
Research Article
Importance of Activation Energy on Magnetized Dissipative
Casson-Maxwell Fluid through Porous Medium Incorporating
Chemical Reaction, Joule Heating, and Soret Effects:
Numerical Study

Nesreen Althobaiti

Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Nesreen Althobaiti; nalthobaiti@gmail.com

Received 2 August 2023; Revised 6 December 2023; Accepted 14 December 2023; Published 5 January 2024

Academic Editor: Oluwole D. Makinde

Copyright © 2024 Nesreen Althobaiti. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

In recent decades, the study of non-Newtonian fluids has attracted the interest of numerous researchers. Their study is encouraged
by the significance of these fluids in fields including industrial implementations. Furthermore, the importance of heat and mass
transfer is greatly increased by a variety of scientific and engineering processes, including air conditioning, crop damage,
refrigeration, equipment power collectors, and heat exchangers. The key objective of this work is to use the mathematical
representation of a chemically reactive Casson-Maxwell fluid over a stretched sheet circumstance. Arrhenius activation energy
and aspects of the magnetic field also have a role. In addition, the consequences of both viscous dissipation, Joule heating, and
nonlinear thermal radiation are considered. The method transforms partial differential equations originating in fluidic systems
into nonlinear differential equation systems with the proper degree of similarity which is subsequently resolved utilizing the
Lobatto IIIA technique’s powerful computing capabilities. It is important to recall that the velocity profile drops as the
Maxwell fluid parameter increases. Additionally, the increase in the temperature ratio parameter raises both the fluid’s
temperature and the corresponding thickness of the boundary layer.

1. Introduction

When describing fluid flow with viscosity that is dependent
on shear, the power-law model is commonly employed.
However, one cannot predict the consequences of flexibility.
Fluids of either the second or third grade can exhibit the
properties of elasticity. However, the viscosity does not
become shear dependent with these sculptures. Additionally,
they are unable to assess the outcomes of stress reduction.
The Maxwell model, a class of fluids that has gained promi-
nence, can be used to predict stress relaxation. Similar to the
Maxwell model, a strictly elastic spring and strictly viscous
damper might be expressed. The simulations of Maxwell
nanofluid flow have attracted the interest for numerous sci-
entists. The fractional model and the unstable nonlinear
Cattaneo-Friedrich Maxwell (CFM) model were studied by

Saqib et al. [1]. The fractional model is constructed from
the fractional constitutive equations. Bayones et al. [2]
looked upon the magnetic dissipative Soret of the continu-
ous 2D Maxwell fluid flow across a stretching sheet involv-
ing Joule heating and chemical reaction inside a porous
media. Plenty of research may be found in [3–12].

Due to the growing number of industrial applications
and developing technology, non-Newtonian models of
fluid flows have attracted more scholarly interest in recent
years. Understanding of fluid dynamics and heat transmis-
sion requires a detailed study of the non-Newtonian fluid
flow field at a boundary layer close to a stretched sheet.
Numerous modern hypotheses have benefited from the
research on non-Newtonian fluids. The Casson fluid is a
non-Newtonian fluid with particular characteristics. The
viscoelastic liquid model was initially presented by Casson
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in 1995. This model can now predict high shear-rate vis-
cosity even in the absence of low and intermediate
shear-rate data, which is useful for fuel engineers who evalu-
ate sticky slurries. Kumar et al. [13] studied Casson nanofluid
flow on a curved sheet. The stretching cylinder was used by
Tamoor et al. [14] to present how the magnetic field impacted
the flow of the Casson fluid. To distinguish the various com-
ponents of heat transmission, they also used viscous dissipa-
tion and Joule-heating conditions. The references mention a
number of additional works that discuss the Casson fluid
model [15–17].

In recent years, non-Newtonian fluid flows have gained
attention due to their significance in many industrial and
technical operations. But their rheological characteristics
are so diverse that it is not possible to analyse their behavior
with a single constitutive correlation. As a result, many fluid
models have been created to accurately characterise the
properties of non-Newtonian materials. In a parabolic
trough solar collector, Casson-Maxwell, Casson-Jeffrey, and
Casson-Oldroyd-B binary nanofluids were compared with
engine oil by Raafat and Ibrahim [18]. With the appropriate
similarity variables, the partial differential equations control-
ling the flow of nanofluids were converted into ordinary dif-
ferential equations to solve the model. The MHD boundary
layer with numerous slip conditions on the Williamson
and Maxwell nanofluid over a stretched sheet soaked in a
porous medium was discussed by Kanimozhi et al. [19].
For the velocity and temperature profiles with and without
suction, a dual solution was carried out. Gangadhar et al.
[20] investigated the viscoelastic properties of an axisym-
metric Casson-Maxwell nanoliquid flow across two station-
ary discs. Many studies have addressed the intricate non-
Newtonian properties of Casson-Maxwell models; they can
be found in [21, 22]. Furthermore, other investigations have
been identified [23–28].

