 3,⋯,m It is seen that Eq. (22) is

used only for 3 ≤ j ≤m, so we must compute the values of
j = 1, 2 by another method. For this, we choose a predictor-
corrector method. Before starting the iteration, the initial vec-
tor b0 can be determined setting by θ0 =U x, 0 . After two
inner iterations, we obtain the values of b1 and b2. In this stage,
Eq. (22) is used for the computation of other values of bj,
j = 3,⋯,m , and we solve the system of nonlinear alge-
braic equations resulting from the nonlinear Burgers equa-
tion implemented through the built-in function fsolve of
MATLAB.

3. Numerical Experiments

We have mentioned how we can solve Burgers’ equation
with forcing term using TDFEM2, TDFEM3, and TDFEM4
in the subsections of Section 2. In this part, we provide three
numerical test examples to demonstrate the adaptability and
accuracy of the proposed hybrid methods computationally.
Numerical simulations were produced using MATLAB
2023b on a personal notebook equipped with a 12th Gen
Intel (R) Core (TM) i7-1255U processor, 10 processing
cores, 16GB of RAM, and all results are shown graphically
as well as in tabular form. To compute the accuracy of the
numerical schemes, we calculate the difference between the
numerical and exact solutions at each nodal point after spec-
ified time steps and use this to compute the L∞ and Ei

rel
error norms. These absolute and relative errors are given by

L∞ = θj x − θNj x
∞
=maxj θ j − θNj ,

Ei
rel =

θj − θNj

θj

23

Example 1 (see [14]). This problem represents a shock prop-
agation solution of Burgers’ equation, and the forcing term is
taken to be zero for this problem. We examine Burgers’
equation with the initial condition at t0 = 1,

U x, 1 =
x

1 + exp 1/4ε x2 − 1/4
, a ≤ x ≤ b, 24

and boundary conditions,

U a, t = 0,U b, t = 0, t > 0 25

The exact solution of Burgers’ equation is

U x, t =
x/t

1 + t/ exp 1/8ε 1/2 exp x2/4εt
, t ≥ 1, 26

where t0 = exp 1/8ε . Calculations are performed for differ-
ent viscosity values, finite elements, and time. It can be seen
from Figure 1 that the wave at t = 1 0 for ε = 0 01 is smooth,
and the scheme produces a more regular shock during the
computation time. As time progresses, a decrease in wave-
length and a wider spread are observed. For smaller viscosity
values, ε = 0 0005, the shock becomes sharp. This sharpness
is maintained, and the shock wave propagates faster as time
progresses. As can be seen in Figures 1 and 2, the proposed
hybrid methods are observed to be very successful in captur-
ing the steep behavior of the solution function.

The numerical results for ε = 0 001, N = 30, and Δt =
0 025 are tabulated in Table 1, while those for ε = 0 0002,
N = 30, and Δt = 0 025 are given in Table 2. These tables also
include the total CPU time required for all calculations with
absolute and relative errors. Based on the tables provided,
the results obtained are relatively close to the exact results.
It is noteworthy that the errors in our results decrease as
the number of points used in time discretization increases.
As time progresses, the absolute and relative errors in the
tables gradually increase. However, the errors obtained in
all schemes are small and acceptable for the viscosity values
used in this problem.

Tables 3 and 4 provide a comparison of numerical solu-
tions obtained using cubic B-spline [14] and Hermite
formula [17] based collocation methods at different time
stages. The results demonstrate that our proposed methods
based on FEM are more accurate, as the computed errors
are smaller than the corresponding errors obtained by [14,
17]. Additionally, our proposed methods are more efficient
in terms of time consumption, and thus, they are a better
choice for solving problems of Burgers’ type.

We examined the effect of increasing the number of
finite elements and m values on the error norms, which are
presented in Tables 5 and 6, respectively. It is observed that

5Journal of Applied Mathematics



an increase in the number of finite elements leads to a
significant reduction in the absolute error rate, as shown in
Table 5. Moreover, as the value of m increases, the time step
decreases, and the numerical solutions converge more
closely to the exact solutions. The paper’s tables indicate that
TDFEM4 is more accurate and economical than TDFEM2
and TDFEM3, requiring less computational cost and stor-
age space.

