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The multi-input multioutput (MIMO) systems involving multirelational signals generated from distributed sources have been
emerging as the most generalized model in practice. The existing work for characterizing such a MIMO system is to build a
corresponding transform tensor, each of whose entries turns out to be the individual z-transform of a discrete-time impulse
response sequence. However, when a MIMO system has a global feedback mechanism, which also involves multirelational
signals, the aforementioned individual z-transforms of the overall transfer tensor are quite difficult to formulate. Therefore, a
new mathematical framework to govern both feedforward and feedback MIMO systems is in crucial demand. In this work, we
define the tensor z-transform to characterize a MIMO system involving multirelational signals as a whole rather than the
individual entries separately, which is a novel concept for system analysis. To do so, we extend Cauchy’s integral formula and
Cauchy’s residue theorem from scalars to arbitrary-dimensional tensors, and then, to apply these new mathematical tools, we
establish to undertake the inverse tensor z-transform and approximate the corresponding discrete-time tensor sequences. Our
proposed new tensor z-transform in this work can be applied to design digital tensor filters including infinite-impulse-response
(IIR) tensor filters (involving global feedback mechanisms) and finite-impulse-response (FIR) tensor filters. Finally, numerical
evaluations are presented to demonstrate certain interesting phenomena of the new tensor z-transform.

1. Introduction

Tensors or multidimensional arrays are functions of three or
more indices i, j, k,⋯ , which are mathematical objects gen-
eralized from matrices (two-dimensional arrays) and vectors
(one-dimensional arrays). The development of new tensor
theories and tensor-related algorithms has recently drawn
the attention of the signal-processing society [1–3], big-data
analytics [4–6], and system design [7, 8] as multirelational
characterization among different attributes and objects is
crucial for applications of modern signal and system analysis.
It is well-known that the z-transform has been applied as an
indispensable tool for the analysis and design of discrete-
time signals and systems. Generally speaking, the z-trans-
form converts a real- or complex-valued discrete-time

sequence to a complex-valued z-function [9–18]. The existing
z-transform is actually a scalar function. Recently, the multi-
input multioutput (MIMO) systems involving multirelational
signals have been emerging as the most generalized model in
practice [1–6]. Our preceding work for characterizing such a
MIMO system is to build a corresponding “transform tensor,”
each of whose entries turns out to be the individual z-trans-
form of a discrete-time impulse response sequence [8]. Take
an autoregressive–moving-average (ARMA) tensor-filter for
example as illustrated by Figure 1 (the details for imple-
menting an ARMA tensor filter (or a “GARMA” filter) will
be presented in Section 5.1 later on). In general, such an
ARMA tensor filter involves the “global feedback mechanism”
if any of the feedback coefficient tensors B1, B2, ⋯, Bn
in Figure 1 is a nondiagonal tensor. A tensor B ∈
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ℂI1×⋯×IM×I1×⋯×IM is a nondiagonal tensor if there exists an
entry bi1,⋯,im ;j1,⋯,m in B such that

bi1,⋯,im ;j1,⋯,m ≠ 0, 1

where ∑m
k=1 ik − jk

2 ≠ 0. Note that we use semicolons to sep-
arate the subscript indices contributed by the row and column
parts. The commas between subscript indices are used to sep-
arate indices within the same row part or the same column
part. For example, the row part of the subscripts of the entry
bi1,⋯,im ;j1,⋯,m is i1,⋯, im while the column part of the sub-
scripts of the entry bi1,⋯,im ;j1,⋯,m is j1,⋯, jm. On the other
hand, we say that a MIMO system is without any global feed-
backmechanism if all feedback-coefficient tensorsB1,B2,⋯,
Bn in Figure 1 are diagonal tensors, i.e.,

bi1,⋯,im ;j1,⋯,m = 0, 2

where ∑m
k=1 ik − jk

2 ≠ 0. If the condition described by Eq. (2)
holds, the transfer tensor (refer to [8] for the introduction of
transfer tensor) for a MIMO system (the ARMA tensor filter
as illustrated by Figure 1) without any global feedback mecha-
nism can be reduced to a tensor whose entries turn out to be
the individual rational z-transforms easily as there exists no
coupling relationship [8].

However, when a MIMO system has a global feedback
mechanism as described by Eq. (1), which involves the cou-
pling relationship among signals, the aforementioned indi-
vidual z-transforms of the overall transfer tensor are quite
difficult to formulate. Throughout this work, we call a
MIMO system without any feedback mechanism a “feedfor-
ward MIMO system” where B1, B2, ⋯, Bn in Figure 1 are
all zero tensors (all their entries are zero); we call a MIMO
system without any global feedback mechanism (Eq. (2)
holds) a “local-feedback MIMO system” where not all of
B1, B2, ⋯, Bn in Figure 1 are zero tensors; at last, we call
a MIMO system with global feedback mechanism(s) (Eq. (1)
holds) a “global-feedback MIMO system.” Therefore, a new
mathematical framework to govern all of the feedforward,
local-feedback, and global-feedback MIMO systems is in
crucial demand. In this work, we propose the novel “tensor
z-transform” to characterize an arbitrary MIMO system
involving multirelational signals as a whole rather than the
individual entries separately.

