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With the development of industrial demand, precise identification of system models is currently required in the field of industrial
control, which limits the whale search algorithm. In response to the fact that whale optimization algorithms are prone to falling
into local optima and the identification of important Hammerstein models ignores the issue of noise outliers in actual industrial
environments, this study improves the whale algorithm and constructs a Hammerstein model identification strategy for nonlinear
systems under heavy-tailed noise using the improved whale algorithm. Results showed that it had a lower rank average and an
average success rate of 95.65%. It found the global optimum when the number of iterations reached around 150 and had faster
convergence speed and accuracy. In identifying Hammerstein model under heavy-tailed noise, the average prediction
recognition accuracy of the improved whale algorithm was 92.38%, the determination coefficient was 0.89, the percentage
fitting error was 0.03, and the system error was 0.02. This research achievement has certain value in the field of industrial
control and can serve as a technical reference.

1. Introduction

As science and technology develop, China’s industrial sector
has also flourished, among which the petrochemical industry
has become a hot topic in the current new era. Industrial
transformation and low-carbon development have become
urgent tasks to be completed [1]. To accelerate the low-
carbon upgrading and transformation of the petrochemical
industry, optimizing its industrial process control plan and
refining the control process are the most important steps
[2]. At present, the mainstream model for parameter identifi-
cation of nonlinear systems is the single-input single-output
(SISO) Hammerstein model with single-input and single-
output mode. Research on identifying important multiple-
input multiple-output (MIMO) Hammerstein models is
relatively scarce, and noise is often ignored in parameter
identification of nonlinear models. However, the impact of
noise on the model in the actual industrial environment is
an inevitable issue [3]. As machine learning algorithms
develop, intelligent optimization has gradually been applied
to control the process. As a computational model based on
the behavior patterns of biological populations, it does not

need to analyze the structural information of control problems
and has strong computational capabilities [4]. Among them,
the most commonly used intelligent optimization algorithm
is whale optimization algorithm (WOA), which has a simple
structure and can adjust control parameters with flexibility.
However, due to its simple structure, it is also impossible to
achieve division of labor and cooperation after initializing
the first-generation population. In addition, the position
update mechanism of the whale optimization algorithm is also
relatively single, which makes it easy for the algorithm to fall
into a local optimization dilemma prematurely during the iter-
ation process. The reason for choosing the WOA for research
is that it has shown good performance in solving complex
optimization problems. The WOA is an optimization algo-
rithm based on the social behavior of bird flocks, which seeks
the optimal solution by simulating the flight and foraging
behavior of bird flocks. This algorithm has the advantages of
simplicity, flexibility, and ease of implementation and has
been widely applied in many fields. In the Hammerstein
parameter resolution problem, the WOA can be used to find
the optimal parameter configuration, achieving optimal pre-
dictive performance of the model. Compared with existing
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work, using the improved WOA to solve the Hammerstein
parameter resolution problem can further improve the predic-
tive performance and stability of the model. By improving the
search mechanism of the WOA, introducing new mutation
operators, and improving local search strategies, nonlinear
features and parameter constraints in the Hammerstein model
can be better handled, resulting in more accurate and reliable
parameter configurations. In addition, the improved WOA
can further expand its application scope in solving complex
optimization problems by combining with other optimization
algorithms. So this study attempts to improve the whale
algorithm by proposing an improved whale optimization
algorithm (IWOA) that optimizes its structure and position
update mechanism to improve its stability and reliability.
Based on introducing the optimized whale algorithm to
heavy-tailed noise interference, two new identification
schemes are attempted for the SISO Hammerstein model
and MIMO Hammerstein model.

This study includes five parts. The second part reviews
the current research results. The third part introduces the
methods of this study. The fourth part conducts experiments
and analyzes the results based on the methods in the second
part. The fifth part summarizes the conclusions of this study.

2. Related Works

Among the emerging intelligent optimization algorithms in
recent years, the whale optimization algorithm is often used
for controlling and adjusting parameters. In ship deforma-
tion measurement, the dynamic deformation parameters of
inertia matching methods are severely affected by the
environment. On this issue, Wang et al. derived a mapping
mechanism and an objective function based on the data in
the sliding window [5]. On this basis, an improved whale
optimization algorithm based on logical mapping was
designed for parameter identification. Results showed that
it can effectively identify parameters.