Example 2. We consider Burgers’ equation with the initial
condition,

U x, 0 = 0, 27

and the boundary conditions,

U 0, t =U 1, t = 0, 28

and the following forcing term,

f x, t = π sin πx sin πt + π sin πx cos πx sin πt 2

+ επ2 sin πx sin πt

29

With the above conditions, the exact solution of the
model equation is

U x, t = sin πx sin πt 30

Figures 3 and 4 depict the physical behavior of the
problem for ε = 0 0001 atT = 2 and ε = 0 00005 atT = 12
with N = 110 and Δt = 0 025, respectively. For the viscosity
value of ε = 0 00005, the program took 4.358682 seconds to
run, and a sharp descent is observed at 11.4 seconds. It is
seen that the proposed method efficiently captures the
shocks in the numerical solution.

The accuracy of the presented methods is examined by
computing the absolute and relative errors for smaller values

t = 1.0

t = 1.75

t = 2.5

t = 3.25

0.4

0.35

0.3

0.25

0.2

0.15

U

x

0.1

0.05

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(a)

t = 1.0

t = 1.75

t = 2.5

t = 3.25

U

x

0.4

0.45

0.5

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b)

t = 1.0

t = 1.75
t = 2.5
t = 3.25

U

x

0.4

0.45

0.5

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(c)

Figure 1: Solution behavior of Example 1 with TDFEM4 at different times for a, b = 0, 1 , (a) ε = 0 01, (b) ε = 0 001, (c) ε = 0 0005,
Δt = 0 05, and N = 30.

6 Journal of Applied Mathematics



of viscosity. In the present, the selection of viscosity value
affects the errors in the proposed schemes. With decreasing
viscosity values, the algorithm needs more finite elements
to compute properly. As expected, the error norms are
reduced by increasing the number of finite elements and
decreasing the time step.

The absolute and relative errors for ε = 0 001, N = 30,
and Δt = 0 01 and ε = 0 0001, N = 50, and Δt = 0 001 at dif-
ferent times are tabulated in Tables 7 and 8, respectively.
These tables also provide the total CPU time required for
all computations. It is seen from Tables 7 and 8 that the
errors obtained in all schemes are quite small and acceptable

t = 1.0

t = 2.0

t = 3.0

t = 4.0

U

x

0.4

0.45

0.5

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1 1.2

(a) TDFEM2

t = 1.0

t = 2.0

t = 3.0

t = 4.0

U

x

0.4

0.45

0.5

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1 1.2

(b) TDFEM3

t = 1.0

t = 2.0

t = 3.0

t = 4.0

U

x

0.4

0.45

0.5

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
0 0.2 0.4 0.6 0.8 1 1.2

(c) TDFEM4

Figure 2: Solution behavior of Example 1 at different times for a, b = 0,1 2 , ε = 0 001, Δt = 0 01, and N = 40.

Table 1: Solutions of Example 1 for a, b = 0, 1 , ε = 0 001, Δt = 0 025, and N = 30 at different times.

T T = 1 7 (m = 68) T = 2 5 (m = 100) T = 3 25 (m = 130)
x TDFEM2 TDFEM3 TDFEM4 Exact TDFEM2 TDFEM3 TDFEM4 Exact TDFEM2 TDFEM3 TDFEM4 Exact

0.1 0.0588 0.0588 0.0588 0.0588 0.0400 0.0400 0.0400 0.0400 0.0317 0.0310 0.0308 0.0308

0.3 0.1765 0.1765 0.1765 0.1765 0.1200 0.1200 0.1200 0.1200 0.0928 0.0924 0.0923 0.0923

0.5 0.2971 0.2971 0.2941 0.2941 0.2000 0.2000 0.2000 0.2000 0.1545 0.1540 0.1539 0.1539

0.7 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2800 0.2155 0.2155 0.2154 0.2154

0.9 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.1115 0.1113 0.1113 0.1113

L∞ 8 4e − 07 6 2e − 07 3 1e − 07 — 6 3e − 05 3 5e − 05 2 2e − 05 — 9 6e − 04 2 1e − 04 1 2e − 05 —

Ei
rel 1 4e − 05 1 0e − 05 5 3e − 06 — 2 2e − 04 1 2e − 04 7 8e − 05 — 6 2e − 03 1 3e − 03 4 9e − 05 —

CPU (s) 0.20613 0.12145 0.09231 — 0.32181 0.19442 0.10135 — 0.96372 0.68208 0.23647 —

7Journal of Applied Mathematics



Table 2: Solutions of Example 1 for a, b = 0, 1 , ε = 0 0002, Δt = 0 025, and N = 30 at different times.

