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Transmission of COVID-19 occurs either through living media, such as interaction with a sufferer, or nonliving objects
contaminated with the virus. Recovering sufferers and disinfectant spraying prevent interaction between people and virus
become the treatment to overcome it. In this research, we formulate a new mathematical model as a three-dimensional
ordinary differential equation system representing an interaction between viruses attached in nonliving media, susceptible, and
infected subpopulations, including the treatment to investigate its effect. Disease-free, sterile-media endemic, and two
nonsterile media endemic equilibriums exist in the model. The nonexistence of sterile-media equilibria interpreting the
nonendemic condition is achieved by crossing the branch point bifurcation of the equilibria point as the infected
subpopulation recovery rate increases. Continuation of the limit cycle generated at a Hopf bifurcation point as susceptible-
coronavirus interaction prevention rate and period increase trigger two saddle-node bifurcations and a branch point
bifurcation of cycle. Stable symmetric cycles with decreasing amplitude that make the dynamic of subpopulation easier to
control start to be gained at the branch point bifurcation of cycle between the two saddle-node bifurcation points as the
prevention rate increases. Some chaotic attractors which describe a complex and unpredictable pattern of the dynamic in the
population are also found at inclination flip bifurcation by a continuation of a homoclinic orbit generated near the Bogdanov-
Takens bifurcation point as the prevention rate increases while the recovery rate decreases. Increasing the recovery and
prevention rate along with avoiding an increase of the prevention rate while the recovery rate decreases becomes the treatment
to optimize the effort in overcoming COVID-19 transmission.

1. Introduction

COVID-19 is a deadly disease first detected in Wuhan,
Hubei Province, China, in late December 2019 [1, 2]. The
causative of this disease was identified as a novel coronavirus
(nCoV) and has been named coronavirus or severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2) [3].
The COVID-19 pandemic has emerged since March 2020,
as stated by WHO. By 23 September 2022, there have been
over 611 million COVID-19 positive cases, including more
than 6 million deaths worldwide [4].

Coronavirus reproduces in its natural host, i.e., bats [5].
Transmission of COVID-19 occurs through interaction
between animals and humans or between humans carrying
coronavirus [6, 7]. Interactions between the suspected
subpopulation and the infected subpopulation can cause
contagion through droplets and close interaction. Things
or nonliving media exposed to the virus is also a media of
COVID-19 transmission [8] because the virus is stable for
several hours to days in aerosols and on surfaces [9].

The experiment found that SARS-CoV-2 remained
viable in aerosols throughout the experiment (3 hours) [9].
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No viable SARS-CoV-2 was measured on copper after 4
hours [9]. On cardboard, no viable SARS-CoV-2 was mea-
sured after 24 hours [9]. Furthermore, SARS-CoV-2 was
more stable on plastic and stainless steel than on copper
and cardboard, and a viable virus was detected up to 72
hours after application to these surfaces [9]. On different
surfaces of various materials, such as paper, glass, PVC,
metal, ceramic, and Teflon, the virus can survive up to 5
days [10]. It provides critical information about the stability
of SARS-CoV-2, and it is still possible for the virus to infect
people after touching contaminated nonliving media.

Recently, many researchers have established numerous
models for COVID-19 under the different concepts of frac-
tional calculus, such as the SIR model, to characterize
COVID-19 transmission. But the model still focuses on the
interaction between humans as the main cause of COVID-19
transmission [11] and has not considered COVID-19 trans-
mission through nonliving media along with the effort to
inhibit it. In this research, we construct a three-dimensional
ordinary differential equation system as a new mathematical
model representing the interaction between virus, susceptible,
and infected subpopulations to investigate the impact of inhi-
biting the growth of the virus attached to nonliving media on
COVID-19 transmission.

2. Model Development

Transmission of COVID-19 occurs through interaction
between humans, i.e., the susceptible and the infected sub-
population, and between humans touching contaminated
nonliving media. We assume that interaction between sus-

ceptible and infected subpopulations cannot be avoided, so
repressive treatment is the most appropriate treatment to
suppress the negative effect of the interaction. The treatment
will affect the virus and susceptible subpopulation by prevent-
ing interaction between the subpopulations. Another assump-
tion is that the rate of preventing interaction between virus
and susceptible subpopulations can be greater than the rate
of interaction between susceptible and virus subpopulations.

The increase of the virus on surfaces or nonliving media
is caused by the infected subpopulation of respiratory drop-
lets expelled through the air and contaminating objects.
Sneezing and coughing are the common cause of droplet
expulsion. Surface viruses can survive various times depend-
ing on the surface type, and it is still possible for the virus to
infect people after touching it. In this research, we assume
that the infection rate from a virus attached to nonliving
media is constant.

Based on the interaction of virus, susceptible, and
infected subpopulation that has been described, several var-
iables and parameters of the model can be defined in order
to construct the model. The model variables are defined in
Table 1.

Henceforth, V will be written as coronavirus to simplify
the writing. The model variables are nonnegative since V , S,
and I denote subpopulation. Model parameters are summa-
rized in Table 2.

We define d − p = η as the difference of susceptible-
coronavirus interaction and its prevention rate.

The model parameters are nonnegative because they
show the level of interaction between virus, susceptible,
and infected subpopulations. In addition, the parameter is

Table 1: Model variables.

Variable Interpretation Initial value Unit

V Coronavirus subpopulation attached to nonliving media Estimation Virion

S Susceptible subpopulation Estimation Person

I Infected subpopulation Estimation Person

t Time Estimation Day

Table 2: Model parameters.