Some extensions have been made from the conventional
z-transform to deal with tensor signals. In [19, 20], the mul-
tidimensional z-transformation (referred to as “tensor” in
[19, 20]) is introduced to rewrite convolutions and sums of
convolutions as products and sums of series. Our proposed
tensor z-transform is different from these works since there
must involve multiple z-domain variables to characterize a
tensor in different ranks in [19, 20]; the multidimensional
z-transformation is adopted simply as the generating func-
tion for counting the transition probabilities [21] while it is
aimed at dealing with the signal and system analysis. To
the best of our knowledge, there exists no technique to
extend the conventional z-transform from a sequence of
complex numbers (scalar) to a sequence of tensors. The
obvious difference between the tensor z-transform in this
work and the D-transform in [22] is that the tensor z
-transform can transform time-domain signals expressed
by arbitrary multidimensional arrays (tensors) while the D
-transform can only deal with the two-dimensional arrays
(matrices). The main difficulty for such an extension is to
establish Cauchy’s residue theorem for tensors. In this work,
we first define the new tensor z-transform and discuss the
related properties. Then, we generalize Cauchy’s residue
theorem from scalars to tensors in order to perform the inverse
tensor z-transform. Different from the power-series approach,
i.e., long division, the time-domain tensor sequence obtained
by taking the inverse z-transform via Cauchy’s residue theorem
for tensors is not unique since it depends on what contour is
chosen in the complex tensor integration. The variability to
obtain different time-domain tensor sequences from a tensor
z-transform can lead to a new approach to approximate
time-domain tensor signal sequences with much less imple-
mentational effort from the perspectives of computation and
memory complexities. The relationship between the time-
domain tensor sequence obtained by applying the power-
series approach and that obtained by utilizing Cauchy’s
residue theorem for tensors to carry out the inverse tensor z
-transform will also be established in this work. An applica-
tion of tensor z-transform for digital tensor-filter design
will be discussed. Besides, the frequency responses of the
tensor z-transform, namely, the “ensemble magnitude
response” and the “ensemble phase response,” will be inves-
tigated. Finally, numerical evaluations will be presented to
demonstrate certain interesting phenomena about the ten-
sor z-transform.

The rest of this paper is organized as follows. The con-
cept about tensor z-transform will be introduced in Section
2. New theories regarding Cauchy’s residue theorem for
tensors will be presented in Section 3. In Section 4, two
approaches to carry out the inverse tensor z-transform,
namely, the power-series approach and the integration
approach via Cauchy’s residue theorem for tensors, will be
introduced. An application of the tensor z-transform for
digital tensor-filter design will be presented in Section 5.
Numerical evaluations about the frequency responses of
the tensor z-transform, the tensor-sequence approximation
error, and the implementational complexities will be demon-
strated in Section 6. The conclusion will be finally drawn in
Section 7.
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Figure 1: Illustration of the realization of a GARMA- n,m filter.
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1.1. Nomenclature. The sets of complex and real numbers are
denoted by ℂ and ℝ, respectively. The set of all integers is
denoted by ℤ. The natural-number set is represented by ℕ
, and ℕ≥0 denotes the set of nonnegative integers. The sym-
bol “≝” denotes a mathematical definition. The tensor
dimensionality discussed in this paper can be expressed by
ℂI1×⋯×IM×I1×⋯×IM if it is not specified in the context. Note
that ι is reserved to represent −1. Spectrum and eigenvalue
share the same meaning throughout this work. Given two
invertible tensors A ,B ∈ℂI1×⋯×IM×I1×⋯×IM , A/B represents
A⋆MB

−1 where “⋆M” denotes the “Einstein product” or
“tensor product” as defined in [3].

2. Tensor z-Transform

In this section, we would like to introduce a new mathemat-
ical framework, namely, the tensor z-transform. The essen-
tial definitions and related examples are presented in
Section 2.1 while the important properties are described in
Section 2.2.

2.1. Definitions and Examples. A causal tensor sequence X n
is a tensor sequence such that X n ≝O for all n < 0 where O
denotes an all-zero tensor. The exponential of a tensor
A ∈ℂI1×⋯×IM×I1×⋯×IM , denoted by exp A , is written as

exp A ≝〠
∞

i=0
A i, 3

where A i≝A⋆MA⋆M ⋯⋆MA

there are i tensors

and “⋆M” denotes the

Einstein product (a.k.a. tensor product) as introduced in
[3]. Consider a sequence of tensors indexed by n, denoted
by X n where n = 0, 1, 2,⋯. The tensor z-transform is
given by

X z ≝Z X n ≝ 〠
∞

n=−∞
X n z−n 4

Lemma 1 below will establish the required convergence
radius of z for Eq.(4). We say a sequence of tensors is a
causal tensor sequence if X n = O for n < 0, while a
sequence of tensors is called an anticausal tensor sequence
if X n = O for n < 0.

Lemma 1. Consider a power series in terms of the complex
variable z as given by

〠
∞

n=0
Cn z − z0

n, 5

where Cn denotes the n-th element (tensor) in a tensor
sequence and z0 denotes an arbitrary complex constant. The
radius of convergence of the power series stated by Eq. (5) is
thus given by

R = 1

lim
n⟶∞

Cn
n

, 6

where 0 < R <∞ and “ ” represents the tensor norm as
introduced in [3].

Proof. Without loss of generality, one may assume z0 = 0.
Now we will prove that the power series ∑∞

n=0Cnz
n con-

verges for z < R while it diverges for z > R instead. Given
z < R and any ϵ > 0, there exists only a finite number of
indices n such that Cn

n ≥ 1/R + ϵ. Consequently, we
may have Cn ≤ 1/R + ϵ n for all but a finite number of
tensors Cn, so the tensor series ∑∞

n=0Cnz
n converges if

z < 1/ 1/R + ϵ . Therefore, the power series ∑∞
n=0Cnz

n

converges for z < R. On the other hand, given ϵ > 0,
if we have an infinite number of tensors Cn such that
Cn ≥ 1/R − ϵ n, then z = 1/ 1/R − ϵ > R and the tensor

series cannot converge since Cn does not converge to 0.
To illustrate the concept of the tensor z-transform, we

present the following example.