In the field of information technology, the IT outsour-
cing process is vulnerable to schedule risks, which have the
potential to result in significant losses [5]. Using distributed
decision-making theory, Lu et al. established a dual-layered
model. The analysis results indicated that this method can
control schedule risk. Different customer preferences that
impact decision results were analyzed. The effectiveness of
the two-layer whale optimization algorithm was demon-
strated through the solution and analysis of numerical
examples. The results indicated that the double-layer whale
optimization algorithm had higher accuracy, making it more
competitive [6].

In terms of battery management systems, Pan et al.
proposed a method that used a unique global search whale
optimization algorithm to identify electrochemical model
parameters. Firstly, four operating conditions of 1C, 0.5C,
and 2C were performed, and the parameters based on 1C
charging and discharging were identified. Results indicated
that electrode-related parameters’ influence on lithium ion
migration affected calculation performance accuracy, with
electrode porosity having the greatest impact [7]. Liu et al.
proposed a point cloud data processing method using whale

optimization algorithm to enhance the assessment of inter-
nal blockage and deterioration in sewage pipelines. The
applicability of this method was verified in actual sewage
systems, and the results showed that it can accurately and
effectively reconstruct the three-dimensional model of the
sewer [8].

In terms of modeling, Jiang et al. proposed a model using
grey modeling technology to improve the predictive perfor-
mance of existing models and expand their applicability.
To avoid inherent errors, an improved nonlinear grey
Bernoulli model was obtained. Results indicated that the
prediction accuracy of this model was higher, and it was
more suitable for these practical situations [9]. Tian et al.
proposed a new data-driven model to improve process data
modeling accuracy. Regularization and kernel parameters
were optimized using an improved whale optimization
algorithm. Finally, a regularization based on sum kernel was
proposed. To verify the modeling performance, a study was
conducted using the industrial process of purified terephthalic
acid as an example. The simulation results showed that the
proposed model can achieve high accuracy, verifying the feasi-
bility and effectiveness of the proposed method [10].

Zong et al. used the Wiener-Hammerstein system to
solve the integrity problem of input and output data in the
system. The study added auxiliary models after analyzing
nonlinear elements and optimized the model using particle
swarm optimization algorithm. The results indicate that
the system can significantly improve the accuracy and con-
vergence speed of data [11]. Jui and Ahmad designed an
algorithm for identifying continuous time Hammerstein sys-
tems based on the average multivariate optimization algo-
rithm and the sine cosine algorithm. The study made two
modifications using algorithms, namely, modifying the aver-
age design parameter update mechanism and the hybrid of
multiverse optimizer and sine cosine algorithm. The results
indicate that this method has also achieved better perfor-
mance in modeling dual rotor systems and flexible robotic
arm systems and provides better solutions [12]. In order to
improve the performance of the Hammerstein-Wiener
system, Zong et al. integrated particle swarm optimization
algorithm with gravity search algorithm and designed a
system for identifying the system in question. The system
adds an oscillation index attenuation inertia factor and
introduces chaotic membership degree. The results indicate
that the model can significantly improve the convergence
speed and recognition accuracy of the algorithm [13]. Zong
et al. used an auxiliary model combined with a hybrid parti-
cle swarm gradient algorithm to solve the problem of
incomplete recognition data caused by dual rate sampling.
By using auxiliary models and hybrid particle swarm gradi-
ent algorithms, nonlinear identification problems can be
transformed into optimization problems in parameter space,
optimizing performance through algorithms. The results
show that the performance of the hybrid particle swarm gra-
dient algorithm is significantly improved due to the particle
swarm algorithm and gradient iteration algorithm, which
not only improves the linear optimization speed and recog-
nition accuracy but also avoids the problem of premature
convergence [14]. Janjanam et al. used evolutionary
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optimization algorithms coupled with Kalman filtering to
solve the parameter estimation problem of Hammerstein
nonlinear systems. Research on using Kalman filtering to
adjust parameters while also using optimization algorithms
to globally optimize the output results will effectively
improve the optimization performance of nonsystem
parameters. The results indicate that the algorithm can sig-
nificantly improve the accuracy and convergence speed of
parameter estimation [15]. Mehmood and Raja used
weighted differential evolution to estimate the parameters
of the Hammerstein-Wiener model (HWM). Conduct a
detailed, comprehensive, and robust analysis of multiple
autonomous experiments by heuristic estimation of HWM
adjustable parameters under different degrees of freedom
and noise levels using WDE and genetic algorithms (GAs).
The results indicate that the method used in the study out-
performs the existing methods in terms of accuracy,
convergence, and complexity [16].