The activation energy of a chemical reaction, or the min-
imum amount of energy required to initiate an activity, is
indirectly correlated with the reaction’s rate (such as a chem-
ical reaction). Using an adapted Buongiorno model, Jyothi
et al. [29] examined how activation energy affected the
dynamics of Casson hybrid nanofluid flow across an
upward/downward rotating disc. Kumar et al. [30] have con-
sidered concurrently single-multiwalled CNTs to investigate
the impacts of a micropolar nanofluid. The importance of
activation energy in the Maxwell fluid flow across a stretch-
ing cylinder was examined by Sowmiya and Kumar [31].
The results showed that as the heat generation/absorption
parameter values raised, the temperature and the related
boundary layer thickness decreased. Moreover, raising the
radiation parameter raises the fluid’s temperature, whereas
raising the activation energy parameter raises the concen-
tration boundary layer’s thickness. It is feasible to examine
more noteworthy studies on activation energy in various
settings [32, 33].

Magnetohydrodynamic (MHD) fluxes are necessary for
the construction of nuclear reactors as well as other techno-
logical and industrial applications. The mobility of electri-
cally conducting materials in a magnetic field is studied
using MHD. Several novel and anticipated researches have

shown how the presence of a magnetic field significantly
alters the transport characteristics and heat transfer of typi-
cal electrically conducting flows. Khan et al. [34] argued for a
time-dependent Casson fluid over a stretched surface utiliz-
ing a magnetic field, mass suction, and a nonuniform heat
source. Moreover, Dar [35] investigated the effects of ther-
mal radiation, heat source/sink, and thermal slip on blood
peristaltic flow caused by magnetic field alignment. Mohana
and Kumar [36] examined how radiation, a heat source, and
Joule-heating effects affected the form of the copper-water
nanofluid on MHD boundary layer flow and heat transfer
across a nonlinear stretched sheet in a porous media. The
bvp4c solver that comes with MATLAB is used to compute
the numerical solutions. Moreover, Padmaja et al. [37] inves-
tigated a chemically reactive Cu–H20 onMHD nanofluid swirl
coating flow on a rotating vertical electrically insulated cone
next to a porousmedium in the presence of a radial static mag-
netic field. Several studies are also found in [38, 39].

Porous media is a practical way to manage heat transfer
and control fluid velocity in a variety of manufacturing appli-
cations, such as radioactive waste disposal and oil extraction.
While a modified Darcy-Forchheimer model is utilized to for-
mulate problems involving high-speed flow, the characteristics
of this material are still explained by the classical Darcy rule. In
cell technologies, drying procedures, extraction of oils, mate-
rial processing, etc., porous media flows are highly concen-
trated. In order to describe the three-dimensional flow of
nanofluid in a porous medium, Muhammad et al. [40] dis-
cussed the Darcy-Forchheimer formula. Hassan et al. [41]
investigated convective heat transport in a porous material
through a wave-like surface using the Dupuit-Forchheimer
model. The Darcy-Brinkman-Forchheimer equation was used
by Bhatti et al. [42] to study the mathematical modelling of a
two-phase fluid flow model across a porous material in the
presence of an external magnetic field. Additionally, Padmaja
and Kumar [43] demonstrated the numerical analysis of a
nanofluid moving at a constant speed via a vertical plate in a
porous media under Dufour and Soret effects in conjunction
with a higher order chemical reaction. See [44–48] for a list
of further recent studies conducted in this topic.

This work is aimed at analysing the complex model of
two non-Newtonian models and determining the factors
that improve the efficiency of the device. Additionally, we
want to find novel characteristics of activation energy in
the Casson-Maxwell fluid under the influence of Joule heat-
ing, viscous dissipation, and nonlinear thermal radiation cir-
cumstances across a stretched permeable sheet. For binary
chemical reactions, the modified Arrhenius activation
energy formula is applied. The mathematical model is deci-
phered using the MATLAB programme by utilizing Lobatto
IIIA technique [49, 50]. To investigate how significant vari-
ables affect the properties of fluids, tables and graphs are
employed. The work’s novel outcomes further aid in deter-
mining performance in non-Newtonian fluid models and
significantly reduce energy loss in thermal devices. By using
the results of this work, thermal energy systems can be made
more competent and efficient in many industrial, engineer-
ing, and biomedical fields in a cost-effective and ecologically
friendly way.
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2. Flow Model and Mathematical Formulation