Example 1. A sequence of tensors is given by exp −An ,
n ∈ℕ≥0 where A is a constant tensor. Thus, the corre-
sponding radius of convergence is given by

z−1 exp −A < 1 or z > e−A 7

The z-transform of exp −An , n ∈ℕ≥0 can be
obtained as

Z exp −An , n ∈ℕ≥0 = 〠
∞

n=0
exp −A z−1

n

= I

I − exp −A z−1
,

8

where I denotes an identity tensor (see [3] for its defini-
tion). When A is a zero tensor, we have

Z exp −An , n ∈ℕ≥0 = 〠
∞

n=0
I z−1

n = I

I −I z−1
,

9

where I ∈ℂI1×⋯×IM×I1×⋯×IM .

2.2. Properties. In this subsection, we will introduce several
important properties about the tensor z-transform as fol-
lows. Due to page limit, we will present the basic properties
related to the tensor z-transform, e.g., linearity, time delay,
upsampling, and downsampling.

2.2.1. Linearity. Consider a linear combination of two tensor
sequences X n and Y n . We have

A⋆MX n +B⋆MY n  for n ∈ℤ, 10

whereA ,B ∈ℂI1×⋯×IM×I1×⋯×IM . According to Eq. (4), we have

3Journal of Applied Mathematics



Z A⋆MX n +B⋆MY n = 〠
∞

n=−∞
A⋆MX n +B⋆MY n z−n

=A⋆MX z +B⋆MY z ,
11

where X z = def Z X n and Y z ≝Z Y n . Therefore,

Z A⋆MX n +B⋆MY n =A⋆MX z +B⋆MY z

12

2.2.2. Time Delay. The delayed version X n − k of a tensor
sequence X n is obtained by delaying k discrete-time instants
of X n . Thus, we have

Z X n − k = 〠
∞

n=−∞
X n − k z−n

= 〠
∞

n′=−∞
X n′ z− n′+k

= 〠
∞

n′=−∞
X n′ z−n′z−k

= z−k 〠
∞

n′=−∞
X n′ z−n′

= z−k 〠
∞

n′=−∞
X n′ z−n′

= z−kX z

13

Therefore, we have

Z X n − k = z−kX z 14

2.2.3. Upsampling. Given a tensor sequence X n , we define
XK n , where K ∈ℕ, by

XK n =def
X i , if n = Ki,
0, if n ≠ Ki,

15

for n, i ∈ℤ. Thus, we have

XK z = 〠
∞

n=−∞
XK n z−n

= 〠
∞

i=−∞
XK i z−iK

= 〠
∞

i=−∞
XK i zK

−i

=X zK

16

Therefore, we have

Z XK n =X zK 17

2.2.4. Downsampling. Given a tensor sequenceX n , we define
Y n by

Y n =def X Kn for n ∈ℤ, whereK ∈ℕ 18

Thus, we have

Y z = 〠
∞

n=−∞
Y n z−n

= 〠
∞

n=−∞
X Kn z−n

= 1 〠
∞

m=−∞
x m

1
K

〠
K−1

i=0
exp ι

2πmi
K

z−m/K

= 1
K

〠
K−1

i=0
〠
∞

m=−∞
x m exp −

ι2πi
K

z1/M
−m

= 1
K

〠
K−1

i=0
X exp −

ι2πi
K

z1/M ,

19

where the identity “= 1” can be attained according to

1
K

〠
K−1

i=0
exp ι

2πmi
K

=
1, wherem is amultiple of K ,
0, otherwise

20

Therefore, we have

Z X Kn = 1
K

〠
K−1

i=0
X exp −

ι2πi
K

z1/M 21

2.2.5. Time Reversal. Given a tensor sequence X n , we define
Y n by

Y n =X −n  for n ∈ℤ 22

Thus, we have

Y z = 〠
∞

n=−∞
Y n z−n

= 〠
∞

n=−∞
X −n z−n

= 〠
−∞

m=∞
X m z−1

−m

=X z−1

23

Therefore, we have

Z X −n =X z−1 24

2.2.6. Scaling in the z-Domain. Consider a tensor sequence
An⋆MX n where the tensor A is invertible and commuta-

tive for X n with respect to all n. Thus, we have
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Z An⋆MX n = 〠
∞

n=−∞
An⋆MX n z−n

= 〠
∞

n=−∞
X n ⋆M A−1z

−n

=X A−1z

25

Therefore, we have

Z An⋆MX n =X A−1z 26

2.2.7. Complex Conjugation. Given a tensor sequence X n ,
X∗ n denotes its complex-conjugated tensor sequence
where all elements in X∗ n are the complex conjugates of the
corresponding elements in X n for all n ∈ℤ. Thus, we have

Z X∗ n = 〠
∞

n=−∞
X∗ n z−n

= 〠
∞

n=−∞
X n z∗ −n ∗

= 〠
∞

n=−∞
X n z∗ −n

∗

=X∗ z∗

27

Therefore, we have

Z X∗ n =X∗ z∗ 28

2.2.8. Differentiation. Consider a tensor sequence nX n .
Thus, we have

Z nX n = 〠
∞

n=−∞
nX n z−n

= z 〠
∞

n=−∞
nX n z−n−1

= −z 〠
∞

n=−∞
X n −nz−n−1

= z 〠
∞

n=−∞
X n

d
dz

z−n

= −z
dX z
dz

29

Therefore, we have

Z nX n = −z
dX z
dz

30

2.2.9. Convolution. Consider two tensor sequences X n
and Y n for n ∈ℤ, the convolutional tensor sequence
W n such that W n ≝X n ⊗ MY n where “ ⊗ M”
denotes the linear convolution operator and X n ,Y n ,
W n ∈ℂI1×⋯×IM×I1×⋯×IM . Thus, we have

