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In this paper, an efficient new technique is used for solving nonlinear fractional problems that satisfy specific criteria. This
technique is referred to as the double conformable fractional Laplace-Elzaki decomposition method (DCFLEDM). This
approach combines the double Laplace-Elzaki transform method with the Adomian decomposition method. The fundamental
concepts and findings of the recently suggested transformation are presented. For the purpose of assessing the accuracy of our
approach, we provide three examples and introduce the series solutions of these equations using DCLEDM. The results show
that the proposed strategy is a very effective, reliable, and efficient approach for addressing nonlinear fractional problems using

the conformable derivative.

1. Introduction

Recent studies have shown that fractional calculus (FC) is
needed to model many real-life situations in engineering and
sciences. It has been widely employed in mathematics,
mechanics, chemical engineering, and other scientific and
technical disciplines [1-3]. According to recent research stud-
ies, fractional calculus can more effectively reflect some non-
linear effects. Fractional derivatives have been defined in a
number of ways in the literature, like Caputo, Hadamard,
Riesz, Weyl, Atangana-Baleanu-Caputo, Caputo-Fabrizio,
conformable derivatives, M-truncated derivatives, and beta
derivatives [4-9]. Most of these definitions referred to above
lack some basic properties for the case of integer order, such
as the property that not all of them follow the chain rule, the
product rule, and the quotient rule of two functions, and the
conformable derivative among them still fulfills the classical
properties of integer derivatives. So, it is simple to use to solve
linear and nonlinear fractional differential equations (NFDEs).
Khalil et al. [4] developed the conformable derivative (CD), a
more recent development of the conventional limit definition
for the derivative of a function. This new derivative has been
used with other methods [10-13] in a lot of different situations

because it is so simple to use. Hashemi [10] established the
invariant subspace approach for obtaining accurate solutions
to a variety of conformable time fractional differential equa-
tions. Osman et al. [11] came up with a new way to solve
singular fractional pseudohyperbolic and pseudoparabolic
equations using a modified double conformable Laplace trans-
form. A lot of NPDEs with conformable derivatives were
solved using the conformable double Laplace-Sumudu itera-
tive approach [12]. Bhanotar and Kaabar [13] came up with
the conformable triple Laplace transform decomposition tech-
nique to solve NFPDEs analytically.

Various methods for transforming new double integrals
have been successfully developed in recent years [14-17],
where definitions and results have been provided and many
different types of differential equations have been solved.
Al-Sook and Amer [14] utilized the Laplace-Elzaki transform
to solve the integral and partial differential equations. Elzaki
and Tashag [15] obtained the solution of the telegraph equa-
tion by the Elzaki-Laplace transform. Ahmed et al. [16, 17]
created the Laplace-Sumudu transform to solve a variety of
fractional and partial differential equations.

George Adomian introduced the Adomian decomposi-
tion method (ADM) [18-23] in 1980, which is an effective
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approach for finding numerical and exact solutions to a
broad class of differential equations that are either linear or
nonlinear. This approach has the benefit of generating
results quickly since it gives analytic series solutions to the
target equations without the need for any constrained
assumptions, transformations, or discretization. The double
transformation techniques have some advantages over other
strategies in that they have faster convergence to the
solution. Regrettably, this transformation, like other trans-
formations, lacks the ability to handle nonlinear situations.
So, in this work, we have proposed a novel strategy that
combines the double conformable Laplace-Elzaki transform
with the decomposition method (DM) called the double con-
formable Laplace-Elzaki decomposition method (DCLEDM).
The DCLEDM approach allows speedy convergence of the
precise solution without making any restrictive assumptions
about the answer. This is one advantage of employing the
decomposition method in conjunction with the DCLET
approach.

The following components comprise the study’s overall
construction: Section 2 contains some essential definitions
and theorems for conformable fractional derivatives (CFDs).
Section 3 presents fundamental DCLET definitions, features,
and theorems. Section 4 talks about the model and steps for
using the DCLET and decomposition methods to solve the
NCFPDEs that were mentioned analytically. Three hypo-
thetical scenarios are given in Section 5 to illustrate the rec-
ommended approach’s liability, convergence, and efficacy.
The statistical findings are given in Section 6. Section 7
includes conclusions.