Parameter Interpretation Value Unit Reference

a Coronavirus addition rate 100 Virion.day-1 Assumption

b Ratio between the coronavirus addition rate and the carrying capacity
of the coronavirus subpopulation

1 (Virion.day)-1 Assumption

c Susceptible subpopulation natural birth rate 10.7 Person.day-1 [11]

d Susceptible-coronavirus interaction rate 0.1 (Virion.day)-1 Assumption

p Susceptible-coronavirus interaction prevention rate 0.05 (Virion.day)-1 Assumption

e Susceptible subpopulation natural death rate 0.0062 Day-1 [11]

f Infected subpopulation recovery rate 1 Day-1 [12]

g Susceptible-infected interaction rate 0.0707 (Person.day)-1 [13]

h Infected subpopulation death rate due to coronavirus infection 0.02 Day-1 [11]
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not zero because the zero value of the parameter means no
interaction in the system or the parameter does not affect
the model. Also, some parameter values are set (assumed)
to get a qualitative result. The increase in the virus subpop-
ulation is assumed to be expressed by the parameter a which
does not depend on variables other than virus subpopulation
to accommodate all possible factors that increase virus sub-
population and simplify the model.

Based on the interactions between virus, susceptible, and
infected subpopulations which are described as variables and
parameters of the model, we construct a compartment dia-
gram presented in Figure 1.

Based on the compartment diagram in Figure 1, a math-
ematical model can be formed as a system of nonlinear ordi-
nary differential equations with three-dimensional variables
and eight-dimensional parameters. The model is presented
as follows:

dV
dt

=V a − bV , 1

dS
dt

= c − d − p SV − eS + f I − gSI, 2

dI
dt

= d − p SV + gSI − f I − hI 3

Equation (1) represents the rate of change of the virus
population with respect to time which is denoted by a logis-
tic form with a as the coronavirus addition rate and b as the
ratio between the coronavirus addition rate to the maximum
population of the virus. The maximum population of the
virus is a/b.

Equation (2) represents the rate of change in the suscep-
tible population with respect to time. The first term is the
increase of susceptible population caused by the susceptible
population’s natural birth by c. The second term is the
reduction of the susceptible population due to its interaction
with the virus, where d denotes the interaction rate and p
denotes the interaction prevention rate. The third term is
the reduction of susceptible population caused by the sus-
ceptible population’s natural death with e as its rate. The
fourth term is the increase of susceptible population caused
by the infected population recovery where f represents the
rate. The fifth term is reducing the susceptible population
due to its interaction with the infected population with g
as its rate.

Equation (3) represents the rate of change in the infected
population with respect to time. The first term is the increase
of infected population due to the interaction between the
susceptible population and the virus where d denotes the
interaction rate and p denotes the interaction prevention
rate. The second term is the increase of the infected popula-
tion caused by its interaction with the susceptible population
by g. The third term is the reduction of the infected popula-
tion caused by the infected population recovery, where f
represents the rate. The fourth term is the reduction of
infected population caused by the infected population death
due to coronavirus with h as its rate.

3. Results and Discussion

3.1. Equilibrium Points. Equilibrium points represent a state
which illustrates a steady phenomenon in a very long time
condition. We investigate the equilibrium points of the
model by solving dV/dt = dS/dt = dI/dt = 0 [14–16] that
interprets a static number of each subpopulation over time.
Three equilibrium points of the model were found, i.e., the
disease-free equilibria, the sterile media endemic equilibria,
and the nonsterile media endemic equilibria.

Theorem 1. The disease-free equilibria of the model is E0 =
0, c/e, 0 . The sterile media endemic equilibria is Ei 1 = 0,
h + f /g, cg − e h + f /gh . Then, the nonsterile media endemic
equilibria is Ei2

= a/b, 2bgc − A + B /2bge, A + B/2bgh
and Ei3

= a/b, 2bgc − A − B /2bge,A − B/2bgh , where
A = bgc + pah − dah − be h + f and B = bgc + pah − dah −
be h + f 2 + 4bghac d − p .

Proof. By setting dV/dt = dS/dt = dI/dt = 0, we have

V a − bV = 0, 4

c − d − p SV − eS + f I − gSI = 0, 5

d − p SV + gSI − f I − hI = 0 6

From (4), we have V = 0 or V = a/b. We substitute V = 0
to (6) so we have I = 0 or S = h + f /g. Then, we substitute
V = 0 and I = 0 to (5) so we get S = c/e. Based on the calcu-
lation, we get an equilibria

E0 = 0, c
e
, 0 7

This equilibrium is called disease-free equilibrium
because it has a zero number of the virus and infected sub-
population, i.e., there is no positive case of COVID-19 in this
condition.

Then, by substituting V = 0 and S = h + f /g to (5), we
obtain I = cg − e h + f /gh. Based on the calculation, we
get an equilibria
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Figure 1: Compartment diagram of the interaction between virus,
susceptible, and infected subpopulations.
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Ei 1 = 0, h + f
g

, cg − e h + f
gh

8

This equilibrium is called the endemic balance of sterile
media because it does not contain viral subpopulations
attached to nonliving media, but the number of infected sub-
populations is not zero.

By eliminating equations (5) and (6), we get S = c − hI/e.
By substituting S = c − hI/e and V = a/b to (6), we have
I = A ± B/2bgh where A = bgc + pah − dah − be h + f
and B = bgc + pah − dah − be h + f 2 + 4bghac d − p .

Based on the calculation, we get an equilibria

Ei 2 =
a
b
,
2bgc − A + B

2bge , A + B
2bgh = V∗, S∗, I∗ ,

Ei 3 =
a
b
,
2bgc − A − B

2bge , A − B
2bgh ,

9

where A = bgc + pah − dah − be h + f and B = bgc + pah −
dah − be h + f 2 + 4bghac d − p . These equilibrium points
are called the first and second nonsterile media endemic
equilibria, respectively, because they contain a nonzero
number of the virus subpopulation attached to nonliving
media and a nonzero number of the infected subpopulation.