Z W n =Z X n ⊛MY n

=Z 〠
∞

m=−∞
X m ⋆MY n −m

= 〠
∞

n=−∞
z−n 〠

∞

m=−∞
X m ⋆MY n −m

= 〠
∞

m=−∞
〠
∞

n=−∞
z−nX m ⋆MY n −m

= 〠
∞

m=−∞
X m ⋆M 〠

∞

n=−∞
z−nY n −m

= 〠
∞

m=−∞
X m ⋆M z−mY z =X z ⋆MY z

31

Therefore, we have

Z X n ⊗ MY n =X z ⋆MY z 32

2.2.10. Accumulation. Consider a tensor sequence Y n
where

Y n ≝ 〠
n

k=−∞
X k 33

Then, we have

Z Y k =Z 〠
n

k=−∞
X k

= 〠
∞

n=−∞
z−n 〠

n

k=−∞
X k

= 〠
∞

n=−∞
z−n X −∞ +⋯+X n − 1 +X n

= 〠
∞

n=−∞
z−n X n +X n − 1 +⋯+X −∞

= 1X z + z−1X z +⋯+z−∞X z

=X z 1 + z−1 + z−2+⋯

=X z
z

z − 1 ,

34

where the identity “=1” above can be obtained according to
the time delay property. Therefore, we

Z 〠
n

k=−∞
X k =X z

z
z − 1 35

2.2.11. Initial Value Theorem. According to the z-transform
definition given by Eq. (4), we have

X z =X 0 z0 +X 1 z−1 +X 2 z−2+⋯, 36
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where X n is a causal tensor sequence. Taking z⟶∞
at both sides of Eq. (36), we have z−n ⟶ 0. Thus, we have

X 0 = lim
z⟶∞

X z 37

2.2.12. Final Value Theorem. According to the z-transform
definition given by Eq. (4), we have

Z X n + 1 −Z X n = zX z − zX 0 −X z , 38

where X n is a causal tensor sequence. Thus, we have

z − 1 X z − zX 0 = 〠
∞

n=0
X n + 1 −X n z−n 39

Taking z⟶ 1 at both sides of Eq. (39), we have

lim
z⟶1

z − 1 X z − zX 0 =X 1 −X 0 +X 2 −X 1

+⋯+X ∞ −X ∞−1
40

Therefore, we have

X ∞ = lim
z⟶1

z − 1 X z 41

3. Cauchy’s Residue Theorem for
Tensor Sequences

It is well-known that the scalar sequence resulting from the
inverse z-transform can be determined using Cauchy’s resi-
due theorem [23]. We will extend Cauchy’s residue theorem
to accommodate tensor sequences in this section.

Let us begin with Cauchy’s integral formula for tensors
in the following subsection.

3.1. Cauchy’s Integral Formula for Tensors. Let A ∈
ℂI1×⋯×IM×I1×⋯×IM be a tensor where

A = 〠
υ

k=1
λkQk⋆1R

H
k 42

Note that

υ =def
M

i=1
Ii 43

λk denotes the k-th eigenvalue of A ; Qk and Rk denote
the k-th left and right eigentensors (the definitions of left
and right eigentensors can be found in [24]) corresponding
to λk, respectively; and RH

k is the Hermitian adjoint (the
Hermitian adjoint of a tensor is defined in [3]) of Rk. As
we assume that all tensors discussed in this paper are diago-
nalizable square tensors, all tensors throughout this paper
can be expressed in the form of Eq. (42). Furthermore, note
that Qk, Rk ∈ℂI1×⋯×IM ,

Qk,R j = δk,j,

I = 〠
υ

k=1
Qk⋆1R

H
k ,

44

where 〈,〉 denotes the inner product of two tensors whose
definition can be found in [3]; δk,j = def 0 if k ≠ j while

δk,j = def 1 if k = j; I ∈ℂI1×⋯×IM×I1×⋯×IM denotes an identity.
Now define Λ A by the set of all eigenvalues of A , i.e.,

Λ A ≝ λk k = 1, 2,⋯, υ . If f ♦⟶ f ♦ is a function-
mapping, where the argument “♦” can be treated as a scalar,
vector, matrix, or a tensor, we can formulate f A as

f A = 〠
υ

k=1
f λk Qk⋆1R

H
k 45

Let Λ́ A represent a subset of Λ A . If f A only
depends on Λ́ A , we may write f A as f Λ́ A

A such that

f Λ́ A
A = 〠

λk∈Λ́ A

f λk Qk⋆1R
H
k 46

We further define the functional norm of f A by

f A sup =
def sup

λk∈Λ A

f λk 47

If f λk is bounded for all k, then f A sup <∞.
Motivated from [25], we may define the “resolvent” GA z
of A ∈ℂI1×⋯×IM×I1×⋯×IM with respect to a complex variable
z ∉Λ A such that

GA z = I

zI −A
48

According to Eq. (47), we have

GA z sup = sup
λk∈Λ A

1
z − λk

49

Lemma 2 below provides the alternative expression of
GA z .