In summary, experts have conducted many studies on
the application of whale algorithm in improving control
accuracy and parameter identification, but their efforts to
improve the reliability and stability of whale algorithm
applications are limited. So how to ensure that the whale
algorithm has high control accuracy and parameter recogni-
tion accuracy while still having high stability and reliability
is a topic worth studying.

3. Parameter Resolution Research of Nonlinear
Systems Based on Improved WOA

At present, in the field of industrial control, precise
identification of system models is required. Traditional
identification methods such as least squares and maximum
likelihood are limited, and whale search algorithms are
gradually being applied to nonlinear system parameter iden-
tification problems. However, the algorithm structure of the
Whale algorithm is monotonous, which can make the first-
generation population unable to cooperate and waste search
resources. Moreover, the mechanism for updating the popu-
lation’s position is single, which can easily lead to falling into
local optima during the iteration process [17]. In response to
these issues, this study integrates bidirectional collaborative
operations in the first section to improve the WOA. In the
second section, two new identification schemes are con-
structed for the SISO Hammerstein model and MIMO
Hammerstein model based on the introduction of optimized
whale algorithm to heavy-tailed noise interference.

3.1. Improvement ofWOA Based on Bidirectional Collaborative
Operations. The WOA has attracted much attention due to its
unique algorithm structure. This algorithm can achieve a
smooth transition between whale contraction and outward
search through the numerical variation of parameter vector
A, which means that it finds a balance point between global
surveying and local development. This balancing ability is an
important reason why WOA outperforms other optimization
algorithms. However, the WOA has an obvious structural
problem: it lacks the ability to balance survey and development
control. This means that in some cases, the WOAmay fall into

a single search pattern, leading to inaccurate or inefficient
search results [18–20]. More seriously, if the WOA uses an
entire population to survey candidate optimal solutions or
develop the current optimal solution, it will result in a signifi-
cant waste of search resources. This not only leads to a decrease
in the convergence accuracy of the algorithm but also slows
down its convergence speed and may even result in search
failure, as shown in the flowchart of the WOA in Figure 1.
Therefore, for the improvement of the WOA, it is necessary
to focus on solving the problem of how to improve search effi-
ciency and accuracy while maintaining a balance between
global and local search.

Firstly, a certain random probability is used to cause differ-
ential mutations in some whale individuals, and Gaussian inter-
ference is randomly added during the process. Then, greedy
selection strategy and adaptive crossover are integrated into
the whale algorithm structure to accelerate convergence speed
while ensuring that the population evolution is moving in the
correct direction. At the same time, in order to improve its
global search ability, it is necessary to optimize the population
distribution. This study set the mutation probability to 0.2
according to the Renchenberg criterion and selected some
individuals for differential mutation operations [21]. Equation
(1) describes the specific mathematical model.

Dr = Xr1 t − Xr2 t + Xr3 t − Xr4 t 1

In equation (1), Dr represents the information exchange
channel between randomly selected whales and Xr1, Xr2, Xr3,
and Xr4 represent randomly selected whale individuals other
than the current whale, respectively. Equation (2) describes
the probability density.

f x = 1
2πσ

e x−μ 2/2σ2 2

In equation (2), μ represents the mean and σ2 represents
the variance. The smaller the variance, the greater the proba-
bility, which is a concentrated distribution of probability.
The larger the variance, the wider the probability distribution.
Adding Gaussian high interference through the information
channel can improve the distribution characteristics of whale
individuals. This study uses Gaussian interference with amean
of 0 and a variance of 1 to improve the distribution character-
istics of whales. To increase whale population potential diver-
sity, adaptive crossover probability is set to determine whether
the system performs position update operations. Equation (3)
describes the adaptive crossover mathematical model [22].