3.2. Existence and Biological Feasibility of Equilibrium
Points. The equilibrium points exist if every subpopulation
is well-defined mathematically, and they are biologically
feasible if every subpopulation has a nonnegative or positive
value because it interprets a number of subpopulations
which cannot possibly be negative. The disease-free equilib-
ria are biologically feasible if the virus, susceptible, and
infected subpopulation have a nonnegative value. The
endemic equilibrium points are biologically feasible if the
virus and susceptible subpopulation have a nonnegative
value while the infected subpopulation has a positive value.
It should be positive because the endemic equilibrium points
represent the existence of the infected subpopulation.

Theorem 2. The disease-free equilibria E0 = 0, c/e, 0 exists
and it is biologically feasible in every condition. The sterile
media endemic equilibria, Ei 1 = 0, h + f /g, cg − e h + f /gh
exists in every condition and it is biologically feasible if g >
e h + f /c or f < cg/e − h. The first nonsterile media endemic
equilibria Ei 2 = a/b, 2bgc − A + B /2bge,A + B/2bge
exists if p ≤ d + bgc + pah − dah − be h + f 2/4bghac and it
is not biologically feasible in any condition. The second nonster-
ile media endemic equilibria Ei 3 = a/b, 2bgc − A − B /2b
ge, A − B/2bgh exists if p ≤ d + bgc + pah − dah − be h
+ f 2/4bghac and it is biologically feasible if d < p ≤ d +
bgc + pah − dah − be h + f 2/4bghac, where A = bgc + pah

− dah − be h + f and B = bgc + pah − dah − be h + f 2 +
4bghac d − p .

Proof. In disease-free conditions, E0 exists and it is biologi-
cally feasible in every condition because the parameter
values are positive, including c and e. Therefore, c/e > 0.

In the endemic condition when the media is sterile, every
subpopulation in Ei 1 is well-defined mathematically, because
they have nonzero denominators and real numerators. On
the other hand, the infected subpopulation expression in
Ei 1 should have a positive value to represent an endemic
condition, so that it is biologically feasible. It is satisfied if
the numerator, i.e., cg > e h + f while the denominator, i.e.,
gh is always positive based on the condition that all the
parameters are positive. Hence, Ei 1 exists in every condition
and it is biologically feasible if cg > e h + f which is equiva-
lent to g > e h + f /c or f < cg /e − h

In the first endemic condition when the media is not
sterile, the value of B should be nonnegative in order to
make the susceptible and infected subpopulation expressions
in Ei2

well-defined mathematically. Hence, bgc + pah −
dah − be h + f 2 + 4bghac d − p ≥ 0 which is equivalent
to p ≤ d + bgc + pah − dah − be h + f 2/4bghac. Thus, Ei 2
exists if p ≤ d + bgc + pah − dah − be h + f 2/4bghac. Then,
the value of A + B should be positive A + B > 0 and
2bgc − A + B should be nonnegative 2bgc ≥ A + B
in order to satisfy the condition that requires a positive
value of the infected subpopulation and a nonnegative value
of the susceptible subpopulation, so that it is biologically
feasible. But, if B is nonnegative, we obtain −bgc + pah −
dah − be h + f + B ≥ 0 which is equivalent to −2bgc + b
gc + pah − dah − be h + f + B ≥ 0. It implies bgc + pah −
dah − be h + f + B ≥ 2bgc which equivalent to A + B
≥ 2bgc This condition is contradictive with the require-
ment to guarantee the value of the susceptible subpopula-
tion that should be nonnegative, i.e., 2bgc ≥ A + B .
Thus, Ei 2 = a/b, 2bgc − A + B /2bge, A + B/2bgh is
not biologically feasible in any condition.

In the second endemic condition when the media is not
sterile, the value of B should be nonnegative in order to make
the susceptible and infected subpopulation expressions in Ei3

well-defined mathematically. It implies bgc + pah − dah −
be h + f 2 + 4bghac d − p ≥ 0 which is equivalent to p ≤ d
+ bgc + pah − dah − be h + f 2/4bghac. Thus, Ei 3 exists if
p ≤ d + bgc + pah − dah − be h + f 2/4bghac. Then, the
value of A − B should be positive A > B and 2bgc −
A − B should be nonnegative 2bgc ≥ A − B in order
to satisfy the condition that requires a positive value of the
infected subpopulation and a nonnegative value of the suscep-
tible subpopulation, so that it is biologically feasible. Based on
the form ofA and B, the value ofA is always greater than B
if p > d. Beside that, if B is nonnegative, we obtain the value of
−bgc + pah − dah − be h + f − B ≤ 0 which is equivalent
to −2bgc + bgc + pah − dah − be h + f − B ≤ 0. It implies
bgc + pah − dah − be h + f − B ≤ 2bgc which equivalent
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to A − B ≤ 2bgc Hence, we found that Ei 3 is biologically
feasible if d < p ≤ d + bgc + pah − dah − be h + f 2/4bghac

3.3. Local Stability of Equilibrium Points. Fluctuation of the
number of viruses, susceptible, and infected subpopulations
around the equilibrium points are represented by their local
stability. We predict the dynamic of each subpopulation
starting around the equilibrium point by analyzing the local
stability using the linearization method [14–16]. We also use
MAPLE to compute some results of algebraic operations, so
that calculation error is avoided and accuracy of the calcula-
tion is obtained.

Theorem 3. Local stability of E0, Ei 1, Ei 2, and Ei 3 are iden-
tified as follows.