T T = 3 5 (m = 140) T = 5 (m = 200) T = 12 (m = 480)
x TDFEM2 TDFEM3 TDFEM4 Exact TDFEM2 TDFEM3 TDFEM4 Exact TDFEM2 TDFEM3 TDFEM4 Exact

0.1 0.0285 0.0286 0.0286 0.0286 0.0200 0.0200 0.0200 0.0200 0.0081 0.0083 0.0083 0.0083

0.3 0.0856 0.0857 0.0857 0.0857 0.0600 0.0600 0.0600 0.0600 0.0252 0.0250 0.0250 0.0250

0.5 0.1428 0.1429 0.1429 0.1429 0.9998 0.1000 0.1000 0.1000 0.0418 0.0417 0.0417 0.0417

0.7 0.1999 0.2000 0.2000 0.2000 0.1399 0.1400 0.1400 0.1400 0.0580 0.0583 0.0583 0.0583

0.9 0.2572 0.2571 0.2571 0.2571 0.1798 0.1800 0.1800 0.1800 0.0749 0.0750 0.0750 0.0750

L∞ 8 2e − 05 5 9e − 05 2 8e − 05 — 2 3e − 04 8 8e − 05 5 2e − 05 — 2 1e − 04 9 6e − 05 2 4e − 05

Ei
rel 3 2e − 04 2 3e − 04 1 2e − 04 — 1 3e − 03 4 9e − 04 2 9e − 04 — 2 8e − 03 1 3e − 04 3 2e − 04

CPU (s) 0.42438 0.25004 0.19015 — 0.66255 0.40027 0.20866 — 1.98713 1.40428 0.68685

Table 6: Comparison of the numerical solutions for Example 1 obtained with various values of m for a, b = 0, 1 and ε = 0 01 at T = 1 with
the exact solutions.

x
m = 10 m = 40 m = 80

Exact
TDFEM2 TDFEM3 TDFEM4 TDFEM2 TDFEM3 TDFEM4 TDFEM2 TDFEM3 TDFEM4

0.1 0.099742 0.099747 0.099748 0.099745 0.099751 0.099752 0.099750 0.099752 0.099752 0.099752

0.3 0.294610 0.294608 0.294605 0.294607 0.294603 0.294604 0.294601 0.294604 0.294604 0.294604

0.5 0.250010 0.250008 0.250004 0.250006 0.250000 0.250000 0.250001 0.250000 0.250000 0.250000

0.7 0.001721 0.001725 0.001728 0.001728 0.001730 0.001731 0.001729 0.001731 0.001731 0.001731

0.9 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 3: The comparison of error norms for at different times for a, b = 0, 1 , ε = 0 005, N = 200, and Δt = 0 01 for Example 1.

T = 1 7 T = 2 5 T = 3 25
L∞ CPU (s) L∞ CPU (s) L∞ CPU (s)

[14] 3 1153e − 04 — 1 8902e − 04 — 8 9839e − 03 —

[17] 7 5869e − 05 2.32813 1 1491e − 04 5.46875 7 9982e − 03 8.04688

TDFEM2 5 2134e − 05 2.32656 7 3965e − 05 3.68521 6 6734e − 04 5.82314

TDFEM3 3 3720e − 06 1.91070 3 8625e − 06 1.97382 4 0123e − 06 2.98236

TDFEM4 1 2123e − 07 1.00205 1 6543e − 07 1.68234 1 7238e − 07 2.01012

Table 4: The comparison of error norms for at different times for a, b = 0, 1 , ε = 0 0005, N = 200, and Δt = 0 01 for Example 1.