2. Conformable Fractional Derivative (CFD)

To achieve our significant results, we now define the CFD
and its fundamental qualities, which are described below.

Definition 1 (see [4]). Given that a function v : (0,00) — R
is a real-valued function, then the CFD of y order 9, € (0, 1]
is defined by

+ 1-9, _
Dy (v) = nmo"’(v - )7V 09,01, (1)
Definition 2 (see [24]). Given that a function y(u,v): R X
(0,00) — R, the conformable space and time fractional
partial derivative for the function y(u,v) of orders 9,
and 9,, respectively, is given as follows:

18, )y
Dh(an v) = (Slimo v (u+Ou 6,1/) v(u,v) , 2)

D:y(u,v) = lim y(myeer™) -y V), (3)

e—0 &

where u,v>0,0<9,,9,<1,D% =2%/0u®, and D% =0%/0

v% are referred to as FDs of order 9, and 9,, respectively.

Journal of Applied Mathematics
Proposition 3. Suppose 0< 9,9, < 1,¢,d, A, and p € R ; then
0% ud V% uS % o% ud v
s (5% ) (55 ”(m‘”(sx s))
% fut
”(wf(w 97))’

(7119, )+ (v%219,)
>

(e/\ (%119,)+u(v"219;) ) ‘ue
Vs

uS <e»\ (u'119,)+u v2/92> MA (w'179))+u v2/92)
% ) v

% /. usl . V‘92 . ue v
35 (sm <9—1> sin (9—2)) =sin - cos <9—2> (4)

3. Double Conformable Laplace-Elzaki
Transform (DCLET)

In this part, we present the DCLET and some of its features
that can be used to solve some NCFPDE:s in the future. The
reader can get more details about the proposed transforma-
tion in [14, 15].

Definition 4. Let y(u,v) be a function of two variables
u,veR".

(i) The CLT of w(u, v) with respect to u of exponential
of order 9, is denoted by L [y(u,v): w]=¥(w,v)
and defined as

L) w] = (w) = [0y

0

u, v)dg u, u>0.
(5)

The CET of w(u,v) with respect to v of exponential
of order 9, is denoted by E%[y(u,v): q]=¥(u,q) and
defined as

E%[y(u,v): q| =¥ (4 q) = qj e—vsz/qszv,(u, v)dg v, v >0.
0
(6)

(ii) The DCLET of function y(u,v) of exponential of
orders 9; and 9, is denoted by L% E%[y/(u, v): (w, )]
=¥ (w, q) and defined as

LyEp[y(uv): (w,q)] =¥(w, q)

= qj jj :Oe*(W(us‘ P 0))y (u, v) d, ud, v,
(7)
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where qweC, 0<9,9,<Ldyu=u""du, and dyv=
vildy,
It is worth mentioning that if y/(u, v) meets the essential

requirements [25], then

quJme_(w(usl /91)+(V92/492))1//(u, v)dg udy v
0

0

wa[ [ )y v vt
0

0

(8)

and so,
LOES [y, v): (w,q)) = EXLEp(wv): (w, ). (9)

The inverse double conformable Laplace-Elzaki transform
(IDCLET) (%)™ (E%) ™' ¥ (w, )] = v(u, v) is defined by

L p+iooew
2mi ),

p—ico

(9) 7 (5%) 1w ) =y ) = (:155)

0+i00
. [7[ qevsz 19, ly(w, q)dq} dw.

27 0—i00
(10)

Theorem 5 (see [26]). Assume v : R x (0,00) — R such that
LY E%[y(u,v): (w,q)] =¥ (w, q) exists, then

(11)

—(wu+(viq))

v): (w,q)],
)=afy [5e

LY ER [y (u,v): (w,q)] = L,E,[y(u,

where L,E,[y(u,v): (w,q)] =

(u, v)dudv.

Theorem 6 (see [14, 15]). The DCLET for a few functions is
provided below.