Lemma 2. Given a tensor A ∈ℂI1×⋯×IM×I1×⋯×IM along with
its resolvent GA z , we have

GA z = GA z0
I − z0 − z GA z0

50

Proof. Since we can express GA z by

GA z = 〠
υ

k=1

Qk⋆1R
H
k

z − λk
, 51
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we have

GA z −GA z0 = 〠
υ

k=1

1
z − λk

−
1

z0 − λk
Qk⋆1R

H
k

= 〠
υ

k=1

z0 − z
z − λk z0 − λk

Qk⋆1R
H
k

= z0 − z
z −A z0 −A

= z0 − z GA z GA z0

52

According to Eq. (52), we can derive Eq. (50).

Lemma 3 below shows that the resolvent GA z is an
analytic tensor-valued function of z.

Lemma 3. Given a tensor A ∈ℂI1×⋯×IM×I1×⋯×IM along with
its resolvent GA z , if we have

z − z0 < dist z0,Λ A =def min
λ∈Λ A

z0 − λ , 53

then GA z is an analytic function of z.

Proof. To show that the tensor-valued function GA z is an
analytic function of z, we can express GA z by a convergent
power series. According to Lemma 2, we can express
Eq. (50) by

GA z =GA z0 〠
∞

n=0
z0 − z GA z0

n 54

subject to z0 − z GA z0 sup < 1. If we assume that
−z0 < r, then

GA z0 z0 − z GA z0
n

sup

≤
r

dist z0,Λ A

n

× 1
dist z0,Λ A

,
55

where GA z0 sup = 1/dist z0,Λ A . If the condition given

by Eq. (53) holds, then GA z0 z0 − z GA z0
n ⟶ 0 as

n⟶∞.
According to Lemma 3, since the resolvent GA z ofA is

analytic, we can carry out the contour integrals over it. For
example, a contour ℭ3 encircles a single eigenvalue, say λ3,
in Figure 2(a) such that

1
2πι C3

GA z dz = 1
2πι C3

〠
υ

k=1

Qk⋆1R
H
k

z − λk
dz

= 1
2πι C3

Q3⋆1R
H
3

z − λ3
dz

= 1Q3⋆1R
H
3 ,

56

where the identity “= 1” above follows from
C3
1/ z − λ3

= 2πι.
Now we can present Theorem 4 about Cauchy’s integral

formula for tensors.

Theorem 4. Given a tensor A ∈ℂI1×⋯×IM×I1×⋯×IM and an
analytic function f z with the region of convergence (ROC)
including z z ∈Λ A , let CΛ́ A

be a contour where the

set of points z z ∈ Λ́ A are all inside CΛ́ A
.

Thus, we have

f Λ́ A
A = 1

2πι C
Λ́ A

f z
zI −A

dz, 57

where f Λ́ A
A is defined by Eq. (46).

Proof. Consider a contour CΛ́ A
as illustrated by Figure 2(a)

or 2(b). Thus, we have

1
2πι C

Λ́ A

GA z dz = 1
2πι C

Λ́ A

〠
υ

k=1

Qk⋆1R
H
k

z − λk
dz

= 〠
λk∈Λ́ A

Qk⋆1R
H
k

1
2πι CΛ́ A

1
z − λk

dz

=1

= 〠
λk∈Λ́ A

Qk⋆1R
H
k

58

Because f z is an analytic function with the ROC
including z z ∈Λ A , according to the spectral mapping
theorem in [25] and Cauchy’s integral formula for scalars in
[23], we have

f Λ́ A
A = 〠

λk∈Λ́ A

f λk Qk⋆1R
H
k

= 〠
λk∈Λ́ A

1
2πι CΛ́ A

f z
z − λk

dz

f λk

Qk⋆1R
H
k

= 1
2πι CΛ́ A

f z GΛ́ A
z dz

= 1
2πι C

Λ́ A

f z
zI −A

dz

59

Define the n-th derivative f n

Λ́ A
A with respect to the

tensor A by

f n

Λ́ A
A =def lim

X−A ⟶0

f n−1
Λ́ X

X − f n−1
Λ́ A

A

X −A
, 60
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for n = 1, 2,⋯, where f 0
Λ́ A

A = def f Λ́ A
A and “ ” is

the tensor norm as introduced in [3]. Corollary 5 below,
which is derived from Theorem 4, presents Cauchy’s integral
formula for the “tensor derivatives” given by Eq. (60).

Corollary 5. Given a tensor A ∈ℂI1×⋯×IM×I1×⋯×IM together
with an analytic function f z of z with the ROC including
z z ∈Λ A . Since CΛ́ A

is a contour where the set of

points z z ∈ Λ́ A are all inside CΛ́ A
, we have

f n

Λ́ A
A = n

2πι C
Λ́ A

f z

zI −A n+1 dz, 61

for n = 0, 1, 2,⋯.

Proof. For n = 1 (the first-order derivative), we have

f 1
Λ́ A

A = 1 lim
X−A ⟶0

1
X −A

1
2πι CΛ́ X

f w
wI −X

dw −
1
2πι CΛ́ A

f w
wI −A

dw

= 1
2πι lim

X−A ⟶0

1
X −A

⋆M
CΛ́ X

∪CΛ́ A

f w X −A

wI −X wI −A
dw

= 1
2πι C

Λ́ A

f z

wI −A 2 dw

= 1
2πι C

Λ́ A

f z

zI −A 2 dz,

62

where “= 1” above is deduced from Theorem 4 and Eq. (60).
Thus, Corollary 5 can be established by iterating Eq. (62)
repeatedly for n times.