(i) E0 is saddle if gc/e ≠ h + f

(ii) Local stability of Ei 1 is categorized as follows

(1) Consider cg − ef /h 2 = 4 cg − e h + f

(a) If cg − ef /h < 0, then Ei 1 is unstable (node)

(b) If cg − ef /h > 0, then Ei 1 is saddle

(2) Consider cg − ef /h 2 > 4 cg − e h + f

(a) If cg − ef /h > 0, then Ei 1 is saddle

(b) If cg − ef /h < 0, then Ei 1 is unstable (node)

(3) Consider cg − ef /h 2 < 4 cg − e h + f

(a) If cg − ef /h > 0, then Ei 1 is saddle-focus
(unstable)

(b) If cg − ef /h < 0, then Ei 1 is focus-node
(stable)

(iii) Local stability of Ei 2 is categorized as follows

(1) Consider e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 2

= 64e3b3h3 ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2

(a) If e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0,

then Ei 2 is asymptotically stable

(b) If e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0,

then Ei 2 is saddle

(2) Consider e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 2 > 64e3b3h3

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2.

If ef b + ebh 2 + 2eb f + h d − p ah − bcg

+ d − p ah + bcg 2 > 0, then there are two cases
as follows

(a) e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0

implies Ei 2 is asymptotically stable

(b) e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0

implies Ei 2 is saddle

(3) Consider e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 = 0.

If ef b + ebh 2 + 2eb f + h d − p ah − bcg +
d − p ah + bcg 2 > 0, then Ei 2 is neutral stable

(4) Consider

e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg

+ d − p ah + bcg 2 2 < 64e3b3h3 ef b + e

bh 2 + 2eb f + h d − p ah − bcg + d − p ah
+ bcg 2

(a) If e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0,
then Ei 2 is focus-node (stable)

(b) If e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0,
then Ei 2 is saddle-focus (unstable)

(iv) Local stability of Ei 3 is categorized as follows

(1) Consider − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 2

= −64e3b3h3 ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2

(a) If − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2

> 0 , then Ei 3 is asymptotically stable

(b) If − e − h ah d − p + b cg − ef + e + h −beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2

< 0, then Ei 3 is saddle

(2) Consider − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2
2

> −64e3b3h3. If ef b + ebh 2 + 2eb f + h d − p a
h − bcg + d − p ah + bcg 2 > 0, then Ei 3 is
saddle

(3) Consider − e − h ah d − p + b cg − ef + e + h −beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 = 0.

If ef b + ebh 2 + 2eb f + h d − p ah − bcg
+ d − p ah + bcg 2 > 0, then Ei 3 is saddle
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Proof. Linearization of the model yields the Jacobian matrix
of the model as follows.

J Ek =
a − 2bV 0 0
− d − p S −e − d − p V f − gS

d − p S d − p V + gI gS − f − h

,

10

for k = 0 i 1 , i 2, and i 3

Consider λ as the eigenvalue of the Jacobian Matrix in
(10), we obtain the characteristic equation of J E0 as follows:

λ − a λ + e λ −
gc
e

− f − h = 0 11

Hence, we obtain λ1 = a > 0, λ2 = −e < 0, and λ3 = gc/e
− f − h Based on the eigenvalues, E0 is saddle if gc/e ≠ h + f .

Based on the Jacobian matrix, we found that a character-
istic equation of J Ei 1 is

λ − a λ2 + cg − ef
h

λ + cg − e h + f = 0 12

Hence, we obtain λ1 = a > 0 and λ2 3 = 1/2 − cg − ef /

h ± cg − ef /h 2 − 4 cg − e h + f , where 4 cg − e h + f

> 0 because of Ei 1 biological feasibility condition. Based
on the expression of λ2 3, we categorize Ei 1 local stability
conditions as follows:

(1) Consider cg − ef /h 2 = 4 cg − e h + f . We found
two cases below

(a) If cg − ef /h < 0, then λ1 > 0, λ2,3 > 0. Hence, Ei 1
is unstable (node)

(b) If cg − ef /h > 0, then λ1 > 0, λ2,3 < 0 Hence, Ei 1
is saddle

(2) Consider cg − ef /h 2 > 4 cg − e h + f . We obtain
two cases below

(a) If cg − ef /h > 0, then λ1 > 0, λ2,3 < 0 Hence, Ei 1
is saddle

(b) If cg − ef /h < 0, then λ1 > 0, λ2,3 > 0. Hence, Ei 1
is unstable (node)

(3) Consider cg − ef /h 2 < 4 cg − e h + f We found
two cases below

(a) If cg − ef /h > 0, then λ1 > 0, λ2,3 = x1 ± iy1, where
x1 = −cg − ef /2h < 0, y1 = 4 cg − e h + f − cg − ef /h 2/2
Hence, Ei 1 is saddle-focus (unstable)

(b) If cg − ef /h < 0, then λ1 > 0, λ2,3 = x ± iy, where
x = −cg − ef /2h > 0, y = 4 cg − e h + f − cg − ef /h 2/2.
Hence, Ei 1 is focus-node (stable)

Based on the Jacobian matrix, we found a characteristic
equation of J Ei 2 as follows:

λ + a λ2 +Q1λ + R1 = 0, 13

where Q1 = e − h ah d − p + b cg − ef + e + h beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 and

R1 = 4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2, so

that λ1 = −a < 0 and λ2 3 = −Q1 ± Q1
2 − 4P1R1 /2P1.

Based on the expression of λ2 3, we categorize Ei 2 local
stability conditions as follows:

(1) Consider Q2
1 = 4P1R1 which is equivalent

to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 2 =
64e3b3h3 ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2.
We obtain two cases below

(a) If Q1 > 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0,
then λ1 < 0, λ2 3 = − Q1 /2P1 < 0 Hence, Ei 2
is asymptotically stable

(b) If Q1 < 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0,
then λ1 < 0, λ2 3 = λ2 3 = − Q1 /2P1 > 0 Hence,
Ei 2 is saddle

(2) Consider Q2
1 > 4P1R1 which is equivalent

to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 2
> 64e3b3h3

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2.
If R1 > 0 which is equivalent to
4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0

which is only satisfied if ef b + ebh 2 + 2eb f + h
d − p ah − bcg + d − p ah + bcg 2 > 0, then there

are two implications, i.e.