Consider a two-dimensional incompressible Casson-Maxwell
fluid model with an activation energy in the region y > 0
along a nonlinearly porous stretched sheet. This model is sub-
ject to the influence of a magnetic field, Joule heating, vis-
cous dissipation, and chemical reaction. Figure 1 depicts
the physical flow and coordinate system. With a fixed ori-
gin, the surface is stretched over the flow direction due to
the action of equal and opposing forces. However, the
sheet’s stretching along the x-axis caused fluid flow to
occur. It is further assumed that the stretching sheet’s sur-
face is kept at Tw and Cw. Additionally, it is expected that
Tw and Cw are larger than T∞ and C∞, respectively.

The rheological equation below could be used to the Cas-
son fluid (CF) as an isotropic, incompressible flow to [9]:

τij =
2 μB +

Py

2Π
eij, Π >Πc,

2 μB +
Py

2Πc
eij, Π <Πc

1

Py represents the Casson fluid yield stress provided by

Py =
μB 2Π

β3
2

When Π >Πc for the Casson fluid flow, then

μ0 = μB +
Py

2Π
3

Thus, the Casson number, plastic dynamic viscosity, and
fluid density all influence the kinematic viscosity; hence,

μ0 =
μB
ρ

1 + 1
β3

4

The ordinary Newtonian fluid is favoured by the consti-
tutive Eq. (4) when α⟶∞.

The one elastic parameter in the Maxwell model “λ”
makes it a straightforward linear model. This model derives
the following relationship by fusing the ideas of fluid viscos-
ity and solid elasticity [9].

τ + λ
∂τ
∂y

= μ0γ 5

The steady-state conditions guiding the flow model
equations within a porous media are provided below with
the aid of the aforementioned assumptions and boundary
layer assumptions as follows [6, 9, 10]:

∂u
∂x

+ ∂v
∂y

= 0, 6

u
∂u
∂x

+ v
∂v
∂y

= ν 1 + 1
α

∂2u
∂y2

− λ u2
∂2u
∂x2

+ v2
∂2u
∂y2

+ 2uv ∂2u
∂x∂y

−
σB2

0
ρ

u −
ν

k
u,

7

u
∂T
∂x

+ v
∂T
∂y

= K
ρcp

∂2T
∂y2

+ μ

ρcp

∂u
∂y

2
+ σB2

0
ρ

u2 −
1
ρcp

∂qr
∂y

,

8

u
∂C
∂x

+ v
∂C
∂y

=DN
∂2C
∂y2

− Kr ′ C − C∞
T
T∞

m

exp −E∗

KT
+ DNKT

Tm

∂2T
∂y2

9

The radiative flux for radiation qr is designed using the
Rosseland diffusion approximation and is given as [9, 35]

qr = −
∂T4

∂y
4σ∗
3k∗ 10
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Figure 1: Schematic configuration.
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It is crucial that this model considers the optically thick
radiation limit, assuming that T4 can be represented as the
linear combination of temperatures and that the tempera-
ture variations within the flow are sufficiently modest. This
is done by utilizing the Taylor series regarding T0 and
expanding T4 as follows:

T4 = T4
0 + 4T3

0 T − T0 + 6T2
0 T − T0

2+⋯ 11

We get the following result by ignoring the higher-order
terms (second order onwards) in T − T0 :

T4 ≃ 3T4
0 + 4T3

0T 12

Using Eq. (12) and differentiating Eq. (10) with regard to
y, one can obtain

∂qr
∂y

= −
16σ∗T2

0
3k∗

∂T
∂y2

13

The partial differential Eqs. (6)–(9) are governed by the
following boundary conditions [5, 10]:

u = ax, uw x = ax, v = 0, T = Tw, C = Cwaty = 0,
u⟶ 0, T ⟶ T∞, C⟶ C∞aty⟶∞

14

The following list includes the similarity transformations
which are employed to break down the system of these
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Figure 2: Effect of Ha on velocity function.
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complex linked PDEs in the given issue into a collection of
ordinary differential equations (ODEs) [5, 9, 10, 18]:

u = axf ′ η , v = − aνf η , ψ = aνxf η ,

θ η = T − T∞
Tw − T∞

, ϕ η = C − C∞
Cw − C∞

, η = a
ν

1/2
y

15

The following is a list of the dimensionless numbers
employed in the guiding equations:

Ha = σB0
2

ρa
, γ = ν

ak
, Pr =

νρcp
K

, Ec = uw
2

cp Tw − T∞
, Sc = υ

DN
,

Kr = Kr′
a

, Rd = 16σ∗T0
3

3k∗K , E1 =
E∗

KT∞
, θw = Tw

T∞
, β = aλ,

α =
Py

μB 2πc

−1
, Sr = DNKT /υTm × Tw − T∞

Cw − C∞

16

3. Solution of the Problem

Equation (14) is satisfied when the transformations that
were previously mentioned (Eq. (15)) are applied using non-
dimensional parameters (Eq.(16)). Simplifying the govern-
ing partial differential equations, Eqs. (7)–(9) yield

1 + 1
α

f ‴ + f f ″ − f ′2 −Mf ′ + β 2f f ′ f ″ − f 2 f ‴ − γf ′ = 0,

17

1 + 4
3 Rd θ″ + PrEc f ″2 + Haf ′2 + Prf θ′

+ 4
3Rd

θw − 1 3 3θ′2θ2 + θ3θ″

+3 θw − 1 θ′2 + θθ″

+3 θw − 1 2 2θ′2θ + θ2θ″

= 0,

18

ϕ″ − ScKrϕ θw − 1 θ + 1 m exp −E1
θw − 1 θ + 1

+ SrScθ″ + Scf ϕ′ = 0
19
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Moreover, the following are the regulating boundary
conditions according to of Eq. (15) [5, 10]:

f 0 = 0, f ′ 0 = 1, θ 0 = 1, ϕ 0 = 1atη = 0,
f ′ ∞ ⟶ 0θ ∞ ⟶ 0ϕ ∞ ⟶ 0asη⟶∞

20

The nondimensional local skin friction coefficient Cf x,
Nusselt number Nux, and Sherwood number Shx are given
as follows [5, 10]:

Cf x =
τw
ρuw2 ,

Nux =
xqw

K Tw − T∞
,

Shx =
xqm

DN Cw − C∞

21

Here, τw represents the wall shear stress, qw represents
the heat flux, and qm represents the mass flux, all of which
are taken as follows:

τw = μ
∂u
∂y y=0

,

qw = −K
∂T
∂y y=0

,

qm = −DN
∂C
∂y y=0

22

Finally, the nondimensional equations of drag force and
heat and mass transport rates are obtained, respectively, as
follows [6]:

Cf xRex0 5 = f ″ 0 ,

NuxRex−0 5 = − 1 + 4
3 θw − 1 θ 0 + 1

3
θ′ 0 ,

ShxRex−0 5 = −ϕ′ 0

23

Here, Rex = ax2/υ is the local Reynolds number.

4. Computational Procedure

The system of complex coupled PDEs that govern the phys-
ical issue under consideration is reduced to the system of
ODEs with the help of the proper similarity transformations.
Additionally, the “bvp4c” function built in is used to stream-
line the reduced system of nonlinear (ODEs) Eqs. (17)–(19).
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In order to achieve this, first-order ODEs are created from
the combination of Eqs. (17)–(19) (ODEs), which can be
summed up as follows:

ξ1′ = ξ2,
ξ2′ = ξ3,

ξ3′ =
ξ2

2 + γ1ξ2 +Haξ2 − ξ1ξ3 − 2βξ1ξ2ξ3
1/ 1 + α − β ξ1

2 ,

ξ4′ = ξ5,

ξ5′ =
−4/3

1 + 4/3Rd 1 − θw
3 ξ4

3 + 3 1 − θw
2 ξ4

2 + 3 1 − θw ξ4
χ ,

ξ6′ = ξ7,

ξ7′ = ScKrξ6 θw − 1 ξ4 + 1 m exp −E1
θw − 1 ξ4 + 1 − Scξ1ξ7 − SrScξ5′ ,

24

where χ = 3 1 − θw
3 ξ5

2 ξ4
2 + 6 1 − θw

2 ξ5
2ξ4 + 3

1 − θw ξ5
2 − Prξ1ξ5 − PrEc ξ3

2 +Ha ξ2
2 .