3.2. Generalized Cauchy’s Residue Theorem for Tensor
Sequences. If f X is an analytic tensor-valued function with
the argument X ∈ℂI1×⋯×IM×I1×⋯×IM except for an isolated
singularity point at X =X0, then f X has a Laurent series
such that

f X = 〠
∞

k=−∞
Ak⋆M X −X0

k, 63

where the coefficient tensor A−1 ∈ℂ
I1×⋯×IM×I1×⋯×IM is called

the “residue” of f X at X =X0, denoted by Res f ;X0 .
Let us present the following lemmas about the residue prop-
erties for analytic tensor-valued functions.

Lemma 6. If f X has a simple pole at X =X0 and can be
expressed by

f X = g X

h X
, 64

where both g X and h X are analytic at X =X0 such that
g X0 ≠ O and h X has a simple zero at X =X0, then

Res f ;X0 = 1 lim
X−X0 ⟶0

f X ⋆M X −X0 = 2
g X0

h 1 X0

65

Proof. Since we have

f X = A−1
X −X0

+A0 +A1⋆M X −X0 +⋯, 66

the identity “= 1” in Eq. (65) can be obtained by multiplying
X −X0 at both sides of Eq. (66). The identity “= 2” in Eq.
(65) can be obtained by

lim
X⟶X0

f X ⋆M X −X0 = lim
X−X0 ⟶0

g X

h X
⋆M X −X0

= lim
X−X0 ⟶0

g X

h X − h X0 / X −X0

= g X0
h 1 X0

67

Imaginary

�3

3

Real

(a) Single eigenvalue in contour

Real

Imaginary

(A)

(b) Multiple eigenvalues in contour

Figure 2: Illustration for contours encircling eigenvalue(s).
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Lemma 7. If f X has a pole at X =X0 with a multiplicity
k ∈ℕ, then we have

Res f ;X0 = d k−1

k − 1 dX k−1 f X ⋆M X −X0
k

X=X0

68

Proof. We have

f X =A−k⋆M X −X0
−k+⋯+A−1⋆M X −X0

−1

+A0 +A1⋆M X −X0 +⋯
69

Assume f X = def X −X0
k⋆Mf X . We get

d k−1 f X

dX k−1 = k − 1 A−1 + k A0⋆M X −X0 +⋯ 70

Thus, according to Eq. (63), Lemma 7 is proven.
Lemma 8 below governs the contour integral of the

powers of zI −A .

Lemma 8. We get

C

zI −A ndz = O 71

for n ∈ℕ≥0 and any closed contour ℭ. Moreover, we also have

C
Λ́ A

zI −A ndz = O 72

for n ∈ℤ and n < −1.

Proof. For n ∈ℤ and n ≥ 0, since we have

C

zndz = 0, 73

Eq. (71) is valid by the binomial expansion of zI −A
n.

For n ∈ℤ and n < −1, since we have

zI −A n = 1 1
n + 1

d
dz

zI −A n+1, 74

according to Corollary 5, we get

CΛ́ A

zI −A ndz = O 75

Consequently, Lemma 8 is proven.

Now we present Cauchy’s residue theorem for tensor
sequences as Theorem 9 below.

Theorem 9 (Cauchy’s residue theorem for tensor sequences).
If ℭ is a simple closed contour in the complex z-plane and

f z is an analytic function with the tensor coefficients
except for some tensors X1,X2,⋯,Xm ∈ℂI1×⋯×IM×I1×⋯×IM

with the corresponding spectra Λ́ X1 , Λ́ X2 , …, Λ́ Xm
inside the contour ℭ, then we have

C

f z dz = 2πι〠
m

k=1
Res f ;Xk ⋆M 〠

λk, j∈Λ́ Xk

Qk,j⋆1R
H
k,j

76

Proof. Assume that m = 1 and X1 is a simple pole. Thus,
we can express f z by

f z = g z
zI −X1

, 77

where g z is given by

g z =def A0 +A1⋆M zI −X1 +A2⋆M zI −X1
2+⋯,

78

and A i denotes the coefficient tensor associated with
zI −X1

i for i = 0, 1, 2,⋯. Besides, we have Res f ;X1
=A0.

By integrating both sides of the following identity:

g z
zI −X1

= A0
zI −X1

+A1 +A2⋆M zI −X1 +⋯, 79

we have

C

g z
zI −X1

dz =
C

A0
zI −X1

dz +
C

A1dz

+
C

A2⋆M zI −X1 dz+⋯
80

According to Theorem 4 and Lemma 8, we have

g X1 = 1
2πι C

g z
zI −X1

dz =A0⋆M 〠
λ1, j∈Λ́ X1

Q1,j⋆1R
H
1,j

81

In general, let R be an ROC in the complex z-plane
containing a contour ℭ and R′ be a subregion of R without
any of the spectra z ∈Λ X1 , z ∈Λ X2 ,⋯, z ∈Λ Xm .
Consider that these spectra (poles) z ∈Λ X1 , z ∈Λ X2 ,
⋯, z ∈Λ Xm are inside the contours (say small circles)
ℭ1, ℭ2, …, ℭm, respectively, such that ℭ − ℭ1 + ℭ2+⋯+ℭm

is inside R′ where “-” and “+” here specify the set difference
and union operators, respectively. Theorem 9 is thus proven
by applying Theorem 4 and Lemma 8 subject to CΛ́ A

=C

− C1 +C2+⋯+Cm in both Eqs. (57) and (72). The residue
tensors Res f ;Xk , k = 1, 2, …, m, can be obtained using
Lemma 6 if Xk is a simple pole or Lemma 7 if Xk has a
multiplicity larger than one.
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4. Inverse Tensor z-Transform

In this section, we will introduce two approaches to under-
take the inverse tensor z-transform. First, the power-series
approach (or long-division approach) will be introduced in
Section 4.1 while the contour-integral approach based on
our newly derived Cauchy’s residue theorem for tensor
sequences will be presented in Section 4.2.