(1) LY%E%[c : (w, q)] ,q)] = cq’/w, ce R

(2) LYE®[(u%719,)" (v%19,)"): (w, q)] =
(w, q)] = (mlw"™ " )nlq™?, m,n e Z*

(3) LY ES e 00156080 - (u, g)] = L
Q] =q"1(w=c,)(1-cyq)

(4) LY E%[sin (c,(u®/9,)) sin (c,(v*19,)): (w,q)] = L,
E,[sin (Q“) sin (¢v): (w, q)] = (e/(w? +¢;%)) (e’
I(1+¢%q%))

=L,E[c: (w
LE, [u™v

Ev [eclu-v-czv . (w’

Proof. Here, we provide evidence for results (1) and (3).

(1)  LIEZ[c ] = [ [P w9+ (%88) e
dgv=([; “’“cdu qjo —V/q )dv)—cq

3) L9 E% e (W19 ves(v°2%) . ‘Zfo [0 (wlum)
+(v2199,)) ger (119 ) 4y (v219,) d ”dszv_ IO (e, ”du qfo

e Waeldy) = (1/(w - ¢))(¢*/(1 - ¢,q))
The same procedure may be used to illustrate the
remaining outcomes. O

Theorem 7 (see [26, 27]) (DCL-DCLE duality). If the
DCLET of w(u, v) exists, then

BNy ) ()] =at? o) (w3, (12

9
= fo fo )

where szng [y(uv): (w,q)] =
+q(V92/92>)1//(u, V)d\‘)l udszv.

Theorem 8. Assume LYE%[y(u,v): (w,q)]=¥(w,q) and
LYEZ[E(u, v): (w, q)] = E(w, q); then,

(i) Lﬁ'EfZ [cw(u,v) + E(u,v)]=c¥(w,q)+c,E(w,
q),¢; 6, €R

(if) LY ES: [0y (o, v): (w, q)] = (1+ ¢,9)

Y(w+c;,q/(1+¢,q))

(iii) LYE [y(Au, wv): (o q)] = (1r)¥P (wiA”, q/u’) 5

r=A% P

)" LS ER (w197 ) (v 195 ) (u, v): (w, q)] =
v): (w,q)]]

(iv) (-1
q(0™" 1ow™dq")[(1/1q) L% E% [y (u,

Proof.

(i) It is simple to verify (i) by using the definition of the
CDSET

() LBy e 20 Ry, v): (,)) =7 [
e~ (W79, +(v2199,)) g, (%1 19;) ¢, 92/92)1/,(14, v)dg udy v
= g [P (W1 9)~ (V) +er) (219 (o, v)dgy udy,
v=q[; [ ) ()0 D)y (1, v)d
udy v

s,
Put s=(q/(1 +¢,q)); then,

LEIEEZ |:e’C1(u91 /91)762(1/92/92)1//(”’ v): (w’ q)}
=(1+¢,9) (sJ J e’<w+‘1)(”9”91)’(Vsz“sz)y/(u, v)dy, udszv)

0 Jo
q
l+cq)"

(13)

=(1+q)¥(w+c,s)=(1 +62q)‘P(w+ 1

(iii) Suppose y = Aw and # = uv; then,



9, 129, . _ © 7(10(1491 /81)+(v52/q91))
Ly ER[y(Au, wv): (w, q)] =q e y(Au, uv)dg udy v
0 Jo
= j (w19, <qJ "%y (A, uv)dy, v) dy u
0 0

1 (™ _ Rl [ %2 jau®

00 N
_ 1 , J e-w(ymmwsl)\p< iJ)de y
H\%/\ v Jo u>

1 w q
) MSZAS“P(W’E)

(14)

(iv) Here, by combining Theorem 7 with Theorem 2.1
from [28], we obtain

mS n9

m+n19; 9,
(L G vl

) (wq)
2w o]

B am+n 91 92 . 1
= qw [Lu Ly [w(u, v): <w, q)”

s [ L ()]

whwwﬁﬁ{

=4 owmoq"

O

Theorem 9 (see [14]). Suppose that y(u,v) is a function of
exponential order a and b defined on the intervals (0, U)
and (0, V); then, DLET of w(u,v) is well defined for all w
and 1/q supplied Re [w] > a and Re [1/q] > b.