Xj
i t + 1 =

Xj
i t , if r < cr,

Xj
i t + 1 , if r ≥ cr

3

In equation (3), Xj
i t is the solution of the i-th meridian

in the population to the j-th individual dimension and cr is
the crossover probability. The smaller the value of cr, the
longer the algorithm’s running time and convergence speed
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and the smaller the population diversity. The larger the cr, the
shorter the running time and slower the convergence speed
and the greater the population diversity. This study also takes
into account the negative effects cr brings, and in order to
eliminate its impact, an adaptive crossover probability is set,
as described in the following equation.

cr =m + 0 5 −m ∙sin t∙π/2∙tmax 4

In equation (4),m is a constant within [0, 0.5] of the adap-
tive crossover probability to ensure a balance between the pop-
ulation diversity and convergence speed. Figure 2 shows the
distribution curve of the adaptive crossover probability, and
in the early iteration stage, the smaller the cr, the faster the
growth speed and the faster the algorithm convergence speed
and running time. As iterations increase, cr increases, and
the growth tends to stabilize, resulting in a large population.
The diversity increases through adaptive crossover probability,
and the algorithm’s global search ability improves.

Next, greedy selection is performed on the new whale
individuals and the original whale individuals obtained
through differential mutation and adaptive crossover. The
offspring with higher fitness values participate in the itera-
tion, which is described in the following equation.

X t + 1 =
X t , if f X t + 1 ≤ f X t ,

X t + 1 , otherwise
5

In equation (5), both f X t + 1 and f X t represent
fitness values. In the later stage of algorithm operation, the
last elimination mechanism can eliminate the individual
with the worst fitness value in the whale population, and a
new individual is randomly generated to replace it. This pro-
cess is represented in the following equation.

Xw t + 1 = X ∗ t + rand∙ X ∗ t − Xw t 6

In equation (6), rand is a random function. Figure 3
shows the structural process for optimizing the bidirectional
collaborative operation of structure and position update
mechanism. It can be seen that after the whale population
is randomly initialized, its control parameters are updated,
and differential mutation operation, adaptive crossover
operation, or position update operation is determined

through the judgment of rand. Then, whether the updated
individual exceeds the boundary is determined, and finally,
the optimal solution is obtained through greedy selection
and last bit elimination.

3.2. Hammerstein Model Identification for Nonlinear Systems
under Heavy-Tailed Noise. This study constructs two new
identification schemes for the SISO Hammerstein model
and MIMO Hammerstein model based on the introduction
of optimized whale algorithm to heavy-tailed noise interfer-
ence. As a probability distribution model, the heavy-tailed
distribution follows the characteristic distribution of F,
which satisfies the mathematical expression described in
the following equation [23].

F x = 1 − F x ≈ cx−α,∞ > c > 0, α > 0 7

In equation (7), α represents the tail index, and the
smaller the α, the thicker the heavy-tailed distribution curve
tail, and F x represents the probability density eigenvalue.
This study mainly focuses on the Student t-distribution
noise and binomial mixed Gaussian distribution noise in
the heavy-tailed distribution. Equation (8) describes the sys-
tem noise interference signals involved in system identifica-
tion [24].

e k = e1 k , e2 k , e3 k ⋯⋯en k T 8

In equation (8), e k is the set of interference signals.
Equation (9) describes the distribution of Student’s t.

ei k : t μi, δ2i , vi 9

In equation (10), t μi, δ2i , vi is the univariate Student t
-distribution, where μi, δ

2
i , and vi are positional parameters,

proportional parameters, and degrees of freedom, respec-
tively. Equation (10) describes the binomial mixed Gaussian
distribution noise.

ei k : 1 − αi N1 μi, δ2i + αiN2 μi, kiδ2i 10

In equation (10), the Gaussian distribution with a mean μi
of 0 and a variance of δ2i is N1 μi, δ2i , N2 μi, kiδ2i represents
the part of the pulse interference with a μi and a kiδ

2
i , αi

represents its probability, and ki is the variance factor of the

Parameter 
initialization Initial fitness value Look for

Surrounding predationBubble attackComplete predation

Figure 1: Flowchart of WOA.
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pulse interference, with a value greater than or equal to 1. In
the identification process of the SISO Hammerstein model
under heavy-tailed noise, equation (11) describes the SISO
Hammerstein model.