4.1. Power-Series (Long-Division) Approach. Suppose that a
tensor z-transform X z is expressed by the following ratio-
nal (proper fraction) form:

X z =def A0 +A1z
−1+⋯+Amz

−m

B0 +B1z−1+⋯+Bnz−n
, 82

where we assume that m < n without loss of generality (if m

≥ n, we can rewrite Eq. (82) as X z = def A0 +A1z
−1+⋯+

Amz
−m / B0 +B1z

−1+⋯+Bnz
−n =V z−1 + A0′ +A1′z−1

+⋯+A
m′′ z−m′ / B0 +B1z

−1+⋯+Bnz
−n , where m′ < n

and V z−1 denotes a polynomial of z−1). Given a set of
invertible tensors, say Bk, k = 0, 1, 2,⋯, n where Bk ∈
ℂI1×⋯×IM×I1×⋯×IM for all k, we want to show that it is
always possible to find n tensors X i, i = 1, 2,⋯, n satisfying

〠
n

i=0
Biz

−i =Bn

n

i=0
z−1I −X i 83

Lemma 10. Given Bk, k = 0, 1, 2,⋯, n where Bk ∈
ℂI1×⋯×IM×I1×⋯×IM for all k, we have

n−1

j=1

n − j + 1 υ

υ
84

solutions totally based on Eq. (83).

Proof. According to the right-hand side of Eq. (83), we have

n

i=1
z−1I −X i =I z−n + −1 Bn−1

Bn
z− n−1

+ −1 2 Bn−2
Bn

z− n−2 +⋯+ −1 n B0
Bn

85

According to Chapter 3 in [26], the solution space of X i’s
in Eq. (83) is equivalent to the solution space of the tensor Z
satisfying

IZn + −1 Bn−1
Bn

Z n−1 + −1 2 Bn−2
Bn

Z n−2

+⋯+ −1 n B0
Bn

= O

86

According to Section 2.2 in [24], the tensors Bi’s and Z

all can be “unfolded” to form the corresponding υ × υ unfolded
matrices, say Bi’s and Z. The solution space ofZ in Eq. (86) is
identical to the solution space of Z in the following:

IυZn + −1 Bn−1
Bn

Z n−1 + −1 2 Bn−2
Bn

Z n−2

+⋯+ −1 n B0
Bn

=O,
87

where O denotes an all-zero matrix. According to Theorem 4
in [27], there are

nυ

υ
88

solutions of suchZ in Eq. (86). If we know the solution of
X i, i = 1, 2, …, n − 1, to Eq. (87), then Eq. (83) becomes

〠
n−1

i=1
Bi′z−i =Bn−1′

n−1

i=1
z−1I −X i , 89

where Bi′= def Bi/Bn, i = 1, 2, …, n − 1. Thus, by repeatedly
applying Theorem 4 in [27] again and again, there are

n − 1 υ

υ
90

solutions of X i’s to Eq. (89). Finally, we will have

n−1

j=1

n − j + 1 υ

υ
91

solutions of X i for i = 1, 2, …, n, to Eq. (83).
Suppose that we have the following tensor-root decom-

position for the denominator polynomial in Eq. (82):

B0 +B1z
−1+⋯+Bnz

−n =Bn

ρ

i=1
z−1I −P i

κi 92

Consequently, the rational tensor z-function X z given
by Eq. (82) can be expressed by

X z = Am

Bn
〠
ρ

i=1

Di,1
z−1I −P i

+⋯+
Di,κi

z−1I −P i
κi

, 93

where P i (associated with the multiplicity κi), i = 1, 2, …, ρ,
are ρ-distinct roots (in terms of tensors) of the polynomial
with tensor coefficients: B0 +B1z

−1 +⋯ +Bnz
−n. We call

the expansion given by Eq. (93) “tensor partial fraction
decomposition (T-PDF).” Note that the coefficient tensors
Di,j for j = 1, 2, …, κi and i = 1, 2, …, ρ in Eq. (93) can be
determined using Lemmas 6 and 7 by substituting Z for
z−1I such that
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Di,κi−ℓ =
Bn

Am
⋆M

1
ℓ

dℓX Z

dZℓ
⋆M Z −P i

κi

Z=P i

, 94

where ℓ = 0, 1, …, κi − 1 and i = 1, 2, …, ρ.
Furthermore, we can rewrite Eq. (93) to split X z into

the causal and anticausal parts as the following

X z =Am

Bn
〠ρc

ic=1
Dic ,1

z−1I −P ic

+⋯+
Dic ,kic

z−1I −P ic
kic

causal part

+Am

Bn
〠ρa

ia=1
Dia ,1

z−1I −P ia

+⋯+
Dia ,kia

z−1I −P ia
kia

anticausal part

,
95

where ic and ia represent the indices for the causal and antic-
ausal parts of X z with ρc- and ρa-distinct roots (in terms
of tensors), respectively, and ρc + ρa = ρ. Then, the ROC of
the tensor z-transform X z given by Eq. (95), denoted by
ROC X z , can be written as

ROC X z = ∩
ρc

ic=1
∩
υ

κic=1
z ∈ℂ z > 1

λic ,κic

∩
ρa

ia=1

υ

κia=1

z ∈ℂ z < λic ,κic
,

96

where λic,κic
∈Λ P ic

and λia ,κia
∈Λ P ia

denote the set

of eigenvalues of the pole tensors P ic
and P ia

, respectively.
Because the power-series approach has to consider all pole
tensors, one needs to involve all eigenvalues of each pole
tensor for determining ROC X z . Given a rational tensor
z-function X z with the ROC specified by Eq. (96), we
can find the corresponding inverse tensor z-transform using
the power-series (long-division) approach such that

X n ≝Z−1 X z 97

An example to illustrate how to apply the power-series
approach, i.e., long division, to carry out the inverse tensor
z-transform is presented below.