(a) Q1 > 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0

yields −Q1 ± Q1
2 − 4P1R1 < 0, so that

λ1 < 0, λ2 3 < 0 Hence, Ei 2 is asymptotically stable

(b) Q1 < 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0
yields −Q1 ± Q1

2 − 4P1R1 > 0, so that λ1 < 0,
λ2 3 > 0 Hence, Ei 2 is saddle
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The inequality R1 < 0 will not be satisfied for any
value, because there is no value that satisfies

4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0.

(3) Consider Q1 = 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 = 0.
If R1 > 0 which is equivalent to
4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0,
then λ1 < 0, λ2 3 = ± 4P1R1/2P1 i Hence, Ei 2 is neu-
tral stable. The inequality R1 < 0 will not be satisfied
for any value, because there is no value that satisfies
4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0

(4) Consider Q2
1 < 4P1R1 which is equivalent

to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2
2
< 64e3b3h3

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2. We
obtain two cases below

(a) If Q1 > 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0,

then λ1 < 0, λ2,3 = x2 ± iy2, where x2 = −Q1/2P1
< 0, y2 = 4P1R1 −Q2

1/2P1 Hence, Ei 2 is
focus-node (stable)

(b) If Q1 < 0 which is equivalent
to e − h ah d − p + b cg − ef + e + h beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0,

then λ1 < 0, λ2,3 = x2 ± iy2, where x2 = −Q1/2P1
> 0, y2 = 4P1R1 −Q2

1/2P1 Hence, Ei 2 is
saddle-focus (unstable)

Based on the Jacobian matrix, we found a characteristic
equation of J Ei 2 as follows:

λ + a λ2 +Q2λ + R2 = 0, 14

where Q2 = − e − h ah d − p + b cg − ef + e + h −beh +
ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 and

R2 = −4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2,

so that λ1 = −a < 0 and λ2 3 = −Q2 ± Q2
2 − 4P2R2 /2P2.

Based on the expression of λ2 3, we categorize Ei 3 local sta-
bility conditions are as follows:

(1) Consider Q2
2 = 4P2R2 which is equivalent

to − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2
2
= −64e3b3h3

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2.
We obtain two cases below

(a) If Q2 > 0 which is equivalent
to − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0,

then λ1 < 0, λ2 3 < 0 Hence, Ei 3 is asymptoti-
cally stable

(b) If Q2 < 0 which is equivalent
to − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2

< 0, then λ1 < 0, λ2 3 > 0 Hence, Ei 3 is saddle

(2) Consider Q2
2 > 4P2R2 which is equivalent

to − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 2

> −64e3b3h3 ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p

ah + bcg 2. If R2 < 0 which is equivalent to
−4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0

which is only satisfied if ef b + ebh 2 + 2eb f + h
d − p ah − bcg + d − p ah + bcg 2 > 0, then the
value of λ2 3 = −Q2 ± Q2

2 − 4P2R2 /2P2 are always
opposite in sign for any value of Q2. Hence, Ei 3 is
saddle. The inequality R2 > 0 will not be satisfied for
any value, because there is no value that satisfies
−4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0

(3) Consider Q2 = 0 which is equivalent
to − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 = 0.
If R2 < 0 which is equivalent to
−4beh ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 < 0

which is only satisfied if ef b + ebh 2 + 2eb f + h
d − p ah − bcg + d − p ah + bcg 2 > 0, then the
value of λ2 3 = −Q2 ± Q2

2 − 4P2R2 /2P2 are
always opposite in sign. Hence, Ei 3 is saddle. The
inequality R2 > 0 will not be satisfied for any value,
because there is no value that satisfies −4beh

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2 > 0

The inequality Q2
2 < 4P2R2 which is

quivalent to − e − h ah d − p + b cg − ef + e + h −beh +

ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2
2

< −64e3b3h3 ef b + ebh 2 + 2eb f + h d − p ah − bcg + d − p ah + bcg 2

will not be satisfied for any value, because the value on the
left-hand side is always nonnegative, while the value on the
right-hand side is always negative.

3.4. Bifurcation Analysis. We define the difference between
susceptible-coronavirus interaction and its prevention rate
as η, i.e., η = d − p. We investigate the effect of treatment-
related parameters variation on population dynamic, i.e.,
infected subpopulation recovery rate f and the difference
between susceptible-coronavirus interaction and its preven-
tion rate η . We choose f and η as the varying parameters
because they are related to preventive or repressive actions
that can be taken to overcome corona. Based on the bifurca-
tion analysis, we will investigate the effect of varying those
parameters on the dynamics of coronavirus, susceptible,
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and infected subpopulation in order to determine some cri-
teria used to get an optimal treatment for corona.

The characteristic equation in (13) is equivalent to

λ3 + Z1λ
2 + Z2λ + Z3 = 0, 15

where Z1 = a −Q1, Z2 = R1 − aQ1, and Z3 = aR1. We use the
characteristic equation in (15) to identify some bifurcations
in codimension-one and codimension-two bifurcation. We
also use MAPLE again to compute some results of algebraic
operations.

3.5. Codimension-One Bifurcation. Codimension one bifur-
cation is investigated in order to characterize the effect of a
varying parameter on the dynamics of the solution that rep-

resents the fluctuation of coronavirus, susceptible, and
infected subpopulation.

Theorem 4. Branch point bifurcation of equilibria occurs at
f = cg/e − h

Proof. By considering the existing condition of E0 and Ei 1,
we obtain that E0 and Ei 1 exist in every condition. If we
set f < cg/e − h, we obtain that E0 and Ei 1 are two different
existing equilibrium points. Then, if we increase f , so that
f = cg/e − h, we found that the infected subpopulation in
Ei 1 is cg − e h + f /gh = cg − e h + cg/e − h /gh = 0 and the
susceptible subpopulation in Ei 1 is h + f /g = h + cg/e − h /
g = c/e, so that E0 = Ei 1. It means that E0 and Ei 1 collide at
f = cg/e − h. Then, if we increase f , so that f > cg/e − h, we

f
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Figure 2: Branch point bifurcation of equilibria obtained by continuing Ei 1 as f varies. (a) Branch point bifurcation of equilibria
diagram. (b) Phase portrait of the solution around Ei 1 at f = 99 91226422867852. (c) Phase portraits of the solution around E0 at
f = 99 91226422867852 and f = 145 0542992094782.
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found that E0 and Ei 1 are two different existing equilibrium
points again. Thus, a branch point bifurcation of equilibria
occurs at f = cg/e − h.