A z−1 = 1 + α1z
−1 + ⋯⋯ + αnz

−n 11

In equation (11), z−1 represents one unit delay. Figure 4
shows the Hammerstein structure. It can be seen that its iden-
tification task includes two parts: estimating linear dynamic
link parameters and simulating model nonlinear output. The
e k , y k , u k , and x k in the figure represent the noise
interference signal, sampled output, sampled input, and out-
put of nonlinear system static part, respectively. F u k is
the static Hammerstein nonlinearity, and A z−1 , B z−1 ,
and C z−1 all represent known polynomial orders.

When estimating the parameters of the linear dynamic
link, equation (12) describes the weight vector of the feed-
back channel.

α = α1, α2,⋯, αn T 12

Equation (13) describes the adaptive parameter vector of
the feedforward part.

b = b1, b2,⋯, br 13

During the identification process, the position of whale
individuals in IWOA corresponds to the parameter vectors
to be identified in the system. This study uses the mean
square error function as the fitness function, and its mathe-
matical model is described in the following equation [25].

MSE = 1
J
〠
J

k=1
y k − ŷ k 2 14

In equation (14), J is the sampling data length, y k is
the actual system output at k, and ŷ k is the estimated sys-
tem output at k. Figure 5 shows the process of using IWOA
to identify the SISO Hammerstein model and minimize the
mean square error index, and the optimal solution obtained
after optimization calculation is the parameters required to
be identified by the SISO Hammerstein model. Specifically,
the first step is to obtain the real system input and output
sampling data, construct the nonlinear part of the model
using FLANN, and calculate the model output. Next, the
algorithm position and parameters are initialized, and the
parameter identification results are obtained by minimizing
algorithm mean square error (MSE). Finally, the satisfaction
of the current identification results is evaluated, and if not
satisfied, return to the previous step to continue iteration.

In identifying MIMO Hammerstein model under heavy-
tailed noise, equation (15) describes its mathematical model.

y k = 〠
n0

i=1
Aiy k − 1 + 〠

nb

j−1
Bix k − j + e k 15

In equation (15), y k is system output sampled data at k,
Ai and Bi are dynamic linear parameter vectors, and e k is
noise interference that follows a heavy-tailed distribution
function. In the identification process, this study used MSE
function as the fitness function, and its mathematical model
was described in the following equation [26].

MSE = 1
J
〠
i

i=1
〠
J

k=1
yi k − ŷi k

2 16

In equation (16), J is the sampling data length, i is the
number of input and output, yi k is the actual output of the
i-th channel in the model, and ŷi k is the estimated output
of the i-th channel. To identify the model parameters, it is nec-
essary to first sample the real input and output data under
heavy-tailed noise interference to obtain the estimated output
of the model. Then, after initializing, IWOA minimizes the
mean square error and obtains the most effective solution cur-
rently available. Finally, evaluate the satisfaction of the current
identification results, and if the department is satisfied, return
to the previous step to continue the iteration.

4. Experimental Results and Analysis

This experiment included two parts. The first part tested the
performance of IWOA. The second part conducted experi-
ments on the identification effect of Hammerstein model
under heavy-tailed noise. In the detection experiment, the
maximum iteration was set to 300 and the population size
N was set to 50. In order to avoid accidental results as much
as possible, the number of independent runs for each bench-
mark function of the operation was set to 20. The processor
used Intel i5 9300H and was tested in a 64-bit Windows 10
PC environment with a RAM size of 16GB. The main steps
of applying the WOA to solve the problem of the Hammer-
stein model are population initialization, fitness evaluation,
selection operation, mutation operation, crossover operation,
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local search, global search, and termination condition. The
WOA searches for the optimal solution by balancing popula-
tion search and parameter adjustment, while combining local
search and global search to improve search efficiency and
accuracy. In specific applications, adjustments and optimiza-
tions need to be made based on the specific situation of the
problem to achieve better recognition results.