Theorem 10 (see [29]). If LY E% [y(u, v)] = ¥ (w, q), then the
DCLET of the FPDs 8”y/du® and 0%y/0v® can be repre-
sented as follows: 0<9,,9,< 1

%
I&E%Lmi =W (w, q) - ¥(0, )
(16)
19 g9 Py - 9w, q) - g7 (w,0)
o q ’ o

The findings described above may be broadly expanded as
follows:

9, 19 "y (S
L;JE;? S, =w"¥(w,q) - ];)w" Ep = y(0,v)|,
m9, m=1 jS
LEIE“?Z [gvml/‘| *mllu w, q z q2 M+]L9 [ 5 W(u 0)‘|
j=0

(17)
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Theorem 11 (convolution theorem). Assume that y(u,v)
and &(u, v) are two functions of the CDSET; then,

LU [(yro8) () (.q))= L ¥(w.0)Qw.q), (1)

where (y#+&)(u,v) = [ [yw(u—n,v—y)&(n,y)dndy.

Proof. Using Theorem 7 and Theorem 2.2 in [29], we obtain

LR (g 48) (1) ()
-2 [(yebyw ) (s )]

~ad yavy (1 )]t ey (wn1)]
= LL9ER [y v): (s @] B ()t (wr0)]

¥ (w, q)Q(w, q).

A AN

(19)
O

The CDLET for certain essential functions is summa-
rized in Table 1.

4. Descriptions of the Method

Utilizing the DCLET method and the decomposition
method, this section looks at the general solution to the
NPDE:s of the conformable derivative type in the following

form:
uh % % uh %
vwws‘@' ZWWE“E
u9 v %
oow)) Ny (20)
1 91
f( V9_> % % 0,0<9,,9,
<l,mmneN

with the ICs

%y (u119,,0)
ovi%:

TR
=gj(9—1),]=0,1,---,m—1, (21)

and the BCs

"1y (0,v%/9,) v
T:hk<9—2>,k:0,l,"',n—l, (22)
where R(y(u%/9,,v%/9,)) and N(y(u*/9,,v%/9,)) are
linear and nonlinear operators, respectively, and f(u%/9,,
v%2/9,) is the source term.
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TaBLE 1: DCLET for some functions of two variables [14, 15].

Sr. no W(%) %) LYER [C((u%19)), (v%19,))] = ¥ (w. q)
2
1 c i, ceR
w
m n |
2 (u19,)" ((+5219,)"), mm e z* g
2
3 cl(u‘91 /91)+52 (v92/92) 1
¢ (w=c)(1-cq)
. ud v 7’ (¢ + c,wq)
! sin (a5, ey, W) (1+ e
5 ud v 7' (w=c,6,q)
cos (a5 reg; (W + )1+ )

oo
~
(=]
VN
S

7’ (¢, + c,wq)
(W -)(1-3¢%)
7' (w-¢69)
@-a0-27)

4q2

4w+ b*q

Operating the DCLET on both sides of Eq. (20), we get
am9z uSI V92 an9l uSl V92
9, 19, un vz 9, 19, un v
ot (5 5)] 02 e (5 5)
9 9 9 9
% g wers % g, wevs
it s (5 5))| et (o5 50))

91 ‘92 ‘91 92
:Lglggz[f(i L)},%,%>o,0<sl,szs1,m,nem.
1 2

(23)

Applying Theorem 10 in Eq. (23) yields

~ m—1 it ajSl usl
g (wg)- Y LS j91w<9—,0) +w'¥(w, q)
=0 !
= ok v ulh v
_ n-1-k g9, 0, " 19E% | R wrove
k:ZOw 7 v\ g ) | HEE R 5
% 4%
+LYE: {N( (”_V_>)} = F(w, q).
5, (w, q)

Using the CLT for the criteria (2) and the CET for the
BCs (3), one can obtain

. 9
:Gj(w),]:O,l,u-,m— L,Ey

‘ [a"‘"lu/(o, vsz/sz)] (25)

o[y (0 19,,0)
" ovit

Jukd

=Hi(q),k=0,1,--,n—1.