The boundary conditions are

ξ1 0 = 0, ξ2 0 = 1, ξ4 0 = 1, ξ6 0 = 1,
ξ2 ∞ = 0, ξ4 ∞ = 0, ξ6 ∞ = 0,

25

where

ξ1 = f , ξ2 = ξ1′ = f ′, ξ3 = ξ2′ = f ,

ξ4 = θ, ξ5 = ξ4′ = θ′ξ′5 = θ ,
ξ6 = ϕ, ξ7 = ξ6′ = ϕ′ξ7′ = ϕ

26

5. Findings and Discussion

Figures 2–16 detail the impact of various particular charac-
teristics on velocity f ′ η in the direction x-axis, tempera-

ture θ η , and concentration ϕ η . The momentum,
energy, and concentration equations, along with the proper
boundary conditions, are the core components of the set of
highly nonlinear correlated partial differential equations that
regulate the current mathematical representation of the
physical issue. An assortment of nonlinear coupled ordinary
differential equations is obtained using the right similarity
modifications, and a reliable numerical method is used with
the help of the MATLAB function “bvp4c.” Physical quanti-
ties that are valuable to engineers, and local skin friction
coefficients, local Nusselt number, and local Sherwood num-
ber are also illustrated and shown in graphical and tabular
configurations. The implications on velocity, temperature,
and concentration are caused by specific flow-controlling
parameters, and they are displayed in conjunction with these
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effects. The following referred tables display fifteen possibil-
ities. Different values are assigned to various variables in
these tables depending on the circumstances. To show the
fluctuation of each parameter, we have this 15 scenarios.
Numerical calculations demonstrate the sufficient accuracy
and improved convergence attained by the computing
scheme. The maximum residual error (MRE) found
throughout the numerical computation process is shown in
Table 1 and demonstrates the convergence and accuracy of
the suggested method. According to the greatest residual
acquired for several cases of each scenario during problem
evaluation, Table 1 shows halting criteria. The computer
simulation values of mesh points determined for variations
of tolerance for each fluidic parameter are displayed in
Table 2 according to the proposed scheme. That is, Table 2
lists the mesh points utilized to solve each of the fifteen
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Table 1: Magnitude of relative errors for different cases.

Scenarios Case 1 Case 2 Case 3 Case 4

1
3.82065627 1.80874757 8.89830167 4.34521191

678433e-11 119233e-11 583457e-11 577676e-10

2
4.79669789 1.80874757 2.50414662 4.71638985

068006e-11 119233e-11 234981e-11 217215e-11

3
1.8087475 2.17957108 2.926256547 3.20510777

7119233e-11 676383e-11 34630e-11 777123e-11

4
1.54688355 1.98252710 3.18575784 8.89668758

497429e-11 792465e-11 474851e-10 526627e-11

5
1.80874757 1.93528342 3.99968496 1.72908981

119233e-11 053979e-11 794806e-11 866510e-10

6
1.80874757 1.93528342 3.99968496 1.72908981

119233e-11 053979e-11 794806e-11 866510e-10

7
1.80874757 1.8043244 2.20101565 4.1639693

119233e-11 9248245e-11 323902e-11 4617898e-11

8
1.80874757 5.74079595 6.07242785 6.70837002

119233e-11 580194e-12 763480e-12 256024e-12

9
1.80874757 1.81066181 1.812471582 1.8142228

119233e-11 051757e-11 88821e-11 4189586e-11

10
1.80740949 1.80874757 1.6914881 5.621639

273034e-11 119233e-11 3741183e-11 20786861e-12

11
1.6873739 1.80802786 1.80874757 1.80987054

0452115e-11 328972e-11 119233e-11 120189e-11

12
1.80874757 1.591419854 1.51907058 1.3851350

119233e-11 05877e-11 116046e-11 2997190e-11

13
1.80874757 1.80814583 1.80779854 1.8075902

119233e-11 321136e-11 244237e-11 1069288e-11

14
3.8206562 1.808747571 8.89830167 4.345211

7678433e-11 19233e-11 583457e-11 91577676e-10

15
1.8087475 1.80432449 2.20101565 4.163969

7119233e-11 248245e-11 323902e-11 34617898e-11

Table 2: Data for the number of meshes for various cases.

Scenarios Case 1 Case 2 Case 3 Case 4

1 1072 880 980 793

2 796 880 965 996

3 880 861 847 823

4 877 870 795 977

5 880 894 898 898

6 880 894 898 898

7 880 870 865 846

8 880 896 899 899

9 880 877 874 872

10 828 880 893 898

11 836 873 880 878

12 880 885 890 894

13 880 880 878 876

14 1072 880 980 793

15 880 870 865 846
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cases. For various changes in all cases, Tables 3–5 give the
skin friction, Nusselt number, and Sherwood number varia-
tions, respectively, for adjusted values of all relevant physical
parameters. Table 6 presents a comparison between the pre-
sented results and those reported by Palaiah et al. [10] of C
f xRex0 5 and Cf xNux0 5 for different values of the Ha, Ec,
Pr, Sr, Sc, and Kr in the absence ofα =∞ = 0
andγ = Rd =m = E1 = 0effects. They are in extremely excel-
lent agreement with one another. As exhibited in Table 6,
the current results serve as a benchmark for the precision
of our numerical procedures.