Theorem 5. Fold bifurcation occurs at the following values:
η1 = −b/ah cg + ef + eh + 2b cge f + h and η2 = −b/ah
cg + ef + eh − 2b cge f + h

Proof. Based on the theory in [17] and the characteristic
equation in (15), we found that fold bifurcation occurs if
−Z3 = 0 which is equivalent to −aR1 = 0. It is satisfied if
R1 = 0. By doing some algebraic calculations in the equation
R1 > 0 and defining U = a2h2, V = 2abh cg + ef + eh , W =
2b2e ef h − cf g − cgh + b2 c2g2 + e2 f 2 + e2h2 , we found
that R1 = 0 is equivalent to 4beh Uη2 + Vη +W = 0 which
is satisfied if Uη2 +Vη +W = 0. The values of η that fulfill
it are η1 = −b/ah cg + ef + eh + 2b cge f + h and η2 =
−b/ah cg + ef + eh − 2b cge f + h .

Consider C = −b 2cgh − e2 f − eh2 − f h2 − h3 /2ah2, D =
e + h/2ah2, E = 4cgh − 2ef h + h3 + f h2 f + h + f 2e2, K = a

h2 −4b2e2h + a
2
e − h , L = a3h3 − a2h4 + 8ab2cegh4 + 32

b4e5 f h4 − 32b4e4 f h5 + 8ab2e2h5 − a2e2 f h − 8ab2e4h3,M = 64
b4ce3 f gh4 + 64b4ce3gh5 − 16ab2ce2 f gh2 − 16ab2ce2gh3 − 16
ab2cef gh3 − 16ab2cegh4 + a4h2 + 2a3ef h − 2a3 f h2 − 2a3h3 +
4a2cf gh + 4a2cgh2 + a2e2 f 2 − 2a2ef 2h − 2a2ef h2 + a2 f 2h2

+ 2a2 f h3 + a2h4,N = −8ab2ce3gh2 − 8ab2e4 f h2 + 8ab2e2 f h4
+ 32b4ce4gh4 + 2a2cegh − a2 f h3 − 32b4ce3gh5 + a2e3 f −
32b4e4h6 + a3e2h − 2a3eh2 + a2e2h2 + 32b4e5h5, and S =
−2a2cgh2 + a2ef h2.

Theorem 6. Hopf bifurcations occur at the following values
η1 = C +D E, η2 = C −D E, η3 = − b/2K L − e − h
M 8b2e2h2 − a e + h +N + S , and η4 = b/2K −L − e −

h M 8b2e2h2 − a e + h −N − S .

Proof. Based on the theory in [17] and the characteristic
equation in (15), we obtain that Hopf bifurcation occurs when
−Z3 = Z2 −Z1 which is equivalent to −aR1 = R1 − aQ1
Q1 − a . It fulfilled if Q1 = 0 or aQ1 = R1 + a2. The values
of η that satisfies Q1 = 0 are η1 = C +D E and η2 = C −D
E. Besides that, the values of η that satisfies aQ1 = R1 + a2

are η1 = −b/2K L − e − h M 8b2e2h2 − a e + h +N + S
and η2 = b/2K −L − e − h M 8b2e2h2 − a e + h −N
− S .

3.6. Codimension-Two Bifurcation. Codimension-two bifur-
cation is investigated in order to characterize the effect of
two varying parameters on the dynamics of the solution that
represent the fluctuation of coronavirus, susceptible, and
infected subpopulation.

Theorem 7. Bogdanov-Takens bifurcations occur at the
following values f1 = ceg − cgh + 2eh2 +

cg e − h ceg − cgh + 4e2h /2e e − h and f2 = ceg − cgh
+ 2eh2 − cg e − h ceg − cgh + 4e2h /2e e − h .

Proof. Based on the theory in [17] and the characteristic equa-
tion in (15), we obtain that Baogdanov-Takens bifurcation
occurs when −Z3 = Z2 = 0 which is equivalent to −aR1 = R1
− aQ1 = 0. It is satisfied if Q1 = R1 = 0. By solving R1 = 0 with
respect to a, we obtain a1 = 1/ηh − cg + ef + eh + 2

cge f + h or a2 = 1/ηh − cg + ef + eh − 2 cge f + h .
Then, by solving the equation formed after substituting
a = a1 to Q1 = 0 with respect to f , we found f1 = ceg − c
gh + 2eh2 + cg e − h ceg − cgh + 4e2h /2e e − h and f2
= ceg − cgh + 2eh2 − cg e − h ceg − cgh + 4e2h
/2e e − h . Then, by solving the equation formed after
substituting a = a2 to Q1 = 0 with respect to f , we found
f3 = ceg − cgh + 2eh2 − cg e − h ceg − cgh + 4e2h
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Figure 3: Codimension-one and two bifurcations obtained by continuing Ei 2 as η or f varies. (a) Bifurcation diagram in η, I space: green
curve denotes the codimension-one bifurcation diagram (equilibrium curve) and blue curve denotes the codimension-two bifurcation
diagram (Hopf/Fold curve). (b) Bifurcation diagram in η, f space.

9Journal of Applied Mathematics



/2e e − h = f2 and f4 = ceg − cgh + 2eh2 +
cg e − h ceg − cgh + 4e2h /2e e − h = f1.