4.1. Experimental Results and Analysis of Improved WOA
Performance Detection. To comprehensively reflect the oper-
ational algorithm performance, the experimental indicators
were selected as optimal value, worst case, average value,
standard deviation, success rate, and rank. In the experiment
to verify the impact of the random evolution strategy based
on structural optimization and the optimized position
update strategy on the whale algorithm, the original and
improved whale algorithms were selected as the experimen-
tal objects, and five unimodal functions and five multimodal
functions were subjected to operational experiments. The
unimodal function can evaluate the development ability of
algorithms, while the multimodal function can evaluate the
survey ability of algorithms. Table 1 presents the algorithm
experimental results. Compared with the original whale
algorithm (OWOA), IWOA performed better in unimodal
function operations and had a lower rank average of 1.58,
demonstrating stronger local development ability and better
stability. The rank average of OWOA was 4.39, which was
2.81 higher than IWOA, reflecting the effectiveness of posi-
tion update mechanism and random evolution strategy
improvement. In addition, in the operation of multimodal
functions, IWOA showed greater competitiveness, with a
rank average of 1.43. It exhibited strong survey ability in
many local optimal solutions of multimodal functions, and
its rank average was 3.73 lower than OWOA.

Table 2 provides a comparison of the rank sum in the
operation of 20 unimodal and 20 multimodal functions.
The rank sum of IWOA in the operation of unimodal func-

tions was 37, which was 67 lower than that of the original
one. In multimodal function operation process, the rank
sum of IWOA was 32, which was 84 lower than OWOA
and about a quarter of the rank sum of OWOA.

To compare IWOA performance with other algorithms
used for problem identification, its success rate was compared
under 20 unimodal functions and 20 multimodal functions.
Figure 6 shows the success rate comparison of the four algo-
rithms. The average success rate of IWOA was overall higher
than the other three comparative algorithms. In 20 unimodal
function operations, its average success rate was 95.65%, and
the variation range between the maximum and minimum
average success rates was between 1.3%. In contrast, the over-
all success rate of genetic algorithm and original whale algo-
rithm was between 80% and 85%, and the fluctuation range
between the maximum and minimum success rates was
greater than that of IWOA. The average success rate of both
algorithms was about 13 percentage points lower than that
of IWOA. In the operation of 20 multimodal functions, the
average success rate of IWOA was 96.3%, and the variation
range between the maximum and minimum average success
rates was between 0.8%. Compared to other comparative algo-
rithms, improved WOA performance was better.

Figure 7 shows a comparison of the convergence curves
of IWOA, OWOA, the genetic algorithm, and the particle
swarm optimization algorithm. In the early stage of conver-
gence, where the number of iterations was between 50 and
100, the other three algorithms cannot avoid falling into
local optima. However, IWOA already found the global opti-
mum when the number of iterations reached around 150
with a faster convergence speed and accuracy.

4.2. Experimental Results and Analysis of Hammerstein
Model Identification under Heavy-Tailed Noise. To test the
identification performance of IWOA for the SISO and
MIMO Hammerstein model under heavy-tailed noise, the
identification prediction results were compared. The number

Table 1: Experimental result data of the original WOA and IWOA.

Algorithm index Optimal value Worst value Average value Standard deviation Rank mean

Improved WOA 2.04E-03 2.47E+01 8.79E-01 4.68E+00 1.58

WOA 2.83E+01 2.89E+01 2.80E+01 4.89E-01 4.39

Result of multimodal function operation

Improved WOA 2.87E-10 1.12E-01 3.25E-03 5.02E-03 1.43

WOA 1.07E-01 1.03E+00 4.83E-01 2.67E-01 5.16

Table 2: Rank sum comparison.

Index algorithm WOA Improved WOA GA PSO

20 unimodal function operations

Rank sum 104 37 128 121

20 multimodal function operations

Rank sum 116 32 157 136
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of collected samples was 50, and the experimental sampling
data length was 100. For the Hammerstein model, the coeffi-
cient of determination R2, percentage fit error (PFE), and sys-
tematic error (SE) of evaluation indicators have been added.

Figure 8 shows the parameter identification perfor-
mance of the SISO Hammerstein model tested five times
by the four algorithms under the same excitation signal.
IWOA had an overall higher parameter identification
accuracy than the other three comparative algorithms.
The average prediction recognition accuracy of IWOA
was 95.36%, and the predicted output had a high fit with
the actual output of the model. The average accuracy of
WOA is 81.9%, that of GA algorithm is 83.46%, and that
of PSO algorithm is 79.96%. The accuracy of the improved
whale algorithm is about 11 to 13 percentage points lower
compared to others.