Substituting Eq. (25) into Eq. (24) yields the simplified
m—1
-m ny—1 —m+j
¥(w,q)=[q" +w"] { > TG (w)
j=0

n—1
+ Z w”"l"ka(q + F(w,q)
k=0 (26)

[ r(v(5 )

Taking the (Lﬁl)_l(EffZ)_1 on both sides of Eq. (26),
we get

[eze w(o (5 7))
et (v 2]}

(27)

Here, we are assuming the existence of the (L%) ™ (E%)™
for all terms on the right side of Eq. (27).



The DCLEDM proposes an infinite series solution for
the function (% /9,,v%/9,) in infinite series:

BCRX ) B X
— )= (= ). 28
(oow)-20(oow)

Also, the nonlinear term N(y(u%/9,,v%/9,)) can be

defined as
ud % a
Ny, 2 2) ) = YA, 29
(&%) -2 ®

There are a few terms of the Adomian polynomial for

A; that go as follows:
{ (Z’V‘/’tﬂ ,i=0,1,2,.
A=0

(30)

1d
AWp¥pYy sy, = BEPT

We put the equations ((28) and (29)) into Eq. (27), to
obtain

S ()= ()" () [[q - {zq
n—1

(31)

Now there is a general form of method, as follows:
u91 Vsz 9 -1 9 -1
o) (4) ()

1
[qu + wn] n—1

> W' H,(q) + F(w, q)
k=0

m—1

Z q27m+jGJ(w) +
=0

-
|

(32)
uh % B 9\ /0 1 9
L2 (9_1 9—2) = _<Lu ) (Ev ) {W {Lu Ey?
u91 VS2 9. 19
(w5 g,)) | e oo

(33)

4.1. Convergence of the Proposed Method. The method
suggests that the solution is expressed in the form of an
infinite series. Therefore, the concerned series rapidly
converges to the solution. For more information about
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the convergence of the proposed method, you can refer
o [30-33].

5. Numerical Applications

In this part, DCLEDM is applied to the following classes of
NFPDs of the conformable derivative type to demonstrate
the capability and effectiveness of DCLEDM.

Example 1. Consider the following NCFPD:

"y
ov%:

1// —0,0<91,92s1, (34)

ou’

with the IC

and the BC

" (o, ;t) = 0. (36)

Solution: operating the DCLET on both sides of Eq. (34),
we get

1 9 u o | O
W(w,q)-qL) |y (—=,0) | + LI E =0.
q ¥(wq) qu{w(sl >}+ B Vg

(37)

Applying the CLT for the IC (35) and the CET for the
BC (36), one can obtain

p e sbe ) o

Substituting Eq. (38) into Eq. (37) yields the simplified

2

q 9, o™
o g .
—qL, [w augll (39)

¥(w,q)=

By applying the (LY ) (EEZ)_1 [¥(w, g)] on both sides of
Eq. (39), we have

(5 5) - () - ()" (e2) fmtee v 5]

Now, by DCLEDM

B X 0 B X
(o) 2n(s) @

i=0
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The nonlinear term (0% y/du®) can be defined as

1 [ee]

V’aus 2 A (42)

With

Ai(I/Jml//pr:" ’l’/n = l'd/\‘ |: (Z/v >:| )i:0>1>23~"'
i=0 =0

(43)

We put the equations ((41) and (42)) into Eq. (40), and
then, we get

S (o ) s (1) - (52) () [ngIEgz

i=0

00

4

i=0

(44)

Some components of the Adomian polynomial A; are given
as follows:

ooy,

1//0 a 90’

S TS (45)
lw 11// 11//

WO ou 92 V/Z u 90 1//1 au91’

and so on. As a result, the zeroth component from Eq. (44) is

as follows:
TR u
) =sin (. 46
(o) (5) e

Also, we can obtain the other components in the follow-
ing form:

Vo (Lg’l V;:) = —(Lf:)_l (E§2>‘1 (Ll ER(4,)] r>0.
(47)