Figure 2 illustrates how the magnetic parameter Ha
affects the velocity distribution, which gradually decreases
within the boundary layer as the magnetic parameter
increases in the x-direction. The induced magnetic field
causes a resistance force termed as the Lorentz force in an
electrically conductive fluid that slows the velocity of the
Casson-Maxwell fluid inside the boundary layer. On a phys-
ical level, this is caused by how the magnetic and electric
fields are affected by the motion of an electrically conducting

fluid. A resistance force develops in the fluid flow when a
magnetic field is present. By applying this force, the fluid’s
velocity may be slowed. It has been noted that the current
work and the work done by [5, 10] are in good agreement.
As can be seen in Figure 3, the elevated Maxwell fluid vari-
able β reduces the velocity profile when the velocity in the
boundary layer drops due to the larger viscous force’s raised
resistance. Figure 4 depicts a reduction in the velocity distri-
bution for the Casson fluid parameter α. Because of the resis-
tive force produced by tensile tension as a result of elasticity,
the velocities show this decrease. In the simplest terms, as
the Casson fluid parameter α rises, the yield stress and
momentum boundary layer thickness drop. As values of it
are increased, this results in narrower velocity distributions.
A higher Casson fluid parameter causes the fluid to physi-
cally thicken. In other words, the Casson fluid is viewed as
a fluid with variable plastic dynamic viscosity and a severe
yield stress. For an increase in the values of the Casson fluid
parameter, the velocity improves near the wall and barely

Table 3: Numerical data of skin friction Cf x .