Figure 9 shows the parameter identification performance
of the four models gradually adding heavy-tailed noise sig-
nals during the five tests of the SISO Hammerstein model.
With heavy-tailed noise signal addition, the overall parame-
ter identification accuracy of the four algorithms showed a
downward trend. After improvement, the accuracy of the
whale algorithm decreased by about 5 percentage points
overall, but still maintained at over 90%. The average accu-
racy of the improved whale algorithm is 92.38%, the average
accuracy of the WOA is 79.28%, the average accuracy of the
GA algorithm is 79.7%, and the average accuracy of the PSO
algorithm is 76.28%. Compared to the other three compara-
tive algorithms, the identification accuracy of the other algo-
rithms has decreased significantly, ranging from 13 to 16
percentage points lower than the average accuracy of the
improved whale algorithm.

In the parameter identification performance testing
experiment of MIMO, Table 3 presents the statistical results
of the linear parameters identified by MIMO in the experi-
ment. Under the influence of heavy-tailed noise, the identifi-
cation scheme using IWOA can accurately identify the linear
parameters of the model. Compared to the other three algo-
rithms, the parameter identification accuracy was higher.
The determination coefficient was 0.89, the percentage fit-
ting error was 0.03, and the system error was 0.02.

Figure 10 shows the convergence of the four algorithms
in the MIMO Hammerstein model parameter identification
process. The improved WOA achieves high convergence
accuracy when iterated to 98 times. The WOA completed
convergence at 168 iterations. The PSO algorithm com-
pleted convergence at 205 iterations. The GA algorithm
completed convergence at 283 iterations. This indicates
that the improved whale algorithm has a faster conver-
gence speed compared to the other three comparative algo-
rithms, strong escape ability, and the highest convergence
accuracy. Compared to genetic algorithms and particle
swarm optimization algorithms, the convergence speed of
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Figure 6: Comparison of success rates of the four algorithms.
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the original whale algorithm is faster, but the convergence
accuracy is poorer.

5. Conclusion

OWOAmakes it difficult for the first-generation population to
work together, wastes search resources, and easily falls into
local optima. Moreover, research on the identification of
important MIMO Hammerstein models is relatively scarce,
neglecting the problem of noise outliers in actual industrial
environments. This study proposes an improved whale opti-
mization algorithm for optimizing its structure and position
update mechanism and constructs two new identification
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Figure 9: Comparison of parameter identification accuracy of the
four algorithms under heavy-tailed noise.

Table 3: Linear parameters for MIMO Hammerstein model
identification.

Algorithm
Linear parameter

values
R2 PFE SE MSE

Real parameters 0.37 0.2 1.14 2.26 / / / /

Improved WOA 0.38 0.19 1.16 2.23 0.89 0.03 0.02 0.12

WOA 0.42 0.27 1.35 2.17 0.71 0.24 0.17 0.19

GA 0.26 0.14 1.52 1.98 0.59 0.47 0.36 0.27

PSO 0.31 0.29 1.37 2.51 0.63 0.25 0.22 0.26
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Figure 10: Convergence curves of the four algorithms in the
parameter identification process of MIMO Hammerstein model.
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schemes for the SISO Hammerstein model and MIMO
Hammerstein model based on introducing the optimized
whale algorithm to heavy-tailed noise interference. Results
showed that IWOA had a lower rank average of 1.58 during
the operation of unimodal functions, demonstrating stronger
local development ability and better stability. In the operation
of multimodal functions, its rank average was 1.43, which was
3.73 lower than OWOA. The average success rate of IWOA
was generally higher than comparative algorithms. In the
operation of 20 unimodal functions, the average success rate
of IWOAwas 95.65%, and the global optimal was found when
the number of iterations reached about 150. In identifying
SISO, the average prediction recognition accuracy of IWOA
was 95.36%, and the average accuracy of IWOA after intro-
ducing heavy-tailed noise was 92.38%. In the parameter
identification of MIMO, the error rate of IWOA was a deter-
mination coefficient of 0.89, a percentage fitting error of
0.03, and a system error of 0.02. This study is effective for
whale optimization algorithms, with faster convergence speed
and accuracy. The construction of a new identification strategy
for the Hammerstein model under heavy-tailed noise interfer-
ence shows better data fitting ability and model interpretation
ability, but the number of selected nonlinear system sample
models is relatively small, which is also an area for improve-
ment in the future.
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