4. Numerical Continuation

We do a numerical analysis to determine the other bifurca-
tions that have not been identified analytically due to the
complexity, such as the saddle-node bifurcation of cycle,
branch point bifurcation of cycle, and homoclinic bifurca-
tions. Analytical detection of saddle-node bifurcation of
cycle and branch point bifurcation of cycle requires the
determination of the cycle analytically which in general, in
a three-dimensional system, the cycle is not known, so that
it can only be identified numerically [18]. Analytical detec-
tion of homoclinic bifurcations needs the determination of
homoclinic orbit analytically whereas it is usually hard to
do because the occurrence of it is associated with a global

bifurcation, so in general, we have to determine it numeri-
cally in order to analyze and continue its loci in some
parameters [19]. Besides that, when we tried to apply the
Melnikov method [20] to determine the homoclinic orbit;
we had a hard time transforming the model such that it is
reduced to the Melnikov condition. This kind of difficulty
has also been presented in [21]. Hence, those discussions
become some open problems in this research.

We use the bifurcations that have been identified analyt-
ically as the initial point to investigate the other bifurcations
by conducting some continuations of the equilibrium points,
bifurcation value, and limit cycle as the parameters vary
using MATCONT. Furthermore, some phase portraits
which describe the different phenomena that occurred when
the parameters vary are illustrated using MATLAB. Some
specific phenomena, such as homoclinic orbits and an indi-
cation of chaotic dynamic are also found and investigated in
the simulation. We do not investigate the bifurcations with
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Figure 4: Continuation of limit cycle formed at the Hopf point. (a) Continuation of the limit cycle in η, I space: green curve denotes the
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neutral saddle properties, because they have no dynamical
interpretation [22].

4.1. Effect of Infected Subpopulation Recovery Rate f
Variation. Continuation of virus-absence endemic equilibria
Ei 1 = 0, 14 427157, 530 5275813 as the infected subpopu-
lation recovery rate f varies generates a branch point
bifurcation of equilibria and two Hopf bifurcations with
neutral saddle properties, see Figure 2.

Branch point bifurcation of equilibria will occur at f =
121 994516 by increasing the infected subpopulation recov-
ery rate when saddle type of disease-free and virus-absence
endemic equilibrium exists. The saddle type of sterile media
endemic equilibria will not be biologically feasible, while the
saddle type of disease-free equilibria is still biologically feasi-
ble if the recovery rate continues to increase.

From a biological point of view, increasing the infected
subpopulation recovery rate implies the disappearance of
endemics in the population with sterile media while main-
taining the existence of disease-free condition. Branch point
bifurcation of equilibrium value becomes the minimum limit

of the recovery rate so that an endemic does not exist in the
population when the media is sterile.

4.2. Effect of Difference of Susceptible-Coronavirus Interaction
and Its Prevention Rate η and Infected Subpopulation
Recovery Rate f Variation. In codimension-one bifurcation,
continuation of nonsterile media endemic equilibria Ei 2 =
100, 12 73165798, 531 053186 as a difference between
susceptible-coronavirus interaction and its prevention rate
η varies triggers fold and Hopf bifurcation. In codimension-
two bifurcation, a continuation of the Hopf point generates
the Hopf curve, which triggers two Bogdanov-Takens when
it intersects the fold curve generated by continuing the fold
point. The fold curve also triggers zero-Hopf bifurcation that
has neutral saddle properties as η and f varies, see Figure 3.

Increasing the preventing rate of human-nonhuman
host interaction causes the collision of two endemic
equilibria at the fold point, i.e., η = −0 31224, and then they
disappear. An unstable limit cycle is constructed at Hopf
point, i.e., η = −0 302355 as the preventing rate decreases a
bit. The first Bogdanov-Takens bifurcation is obtained at
BT1 = η, f = −0 378189,−0 019999 when the prevention
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rate increases and the infected subpopulation recovery rate
decreases while the second Bogdanov-Takens bifurcation is
obtained at BT2 = η, f = 0,121 976546 when the preven-
tion rate decreases and the infected subpopulation recovery
rate increases.

The biological interpretation of the phenomena is
described as follows. The fold bifurcation phenomenon repre-
sents the nonexistence of endemic conditions as the preven-
tion rate increases. The unstable limit cycle is constructed
when Hopf bifurcation is obtained as a disease cycle [23],
i.e., a continuous fluctuation of susceptible and infected sub-
populations in COVID-19 transmission. The Bogdanov-
Takens bifurcations represent some complex phenomena
indicated by homoclinic orbit and strange attractors that are
constructed near them. Discussion of those phenomena will
be presented in the related section.

4.3. Limit Cycle Continuation. The continuation of the unsta-
ble limit cycle formed at the Hopf point as the prevention
rate varies generates two saddle-node bifurcations of cycles
and one branch point bifurcation of cycle, see Figure 4.

A branch point bifurcation of cycle at η, T =
−0 302354899739811,22 7086474018808 is obtained by
decreasing the prevention rate. Symmetric cycles are generated
after the occurrence of this bifurcation [24]. After that, the first

saddle-node bifurcation of cycle occurs at SN1 = η, T =
−0 302354897917967,22 708990217331188 when the pre-
vention rate keeps decreasing. At this stage, the unstable
cycle that is generated at the Hopf point is annihilated,
and stable cycles with increasing amplitude start to be
gained until the second saddle-node bifurcation of cycle
at SN2 = η, T = −0 302334740436822,59 09595907506112 .
At the second saddle-node bifurcation of cycle, the stable cycle
is annihilated and the unstable cycle is constructed.