Thus, if we substitute Eq. (45) into Eq. (47), we get
ul VB AN A Lo "y,
Wl 9_1’9_2 - (u) (v) Woausl
_ ‘V‘92 . ) usl
= 2—92 sin 9—1 5
WV N AP | P I L 7 oy,
v ) =) (=) [q% B Vo G+ 1
- 2% Zusl uh s ud 2M91
= 2‘92 sin ?1 Ccos 91 Sin 971 cos ?1 5

uh v A A P My, My
— Y — | ==(L2 E% gL} E: 0 1
"’3(91 92> (u) (%) Yogun "Vegum TV
3% W (i W
= 1293 {sm <49—1) -5 sin (9—]) sin (2 9—1>}

(48)

Hence, we obtain the following series solution to
Eq. (34):

uh % uh v %
1,,(??> "’(s*s*) ‘”(9*9*)
v %
)58
2% W o
+ in (2— -
o (5 = ()
+sin (4 Pt
s 9—1 cos 9—1
3% ) , W W
— ——|sin (4— ) —=5sin“( — | sin [ 2— | |.
129;{ < 91) (‘91> ( 91)}

If 9,=9,=1, we get

8

v

y(u,v) =sin (u) - g sin (2u) + > [sin (2u) cos (u)

+sin (u) cos (2u)] - 5 (50)

- [sin (4u) -5 sin®(u) sin (2u)].

In the following example, we will discuss the solution of
the KdV equation, which has many physical applications,
including an approximate description of long water waves,
acoustic wave propagation in plasma, long internal waves in
density, and shallow water waves.

Example 2. Consider the fourth order KdV problem of
NCEFPD:

oy oy dhy My
3 + 5, +y 5 -y 5 =0,0<9,,9,<1, (51)
with IC

and BCs

V(o) () (%)
53
=y <0ﬁj‘e@@ )
uuu ’92 .



Journal of Applied Mathematics

1.0 1.0
% 000010 = %0 0.00010
<o 2 00
05 =05
“10
0.00005

0.00005 ,
0.00000

0.00000
()
9=9=1

FiGure 1: The 3D approximate solution of Example 3 to Eq. (49) was produced using the (a) DCLEDM with the (b) precise answer at

(b)

F1Gure 2: The 3D approximate solution of Example 2 to Eq. (57) was produced using the (a) DCLEDM with the (b) precise answer at
9,=9,=1.



Journal of Applied Mathematics 9

()
FiGureg 3: The 3D approximate solution of Example 3 to Eq. (72) was produced using the (a) DCLEDM with the (b) precise answer at

9,=9,=1.

Solution: by implementing the DCLET for both sides of According to equations ((31)-(33)), the first three terms
Eq. (51), the CLT for Eq. (52), and the CET for Eq. (53), are derived as follows:
we get
2 3 3 2 3 3 3
q wq w q wq q o
Y(w,q) = + + + + 9, 9 _ _ 29,
(w.q) w-1) (@+1) (@+1) (q+1) (q+1) v (5 :(le) 1(E92) T %a 12
Pe) P (54) 9, 9, " v I+quw* ™7 oud
+ 1 BES |y W_W Vi
Trqut ™7 70w 7 dud 0%y,
IR =0
9 .9 29
or wrtovEN N T N 4 e, 0™y,
n( ) -0 () [t T
2 29 9 29 9 9
q 4 ope|, 00y _ 0y Iy, oy, 0y
¥(w,q) = LYE% - . - =0.
W= vy T Trqe ”Pama wm&} TVogam | T |Viaws Yo 0

(55) (56)
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1.0
0.5
= J
3 — 1 Ui
ES E 1 2 3 4 5
-0.5
J 9,=9,=1
-1.0 Exacty (u,v)
()
1.0
0.5
x
= T T T u
> 1 2 3
—0.5
Exacty (u,v)
—-1.0 1
i 9,=9,=08
(b)
1.0 1
0.5 4
=
= T T T u
> 1 2 3
] 9,=9,=1
—0.5
i Exacty (u,v)
9,=9,=08
-1.0
i 9,=9,=09
(c)