Scenarios Case 1 Case 2 Case 3 Case 4

1
-1.280776 -1.494819 -1.682629 -1.85180

81773403 90621989 52737397 542896513

2
-1.3856482 -1.4948199 -1.5985571 -1.697182

6527106 0621989 8351559 14883318

3
-1.49481 -1.614589 -1.726067 -1.830771

990621989 00911085 89007474 32551753

4
-1.454432 -1.5341760 -1.610077 -1.682629

50476163 6280295 21180059 52736751

5
-1.4948199 -1.494819 -1.4948199 -1.4948199

0621989 90625349 0627297 0627009

6
-1.4948199 -1.4948199 -1.4948199 -1.4948199

0621989 0621989 0618858 0600592

7
-1.4948199 -1.4948199 -1.4948199 -1.4948199

0621989 0628338 0628338 0628338

8
-1.4948199 -1.4948199 -1.494819 -1.4948199

0621989 0621989 90621989 0621989

9
-1.4948199 -1.4948199 -1.4948199 -1.4948199

0621989 0621989 0624284 0628338

10
-1.494819 -1.494819 -1.494819 -1.4948199

90622875 90621989 90621989 0622422

11
-1.4948199 -1.4948199 -1.4948199 -1.4948199

0621989 0621989 0621989 0621989

12
-1.494819 -1.4948199 -1.4948199 -1.4948199

90621989 0623692 0624447 0625786

13
-1.4948199 -1.4948199 -1.4948199 -1.4948199

0621989 0621989 0621989 0621989

14
-1.280776 -1.4948199 -1.6826295 -1.8518054

81773403 0621989 2737397 2896513

15
-1.49481 -1.49481990 -1.4948199 -1.4948199

990621989 621989 0618858 0600592

Table 4: Discrepancy of the rate of heat transfer − 1 + 4/3 θw −
1 θ 0 + 1 3

Scenarios Case 1 Case 2 Case 3 Case 4

1
0.3459854 0.29494576 0.2549741 0.2217098

70462596 7860730 36194463 62075500

2
0.315805 0.2949457 0.27794693 0.26346479

421515249 67860730 1999264 0215048

3
0.294945 0.2813072 0.26945894 0.2589002

767860730 33769240 5285795 36044544

4
0.299383 0.290719013 0.28281296 0.2755230

260112508 999120 1429017 88611018

5
0.2949457 -0.0675738 -0.3968294 -0.660866

67860730 089505146 54530563 283211299

6
0.294945 -0.06757380 -0.3968294 -0.660866

767860730 89505146 54530563 283211299

7
0.2949457 0.30214197 0.30482385 0.30056583

67860730 9360025 3378090 7887552

8
0.2949457 0.02971424 -0.2365291 -0.5036437

67860730 38661200 88719365 52060890

9
0.29494576 0.31680736 0.33547453 0.3518522

7860730 3093821 8943090 72402975

10
0.2949457 0.29494576 0.2949457 0.2949457

67860730 7860730 67864266 67869380

11
0.29494576 0.2949457 0.29494576 0.2949457

7861448 67860729 7860730 67861675

12
0.29494576 0.29494576 0.294945767 0.2949457

7860730 7862217 863027 67864747

13
0.2949457 0.29494576 0.2949457 0.2949457

67860730 7860730 67860730 67860729

14
0.34598547 0.2949457 0.2549741 0.2217098

0462596 67860730 36194463 62075500

15
0.2949457 0.30214197 0.30482385 0.30056583

67860730 9360025 3378090 7887552
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lowers far from the vertical heated wall. It has been noted
that the current work and the work done by [17] are in good
agreement. For porous parameterγ, the drag force and
porosity parameter are closely related. Based on the result,
the velocity drops when the porous parameter rises due to
an increase in the quadratic drag. Figure 5 demonstrates that
the velocity profile of heat and mass fluxes for the Casson-
Maxwell fluid is zero near the wall. If you look at Figure 6,
you will see that the temperature θ η becomes a declining
function of the Prandtl number Pr. The ratio of thermal dif-
fusivity to momentum diffusivity is known as the Prandtl

number Pr. Raising Pr has been found to lower the temper-
ature profile because it lowers the thermal diffusion rate,
because increasing Pr implies that heat conduction is more
significant than convection and that thermal diffusivity is
predominate. According to this theory, the temperature
decays because thermal diffusivity is less effective than
momentum diffusivity in response to Pr. Due to the increased
thermal state of the fluid in Figure 7 when in comparison with
ambient fluid temperature, the temperature and thermal
boundary layer thickness are boosted at a bigger temperature
ratio θw. In Figure 8, the values of temperature θ η are

Table 5: Numerical data of Sherwood ShRe−0 5.

Scenarios Case 1 Case 2 Case 3 Case 4

1
0.1179952 0.0932262 0.0749832 0.06110907

26582382 818479224 964635284 50309176

2
0.117887 0.09322628 0.0736867 0.0580219

946298353 18479224 064590734 353888552

3
0.0932262 0.07808067 0.0655529 0.0550150

818479224 82255672 629746252 116690053

4
0.09822 0.088517587 0.0798747 0.0721333

36882754476 8738322 756202284 625772916

5
0.09322 0.1349912 0.1704225 0.1954124

62818479224 63204469 85875082 04593031

6
0.0932262 0.04414700 0.0096419 -0.0173551

818479224 68737465 4790589059 553821454

7
0.093226 0.1304241 0.16791219 0.20568768

2818479224 42760356 3587923 0106044

8
0.0932262 0.08722313 0.08248743 0.07858288

818479224 67226959 37826205 06943903

9
0.1225055 0.0932262 0.0694224 0.05809795

30397279 818479224 341590256 15113728

10
0.263658 0.1892008 0.0932262 -0.04074624

247555587 10603047 818479224 94958941

11
0.09322628 0.1136190 0.1318035 0.1480700

18479224 15821055 92190743 40769088

12
0.09322628 0.10191090 0.11059553 0.11928016

18479224 8954176 6059889 3165872

13
0.0932262 0.14931096 0.18967129 0.2194454

818479224 8798927 4660286 60126067

14
0.1179952 0.09322628 0.07498329 0.061109075

26582382 18479224 64635284 0309176

15
0.09322628 0.044147006 0.00964194 -0.01735515

18479224 8737465 790589059 53821454

Table 6: Comparison of results for the skin friction and local Nusselt number.

β Ha Ec Pr Sr Sc Kr Cf xRex0 5

Ref. [10]
Cf xRex0 5 (new)

−NuxRex−0 5
Ref. [10]

−NuxRex−0 5 (new)