T = 1 7 T = 2 5 T = 3 25
L∞ CPU (s) L∞ CPU (s) L∞ CPU (s)

[14] 2 7577e − 02 — 2 5152e − 02 — 2 1049e − 02 —

[17] 1 5553e − 02 2.82813 4 5958e − 03 4.79688 2 3305e − 03 7.79688

TDFEM2 9 8156e − 05 2.82623 7 8888e − 05 3.86127 6 8023e − 04 4.23147

TDFEM3 4 2073e − 06 2.58453 4 1817e − 06 2.73270 4 3641e − 06 3.00005

TDFEM4 1 3218e − 07 1.01472 1 9234e − 07 1.80032 1 8724 − 07 2.225145

Table 5: The error norms for Example 1 at different times for a, b = 0, 1 , ε = 0 002, and Δt = 0 05 m = 40 at T = 2.

L∞ CPU (s)
N = 30 N = 40 N = 50 N = 30 N = 40 N = 50

TDFEM2 5 8437e − 05 6 0234e − 06 5 8551e − 07 0.15200 0.24143 0.31245

TDFEM3 9 7731e − 06 7 1238e − 07 4 3719e − 08 0.02202 0.05324 0.10567

TDFEM4 4 0083e − 07 2 7283e − 08 2 7585e − 10 0.01001 0.03214 0.08273

8 Journal of Applied Mathematics



t = 0.5
t = 1.0
t = 2.0
t = 3.0
t = 4.0
t = 5.0
t = 5.4
t = 6.0
t = 6.6
t = 7.0

t = 7.5
t = 8.0
t = 8.4
t = 8.8
t = 9.0
t = 9.5
t = 10.0
t = 11.0
t = 11.4
t = 12.0

U

x

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

(a) TDFEM4

t = 0.5
t = 1.0
t = 2.0
t = 3.0
t = 4.0
t = 5.0
t = 5.4
t = 6.0
t = 6.6
t = 7.0

t = 7.5
t = 8.0
t = 8.4
t = 8.8
t = 9.0
t = 9.5
t = 10.0
t = 11.0
t = 11.4
t = 12.0

U

x

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Exact

Figure 4: Results of Example 2 for (b) ε = 0 00005, Δt = 0 025, and N = 110 at T = 12.

t = 0.1
t = 0.2
t = 0.3
t = 0.5
t = 0.6
t = 0.7
t = 0.8

t = 0.9
t = 1.0
t = 1.5
t = 1.7
t = 1.8
t = 1.9
t = 2.0

U

x

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

(a) TDFEM4

t = 0.1
t = 0.2
t = 0.3
t = 0.5
t = 0.6
t = 0.7
t = 0.8

t = 0.9
t = 1.0
t = 1.5
t = 1.7
t = 1.8
t = 1.9
t = 2.0

U

x

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(b) Exact

Figure 3: Results of Example 2 for ε = 0 0001, Δt = 0 025, and N = 110 at T = 2.

9Journal of Applied Mathematics



T
a
bl
e
7:
L ∞

an
d
E
i re
l
er
ro
rs

fo
r
E
xa
m
pl
e
2
fo
r
ε
=
0
00
1,
N
=
30
,a
nd

Δ
t=

0
01
.

x
T
D
FE

M
2

T
D
FE

M
3

T
D
FE

M
4

T
=
0
1

T
=
0
2

T
=
1

T
=
3
0

T
=
0
1

T
=
0
2

T
=
1
0

T
=
3
0

T
=
0
1

T
=
0
2

T
=
1

T
=
3

L ∞
1
24
e
−
04

3
39
e
−
05

8
22
e
−
06

3
84
e
−
06

2
22
e
−
05

2
15
e
−
05

1
35
e
−
06

4
77
e
−
07

1
52
e
−
05

1
35
e
−
05

1
59
e
−
06

2
01
e
−
07

E
i re
l

2
22
e
−
02

3
44
e
−
04

8
15
e
−
05

2
10
e
−
05

2
79
e
−
03

2
72
e
−
04

1
44
e
−
05

5
76
e
−
06

1
75
e
−
05

1
43
e
−
05

1
88
e
−
06

3
26
e
−
07

C
P
U

0.
00
47
0

0.
00
65
1

0.
09
21
3

0.
69
40
3

0.
00
10
29

0.
00
21
4

0.
42
31
2

0.
15
84
1

0.
00
02
4

0.
00
09
8

0.
01
47
8

0.
10
99
2

10 Journal of Applied Mathematics



T
a
bl
e
8:
L ∞

an
d
E
i re
l
er
ro
rs

fo
r
E
xa
m
pl
e
2
fo
r
ε
=
0
00
01
,N

=
50
,a
nd

Δ
t=

0
00
1.