FIGURE 4: The approximate solutions of y(u*/9,,v%/9,) for Eq. (49) at various cases of 9,, 9,, and v in Example 1.
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FiGure 5: Continued.
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9,=9,=1
80 Exact of y (1, v)
9,=9,=09
9,=9,=08
=
=
s
u
(0)
FIGURE 5: The approximate solutions of (1% /9,,v%/9,) for Eq. (57) at various cases of 9, 9,, and v in Example 2.
Consequently, we derive the subsequent series solution O % WO 2 o1/ gy
fOI' Eq (51) 1//<—, _> = (_) + (L 1) (E z)
9 9 9, ! !

(62)

BRI W% W % - a9 ” 2 5% ”
(5 5) (i s) (5 5) - '[%Ev ot ) V||

9 9
[Z AR A 9 9
+, (—, —) toey =@ gV
9 9 The DCLEDM proposes an infinite series solution for

the function w(u®/9,,v%/9,) in infinite series:
The exact solution, if §, =9, =1, is

_ _ 9 9 0 9 9
y(u,v)=e'e’ =¢e"". (58) (ul v2)_ <u1 VZ)
w2 ) 2y (M), 63
59,) " 2v\8 s, o

Example 3. Consider the following NCFPD:

2
oty [y My Also, the nonl *yiou™)’ and y(%% y/ou®
_ _ ~0,0<9,.9,<1, 59 so, the nonlinear terms (0" y/0u™) and y(0°" y/ou™)
ovd: <8u91 Vo VDY (9) can be defined by

with IC aSl 2
oYy Z A,
9. 9\ 2 oud !
ut u! i=0
v=0)=(=-). (60) (64)
191 91 6291w =)
Vo~ ZBP
Solution: by applying the DCLET to both sides of =0

Eq. (59) and the CLT to Eq. (60), we get

here
22 9\ 2 29, w
¥(w,q) = 1 +qL31EEZ[<a V’) +1//a L4 . (61)

w3 oud oud

A,-:i—l'di/; {N(i)ﬂ%)] ,B,:%% {N(ilﬁp,)} i=0,1,2, .
By applying the (L%)™ (E%)™'[¥(w,q)] on both sides ' e A=0 ' e A=0
of Eq. (61), we have (65)
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FiGure 6: Continued.
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FIGURE 6: The approximate solutions of w(u*/9,,v%/9,) for Eq. (72) at various values of 9,, 9,, and v in Example 3.

We put the equations ((63) and (64)) into Eq. (62); then,
we get

$0(5.2)- (e e o)

(66)

Some components of the Adomian polynomials A; and B; are
given as follows:

AN
A= [E Y]
My, (9",
A = 2( 5 ) ( 50 (67)
2
A =2 My \ (0", + My,
2 au91 au'91 au91 >

7y,
VIO a 290’
11// 11//
=¥ ou 291 ¥ auzso’ (68)
29 29
111(/ 11// 11//
ll/O a 292 ‘/’2 au290 ‘/’1 au291'

As a result, the zeroth component from Eq. (59) is as
follows:

2

uh % u?
)= 69
n(o )= (%) ®

Now, we can obtain the other components in the following
general form:

v, (é %) = <L21>71 (Efz)fl [qu;Eﬁz A, + B,]} ,r>0.

(70)

Thus, substituting Eqs. (67) and (68) into Eq. (70), we get
g £q q g
uh % 0\ e\t o | (97 ¥0 ’ My,
V/l (9_1’ 9_2) - (Lu ) <Ev > qLu Ev ausl + 1//0 auzsl
-6 US‘ 2 V92
-o(5) ()
u' % AN Nt [ 59'% as'%
v (971 972) B (L“ ) (E" ) aLi By |2 ou oud
2,09
Fhy, Py || L (v
VoG our® s ou?® H 736(‘91) (92> .
(71)

Hence, we obtain the following series solution to Eq. (59).
usl VSZ uSl VSZ Msl VSZ
1’/(9_1’ 9_2) :%(9_1’ 9_2) e (9_1’ 9_2)
SRR W
(5 5)ee ()
+6 ) * (v + 36 ' F v .o
9 ) \9 9 ) \%) "