1.0 0.5 0.1 0.7 0.1 0.7 0.1 1.42514 1.42621 0.31172 0.30301

1.5 1.51744 1.51293 0.29046 0.29507

2.0 1.60514 1.60481 0.27206 0.26596

2.5 1.68877 1.67257 0.25595 0.25660
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increased with the increase of the Eckert number Ec, while
having opposite behavior for thermal radiation Rd as seen
in Figure 9. In Figure 10, the effect of the Schmidt number
Sc upon the concentration profile ϕ η is indicated. Given
that the kinematic viscosity ν and the Brownian diffusion
coefficient DB are divided, it is observed that mass diffu-
sion decreases following an increase inSclevels. The fluid’s
concentration falls as a result of this. As a result, ϕ η , on
boosting Sc, exhibits a deteriorating character. In
Figure 11, the values of the concentration profile ϕ η were
increased with the increase of chemical reaction parameter
Kr, while having an opposite behavior for dimensionless
rate constant m as seen in Figure 12. An analysis of the
impact of the Soret number Sr on the concentration profile
ϕ η is shown in Figure 13. The ratio of the temperature
difference to concentration is called Sr. The temperature
gradient increases as Sr increases. There is a perception
of an increase in molecule diffusion. As a result, the rate
of mass transfer accelerates for rising Sr values. As a
result, ϕ η improves. Figure 14 discusses the appearance
of rising activation energy E1 values. It has been observed
that increasing values of E1 cause the Arrhenius function
to degrade and the fluid concentration to fall. This is in
line with the results of inclined practise applications since
it uses the least amount of energy possible to initiate an
activity [9]. For Figures 15 and 16, it is obvious that as
Ha values grow, so does the rate of heat transfer and
the temperature profile θ η . The Lorentz forces appear
to grow with greater Ha, which increases the opposing
forces on the fluid particles and raises temperature. At
higher temperature ratios θw, the concentration ϕ η and
boundary layer thickness are also enhanced.

6. Conclusion

The importance of non-Newtonian fluid flows in numerous
industrial and technical processes has made them a topic
worth exploring in recent years. Examples of materials exhibit-
ing non-Newtonian fluid characteristics include shampoos,
soaps, muds, apple sauce, polymeric liquids, sugar solutions,
condensed milk, tomato paste, paints, and blood at low shear
rates. However, due to the diversity of their rheological prop-
erties, it is impossible to examine their behavior using a single
constitutive correlation. Different fluid models have been
developed as a result to precisely define the nature of non-
Newtonian materials. Over a stretched sheet, we investigate
the characteristics of a chemically reactive Casson-Maxwell
fluid. Effects of activation energy are thought about. The fol-
lowing list summarizes the main points:

(i) As the Cassion fluid, magnetic, Maxwell fluid, and
porosity parameters rise, the velocity field falls

(ii) Low temperature is associated with raising the ther-
mal radiation parameter, while the Eckert number
and temperature ratio both show a reversal trend

(iii) This model significantly improves the fluid’s ther-
mal performance when combined with the Arrhe-

nius activation energy, magnetic field, Joule
heating, and viscous dissipation

(iv) The effect of increasing Kr and θw is highly notice-
able on the sheet’s concentration distribution

(v) The study’s findings presented here may be useful to
both scientists and engineers who are conducting
research as well as to individuals who are actively
working in these fields

Symbols

τij, Py, and eij: Cauchy stress tensor, yield stress of
fluid, and deformation rate with
components x, y , respectively

μB, μ0, and μ∞: Casson fluid plastic dynamics viscosity
and limiting viscosity at zero shear rate
and at infinite shear rate, respectively

λ, μ, and ρ: The relaxation time, viscosity, and
density, respectively

Tw, Cw, T∞, and C∞: Wall temperature and concentration,
respectively, and free stream temper-
ature and concentration, respectively

σ, Bo, and k: Electrical conductivity, intensity of
the external magnetic field, and per-
meability, respectively

cp, qr , and KT : Specific heat, radiative heat flux, and
thermal-diffusion ratio, respectively

DN , σ
∗, and Kr′: The diffusion parameter, Stefan-

Boltzmann constant, and chemical
reaction coefficient, respectively

Tm, k
∗, and K : The mean temperature, mean

absorption coefficient, and thermal
conductivity, respectively

a, γ, and E∗: Positive constant, porosity parameter,
and activation energy, respectively

M, β, and α: The magnetic, Maxwell, and Casson
parameters, respectively

Pr, Ec, and Sc: Prandtl, Eckert, and Schmidt num-
bers, respectively

Kr, Rd, and m: Chemical reaction, thermal radiation
parameters, and dimensionless rate
constant, respectively

Sr and θw: Soret number and temperature ratio
parameter, respectively.

Data Availability

Data available upon request.

Additional Points

Highlights. (i) Applying Arrhenius activation energy on
MHD chemically reactive Casson-Maxwell fluid over a
stretched sheet. (ii) To achieve the required solution of the
problem, an innovative work of Lobatto IIIA methodology
via MATLAB software is used. (iii) Data visualizations and
numerical examples are presented considering the many
physical restrictions.
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