x
T
D
FE

M
2

T
D
FE

M
3

T
D
FE

M
4

T
=
0
1

T
=
0
2

T
=
1

T
=
3
0

T
=
0
1

T
=
0
2

T
=
1
0

T
=
3
0

T
=
0
1

T
=
0
2

T
=
1

T
=
3

L ∞
4
25
e
−
05

3
27
e
−
05

8
08
e
−
06

2
19
e
−
06

1
34
e
−
05

6
74
e
−
06

3
81
e
−
07

3
20
e
−
07

7
13
e
−
06

4
55
e
−
06

3
00
e
−
07

1
40
e
−
07

E
i re
l

2
25
e
−
03

1
32
e
−
04

4
83
e
−
05

9
44
e
−
06

1
69
e
−
04

7
47
e
−
05

6
35
e
−
07

3
38
e
−
07

9
43
e
−
06

7
54
e
−
06

5
58
e
−
07

2
00
e
−
07

C
P
U

0.
56
34
2

0.
72
10
3

1.
25
69
4

1.
54
12
3

0.
32
31
4

0.
45
42
6

0.
86
31
4

0.
94
21
3

0.
20
78
9

0.
25
45
6

0.
73
47
6

0.
86
73
8

11Journal of Applied Mathematics



for values of viscosity used in this problem. Our proposed
numerical methods perform efficiently for small values of ε
in a short computation time.

In particular, the TDFEM4 can progress up to 12 sec-
onds with less computational complexity and capture
shocks at 11.4 seconds. Yet, the computed results of the
method that used more points in discretization in time
are more accurate in comparison with the other two com-
bined methods and are free of choice of viscosity parame-
ter. It can be inferred that the presented numerical
methods are in quite good agreement with the exact solu-
tion and represent the physical properties of Burgers’ equa-
tion with forcing term accurately.

Example 3 (see [26]). Consider the model equation

Ut +UUx − εUxx = 0, 0 5 ≤ x ≤ 1 5, t ≥ 0, 31

with the initial condition,

U x, 0 = ε x + tan
x
2

, 32

and with the time-dependent nonhomogeneous boundary
conditions,

U 0 5, t = ε

1 + εt
0 5 + tan 1/ε

4 1/ε + t
, t ≥ 0,

U 1 5, t =
ε

1 + εt
1 5 + tan

3/ε
4 1/ε + t

, t ≥ 0

33

Table 9: Numerical results of Example 3 for ε = 0 0001, N = 50, and Δt = 0 001 at T = 1.

x TDFEM2 TDFEM3 TDFEM4 Exact

0.5 0.00075331 0.00075330 0.00075330 0.00075330

0.7 0.00106213 0.00106212 0.00106211 0.00106211

0.9 0.00137922 0.00137919 0.00137919 0.00137919

1.1 0.00170819 0.00170818 0.00170818 0.00170818

1.3 0.00205407 0.00205406 0.00205405 0.00205405

1.5 0.00242397 0.00242396 0.00242396 0.00242396

L∞ 2 013e − 08 1 254e − 08 9 874e − 09 —

Ei
rel 2 655e − 05 1 103e − 06 1 088e − 08 —

CPU (s) 0.20614 0.12123 0.07564

U U

x x
TDFEM3
TDFEM2
TDFEM4

Exact

×10
–3

×10
–3

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6
0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Figure 5: Comparison for ε = 0 001, N = 40, and Δt = 0 01 at T = 2.

12 Journal of Applied Mathematics



Its exact solution is

U x, t =
ε

1 + εt
x + tan

x/ε
2 1/ε + t

34

In this example, the numerical results have been com-
puted for the parameter values in Table 9. The accuracy of
the three combined methods has been demonstrated based
on the error norms, and the presented schemes have been
compared with each other in terms of their advantages and
disadvantages. It is seen that the combined methods have
more accurate results even with the use of fewer finite
elements than some studies in the literature, and the com-
parisons have shown that the present schemes offer better
results than the numerical schemes given in [26]. This prob-
lem was studied in [18], yet there are no numerical results to
compare with our results. Therefore, we do not have elabo-
rate details.