(u91/91)2

"1 -6(v2/9,)




Journal of Applied Mathematics

15

TaBLE 2: The analysis of the absolute error of w(u®/9,,v%/9,) for Example 1.

u v 9, 9, CDLEDM Exact ¥ exact = WepLepm|
9,=9,=0.80.9 9,=9,=1 9,=9,=0.80.9
0.01 0.8 0.8 0.939317 0.836932 1.02385 x 107!
1 0.02 0.931822 0.832409 9.94127 x 1072
0.03 0.924856 0.827904 9.69516 x 1072
0.01 0.9 0.9 0.889163 0.836932 5.22308 x 1072
1 0.02 0.883036 0.832409 5.06267 x 107>
0.03 0.877195 0.827904 492913 x 1072

TasLE 3: The analysis of the absolute error of w(u® /9,,v%/9,) for Example 2.

u v 9 9 CDLEDM Exact [Vexact — Yeprepml
1 2 9,=9,=0.80.9 9,=9=1 9,=9,=0.80.9
0.01 0.8 0.8 3.38245 2.69123 6.91219x 107!
1 0.02 3.30465 2.66446 6.40198 x 107!
0.03 3.23615 2.63794 5.98208 x 107!
0.01 0.9 0.9 2.98471 2.69123 2.93471 x 107!
1 0.02 2.93953 2.66446 2.75074 % 107!
0.03 2.8973 2.63794 2.59351 x 107"

TaBLE 4: The analysis of the absolute error of y(u%/9,,v%/9,) for Example 3.

u v 9 9 CDLEDM Exact [¥Exact = WepLEDMI
! 2 9,=9,=0.80.9 9,=9,=1 9,=9,=0.80.9
0.01 0.8 0.8 1.92519 1.06383 8.61359 x 107"
1 0.02 2.32518 1.13636 1.18882
0.03 2.86009 1.21951 1.64058
0.01 0.9 0.9 1.38042 1.06383 3.16593 x 107!
1 0.02 1.53777 1.13636 4.01402 x 107!
0.03 1.72426 1.21951 5.04744 x 107!

The exact solution, if 9, =9, =1, is

2

u
viwy)= 1-6v

(73)

6. Results and Discussion

This part evaluates the precision and efficacy of the suggested
method by comparing the approximate and exact results using
graphical representations and tables. Figures 1-3 display the
3D plot of approximate solutions found using the current
approach. These solutions are compared with the exact solu-
tions for 9, =9, =1 in Examples 1-3. These figures show
how well the precise answers and the DCLEDM approxima-
tions match up. These pictures (Figures 4-6) show lines that

show how the proposed method’s approximation solutions
compare to the exact answers from Examples 1-3. These com-
parisons are conducted for different values of the variable v as
well as the fractional-order variables 9; and ¥,. The line plots
of the estimated series solution using DCLEDM actually
match those of the exact solution, as seen in the figures. More-
over, the solution obtained using the current method con-
verges to the exact answer with greater accuracy as the order
of approximation increases and the fractional values 9, and
¥, approach one. Tables 2-4 compare the exact and approxi-
mate solutions for each example in relation to the absolute
error at u=1, 9, =9,=0.8,0.9, and 1 for various values of
the variable v. Based on the data shown in the figures and
tables, our solution technique demonstrates rapid convergence
towards an accurate solution.



16

7. Conclusion

In this paper, the DCLEDM is introduced, along with a
verification of its key features. Selected NCFPDEs are then
solved using the DCLEDM. Additionally, graphical repre-
sentations and tables are provided for the results of applying
the DCLEDM, along with examples for various values of 9,
and 9,. We can conclude that this method can be a highly
effective tool for solving a variety of fractional PDEs with
conformable derivatives that arise in the fields of physics,
chemistry, and engineering. In the future, the author also
wants to look into resolutions for NCFPDEs by using
DCLEDM and other noninteger fractional derivatives and
then comparing the results with other methods to demon-
strate the effectiveness of the method.
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