The biological meaning of the mathematical results
above is explained as follows. After the second saddle-node
bifurcation of cycle, stable symmetric cycles with decreasing
amplitude start to be formed until the first saddle-node
bifurcation of the cycle constructs an unstable symmetric
cycle as the rate of prevention increases. The stable symmet-
ric cycles ensure that the fluctuation of susceptible and
infected subpopulation are easier to control through their
stability property and regular pattern. Increasing the preven-
tion rate makes fluctuation even easier to control, because
the amplitude of the stable symmetric cycles decreases. The
two saddle-node bifurcations of the cycle become the indica-
tor (checkpoint) [25] to generate cycles that play a role as the
control of susceptible and infected subpopulation dynamics.
The best value of the prevention rate to control the dynamic
is at the first saddle-node bifurcation of cycle because the
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amplitude of the stable symmetric cycle formed at this state
is the smallest one.

4.4. Homoclinic Orbit and Homoclinic Bifurcation Generated
near the Bogdanov-Takens Bifurcation. The Bogdanov-
Takens bifurcations trigger some homoclinic orbits through
continuation. Continuation of these homoclinic orbit in
codimension-two bifurcation generates some homoclinic
bifurcations [26–29]. A family of homoclinic orbits near
BT1 and some homoclinic bifurcations that were found by
making a continuation of the homoclinic orbit as η and f
vary are presented in Figure 5.

Orbit-flip with respect to the stable manifold (OFS),
inclination-flip with respect to stable manifold (IFS), and
neutrally-divergent saddle focus (stable) (NDS) bifurcation
are obtained through a forward continuation of the homocli-
nic orbit generated near BT1 as η and f vary. Backward con-
tinuation of the homoclinic orbit generated near BT1 as η
and f vary yields Neutral saddle (NS) and orbit-flip concern-
ing the stable manifold (OFS) bifurcation.

A family of homoclinic orbits near BT2 and some homo-
clinic bifurcations that were found by making forward and
backward continuation of a homoclinic orbit are shown in
Figure 6.

Noncentral homoclinic to saddle-node (NCH), inclination-
flip with respect to unstable manifold (IFU), inclination-flip
with respect to stable manifold (IFS), and orbit-flip with respect
to the stable manifold (OFS) bifurcation are found through a
backward continuation of the homoclinic orbit constructed
near BT2.

The homoclinic orbits show a complex dynamic around
the Bogdanov-Takens bifurcations. It joins a saddle equilib-
ria to itself, i.e., they lay in the intersection of stable and
unstable manifolds of equilibria.

The biological interpretation of the homoclinic orbits is
described as follows. The homoclinic orbits represent a com-
plex pattern of susceptible and infected subpopulation dynam-
ics which occur when the prevention rate is equal to the
infected subpopulation recovery rate or the prevention rate
increases as the infected subpopulation recovery rate decreases.
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4.5. Strange Attractor Generated near Homoclinic Bifurcation.
Homoclinic orbit is possible to become an indication of a
chaotic dynamic [30]. We especially investigate the attractors
generated near an IFU bifurcation point IFUc = η, f =
−2 529374340442139 10−9, 121 9744535211115 , because
the dynamic of the attractors is possible to be chaotic [31].
The possibility of the chaotic dynamic is investigated by calcu-
lating the Lyapunov exponent of coronavirus, susceptible, and
infected subpopulation numerically because they are difficult
or impossible to calculate analytically [32]. Justification of cha-
otic dynamic by analytical proof becomes an open problem in
this research. The attractors and their Lyapunov exponent are
illustrated in Figure 7.

Attractor generated at IFUc is possible to be chaotic
because the Lyapunov exponent of the variable representing
the coronavirus subpopulation has a positive value, i.e.,
0 004257. Dynamic difference of the phase portrait pre-
sented in Figures 7(a)–7(c) constructed by using the same
parameter set and some slightly different initial values also
show that the attractor has a sensitive response to the initial
value, which is the characteristic of a chaotic attractor.

From a biological point of view, the phenomena repre-
sent an indication of the complexity that occurs in the
dynamic. It illustrates that the fluctuation of susceptible
and infected subpopulations have an irregular pattern that
is difficult to predict when the prevention rate increases
while the recovery rate decreases. This case represents an
incident when the susceptible coronavirus prevention rate
of humans increases, but on the other hand, the recovery
rate of the infected subpopulation decreases.

5. Conclusions

Interaction between coronavirus attached in nonliving
media, susceptible, and infected subpopulations in a popula-
tion can be represented by a mathematical model. Numerical
bifurcation analysis of the model gives some characteristics
that represent the effect of infected subpopulation recovery
rate and susceptible-coronavirus prevention rate variation
on changing the dynamics of COVID-19 transmission.

Increasing infected subpopulation recovery rate implies
the disappearance of endemic in the population while main-
taining the biological feasibility of the disease-free condition.
Branch point bifurcation of equilibrium value becomes the
minimum limit of the recovery rate so that the endemic does
not exist in the population when the media is sterile.

Increasing the rate of preventing interaction between
viruses and susceptible subpopulations implies the collision
of two endemic conditions at the fold point and then disap-
pear. It represents the nonexistence of endemic conditions in
the population when the media is not sterile as the preven-
tion rate increases. At the condition represented by the Hopf
point, there is a cycle that interprets a continuous fluctuation
of the susceptible and infected subpopulations.

When the media is not sterile, increasing the susceptible-
coronavirus prevention rate makes the fluctuation of
infected and susceptible subpopulations easier to control
by generating a stable cycle of the infected and susceptible
subpopulations with regular patterns. The two saddle-node

bifurcations of cycle become the sign to generate the cycles.
The best value of the prevention rate to control the fluctua-
tion of the infected subpopulation is at the first saddle-node
bifurcation of cycle.

According to the indication of chaotic dynamic in the
population when the media is not sterile, which repre-
sents an unpredictable fluctuation pattern of a susceptible
and infected subpopulation, increasing the susceptible-
coronavirus prevention rate and decreasing the recovery
rate of the infected subpopulations should be avoided as
a precaution against the phenomenon.
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