Figure 5 displays the physical behavior of the solution
function at T = 2, for ε = 0 001, N = 40, and Δt = 0 01. The
numerical results agree with the exact results, indicating that
the three combined methods used in this study are accurate,
especially the method that used more points in discretization
in time which was found to be more accurate than the other
two methods. We can conclude that these combined methods
are more accurate than some other existing methods in the
literature.

4. Conclusions and Recommendations

In the present work, the three combined methods based on
the backward finite difference and Galerkin finite element
schemes have been introduced and applied for solutions of
the Burgers’ equation with forcing term accurately. To dem-
onstrate the efficiency of the proposed newly combined
methods, three test examples are included and the numerical
computations are performed for various values of the
parameters. The computed results have revealed that the
proposed methods are computationally powerful, highly
accurate, and capable of solving the model equation. The
numerical results are seen to be relatively more accurate
than some of the existing results in the literature. The
methods are also quite convenient to generate computer
codes in any programming language. As well, the presented
methods in this article seem to be a very robust alternative to
solve the problem by preserving the physical properties of
the Burgers’ equation. Based on the currently proposed
methods, further studies can focus on solving the Burgers’
type equations as well as other PDEs arising in various fields
of science and engineering.

Data Availability

Data will be made available on request.

Disclosure

The authors declare that they have not used artificial intelli-
gence (AI) tools in the preparation of this article.

Conflicts of Interest

The authors did not report any potential conflicts of interest.

Acknowledgments

The authors would like to thank Dr Murat Sari (Istanbul
Technical University) for his valuable comments on this
paper. The first author would like to thank the Science Fel-
lowships and Grant Programs Department of TUBITAK
(TUBITAK BIDEB) for supporting her academic research.

References

[1] H. Bateman, “Some recent researches on the motion of fluids,”
Monthly Weather Review, vol. 43, no. 4, pp. 163–170, 1915.

[2] J. M. Burgers, “Mathematical examples illustrating relations
occurring in the theory of turbulent fluid motion,” in In
Selected Papers of JM Burgers, pp. 281–334, Springer Nether-
lands, Dordrecht, 1995.

[3] J. M. Burgers, “Amathematical model illustrating the theory of
turbulence,” Advances in Applied Mechanics, vol. 1, pp. 171–
199, 1948.

[4] E. Hopf, “The partial differential equation ut + uux = ?ux,”
Communications on Pure and Applied Mathematics, vol. 3,
no. 3, pp. 201–230, 1950.

[5] J. D. Cole, “On a quasi-linear parabolic equation occurring in
aerodynamics,” Quarterly of Applied Mathematics, vol. 9,
no. 3, pp. 225–236, 1951.

[6] R. Sinuvasan, K. Tamizhmai, and P. Leach, “Algebraic resolu-
tion of the Burgers’ equation with forcing term,” Pramana,
vol. 88, pp. 1–6, 2017.

[7] M. K. Kadalbajoo, K. K. Sharma, and A. Awasthi, “A
parameter-uniform implicit difference scheme for solving
time-dependent Burgers’ equation,” Applied Mathematics
and Computation, vol. 170, pp. 1365–1393, 2005.

[8] A. Zeytinoglu, M. Sari, and B. A. Pasaoglu, “Numerical simu-
lations of shock wave propagating by a hybrid approximation
based on high-order finite difference schemes,” Acta Physica
Polonica A, vol. 133, pp. 140–151, 2018.

[9] R. Kumar and P. Chandrashekar, “Efficient seventh order
WENO schemes of adaptive order for hyperbolic conservation
laws,” Computer and Fluids, vol. 190, pp. 49–76, 2019.

[10] V. Mukundan and A. Awasthi, “Efficient numerical techniques
for Burgers’ equation,” Applied Mathematics and Computa-
tion, vol. 262, pp. 282–297, 2015.

[11] E. N. Aksan, “A numerical solution of Burgers’ equation by
finite element method constructed on the method of discreti-
zation in time,” Applied Mathematics and Computation,
vol. 170, no. 2, pp. 895–904, 2005.

[12] T. Ozis, E. N. Aksan, and A. Ozdes, “A finite element approach
for solution of Burgers’ equation,” Applied Mathematics and
Computation, vol. 139, no. 2-3, pp. 417–428, 2003.

[13] Y. Chen and T. Zhang, “A weak Galerkin finite element
method for Burgers’ equation,” Journal of Computational
and Applied Mathematics, vol. 348, pp. 103–119, 2019.

[14] I. Dag, D. Irk, and A. Sahin, “B-spline collocation methods for
numerical solutions of the Burgers' equation,” Mathematical
Problems in Engineering, vol. 2005, Article ID 928423, 18
pages, 2005.

13Journal of Applied Mathematics



[15] R. C. Mittal and R. K. Jain, “Numerical solutions of nonlinear
Burgers’ equation with modified cubic B-splines collocation
method,” Applied Mathematics and Computation, vol. 218,
no. 15, pp. 7839–7855, 2012.

[16] A. A. Soliman, “A Galerkin solution for Burgers' equation
using cubic B-spline finite elements,” Abstract and Applied
Analysis, vol. 2012, Article ID 527467, 15 pages, 2012.

[17] M. Abdullah, M. Yaseen, and M. D. L. Sen, “An efficient collo-
cation method based on Hermite formula and cubic B-splines
for numerical solution of the Burgers’ equation,”Mathematics
and Computers in Simulation, vol. 197, pp. 166–184, 2022.

[18] M. Sari, H. Tunc, and M. Seydaoglu, “Higher order splitting
approaches in analysis of the Burgers’ equation,” Kuwait Jour-
nal of Science, vol. 46, no. 1, 2019.

[19] S. Gulen, “An efficient hybrid method based on cubic B-spline
and fourth-order compact finite difference for solving nonlin-
ear advection–diffusion–reaction equations,” Journal of Engi-
neering Mathematics, vol. 138, no. 1, p. 13, 2023.

[20] G. Arora, S. Mishra, H. Emaifar, and M. Khademi, “Numerical
simulation and dynamics of Burgers’ equation using the mod-
ified cubic B-spline differential quadrature method,” Discrete
Dynamics in Nature and Society, vol. 2023, Article ID
5102374, 8 pages, 2023.

[21] M. I. Khan, A. Rauf, and A. Shah, “Numerical investigation of
viscous effects on the nonlinear Burgers’ equation,” Turkish
Journal of Mathematics, vol. 45, no. 1, pp. 529–539, 2021.

[22] A. R. Soheili, M. Arabameri, and M. Barfeie, “RBFs meshless
method of lines based on adaptive nodes of Burgers’ equa-
tions,” Iranian Journal of Numerical Analysis and Optimiza-
tion, vol. 5, no. 1, pp. 49–61, 2015.

[23] M. Namjoo, M. Zeinadini, and S. Zibaei, “Nonstandard finite-
difference scheme to approximate the generalized Burgers–
Fisher equation,”Mathematicsl Methods in the Applied Sciences,
vol. 41, no. 17, pp. 8212–8228, 2018.

[24] R. Kaur, V. Shallu, K. Kukreja, and N. Parumasur, “Two
different temporal domain integration schemes combined with
compact finite difference method to solve modified Burgers’
equation,” Ain Shams Engineering Journal, vol. 13, no. 1, article
101507, 2022.

[25] J. N. Reddy, An Introduction to the Finite Element Method,
McGraw-Hill, Singapore, 3rd edition, 2006.

[26] L. Iskandar and A. Mohsen, “Some numerical experiments on
the splitting of Burgers equation,” Numerical Methods for Par-
tial Differential Equations, vol. 8, no. 3, pp. 267–276, 1992.

[27] K. Rektorys, The Method of Discretization in Time and Partial
Differential Equations, D. Reidel Publishing Company, Holland,
1982.

14 Journal of Applied Mathematics


	A New Efficient Hybrid Method Based on FEM and FDM for Solving Burgers’ Equation with Forcing Term
	1. Introduction
	2. Materials and Methods
	2.1. Two-Point Discretization in Time and Galerkin Finite Element Method (TDFEM2)
	2.2. Three-Point Discretization in Time and Galerkin Finite Element Method (TDFEM3)
	2.3. Four-Point Discretization in Time and Galerkin Finite Element Method (TDFEM4)

	3. Numerical Experiments
	4. Conclusions and Recommendations
	Data Availability
	Disclosure
	Conflicts of Interest
	Acknowledgments