Example 2. Here, we will present an example to illustrate how
to apply the power-series approach, i.e., long division, to carry
out the inverse tensor z-transform. Suppose that X z is a
rational tensor z-function, which can be expressed by

X z =def F z−1

G z−1
, 98

where F z−1 and G z−1 denote the numerator and denom-
inator polynomials of the variable z−1, respectively, such that

99

100
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According to Eq. (93), we can express X z by

X z = A1
I

⋆2
D1,1

I z−1 −P 1
+ D1,2

I z−1 −P 1
2 + D2,1

I z−1 −P 2

101

Note that we can obtain the coefficient tensorsD1,1,D1,2,
and D2,1 as given by Eq. (94) such that

102

According to the power-series approach to undertake the
inverse tensor z-transform, we have

Z−1 D1,1
I z−1 −P 1

= −D1,1⋆2 P −1
1

k+1
u k , 103

where

u k =def
0, if k < 0,
1, if k ≥ 0

104

represents the unit-step function with the discrete-time index
k and the tensor P −1

1 is given by

105

Thus, according to the power-series method, we have

Z−1 D1,2
I z−1 −P 1

2 = − k + 1 D1,2⋆2 P −1
1

k+2
u k

106

Again, according to the power-series approach to under-
take the inverse tensor z-transform, we have

Z−1 D2,1
I z−1 −P 2

= −D2,1⋆2 P −1
2

k+1
u k , 107

where the tensor P −1
2 is given by

108

Finally, by the linearity of the z-transform, we have

109
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where P −1
1 and P −1

2 are given by Eqs. (105) and (108),
respectively.

Because the eigenvalues of the tensor P −1
1 are 1/2, 1/2,

1/3, and 1/3 while the eigenvalues of the tensor P −1
2 are 1,

1, 1/2, and 1/2, we can determine ROC X z according to
Eq. (96) such that

ROC X z = ∩
2

ic=1
∩
4

κic=1
z ∈ℂ z > 1

λic ,κic

= z > 1

110

4.2. Generalized Contour-Integral Approach. Given an ana-
lytic function X z and a contour ℭ, according to Theorem
4, we have

XC n =def Z−1
C X z =def 1

2πι C

X z zn−1dz= 1 〠
m

k=1

Res X z zn−1 ;P k ⋆M 〠
λk, j∈Λ́ P k

Qk,j⋆1R
H
k,j ,

111

where “= 1” is induced from Theorem 9, ℭ is a simple closed
contour in the complex plane, andX z is analytic except for
the positions at the pole tensors: z =P 1, P 2, …, P m ∈
ℂI1×⋯×IM×I1×⋯×IM with their corresponding spectra: λk,j ∈ Λ́
P k for j = 1, 2,…, Jk and k = 1, 2,…, m inside the contour
ℭ. Note that Jk ≤ υ and Jk = υ if the closed contour ℭ
includes all spectra Λ P k . In addition, Z Xℭ n ≠X z
if the contour ℭ does not include all eigenvalues of the pole
tensors P k for k=1, 2, …, m while Z Xℭ n =X z if the
contour ℭ does include all eigenvalues of the pole tensors
P k for k = 1, 2, …, m. Different from the power-series
approach (which requires all eigenvalues of all pole tensors
to be inside ℭ), we can involve only those eigenvalues of the
pole tensors insideℭ in determiningROC X z (some eigen-
values of any pole tensor out of the contour ℭ are allowed) in
our proposed new contour-integral approach. In summary, it
is possible to have X z =Z X n =Z Xℭ n even
though X n ≠Xℭ n . Therefore, the so-called inverse tensor
z-transform is not unique, or precisely speaking, it is contour
ℭ dependent. Theorem 11 below will discuss such a contour-
dependence property of the inverse tensor z-transform.

Theorem 11. Let X z be an analytic function except for
the positions at the pole tensors z =P 1, P 2, …, P m ∈
ℂI1×⋯×IM×I1×⋯×IM with the corresponding spectra: λk,j ∈Λ
P k for j = 1, 2, …, Jk and k = 1, 2, …, m. We have τ
contours; i.e., ℭi, i = 1, 2, …, τ, and all pole tensors’ eigen-
values inside ℭi are collected as the set βℭi

such that

∪
τ

i=1
βCi

= ∪
m

k=1
Λ P k , βCi

∩ βCi ′
=∅, for any i ≠ i′ 112

If we assume that

X n = 〠
τ

i=1
XCi

n , 113

where X n ≝Z−1 X z according to Eq. (97) and XCi
n

= def Z−1
Ci

X z according to Eq. (111).

Proof. We select a large contour ℭ∞ that includes all eigen-

values belonging to ∪
m

k=1
Λ P k . Thus, in extension of the

inverse (scalar) z-transform study in Section 3.4.1 of [28],
we obtain

X n =XC∞
n = 1

2πι C∞

X z zn−1dz

= 〠
m

k=1
Res X z zn−1 ;P k ⋆M 〠

λk, j∈Λ P k

Qk,j⋆1R
H
k,j

= 1 〠
τ

i=1
〠
m

k=1
Res X z zn−1 ;P k ⋆M 〠

λk, j∈βCi

Qk,j⋆1R
H
k,j

= 〠
τ

i=1
XCi

n ,

114

where “= 1” arises from Eq. (112).
Suppose that we want to carry out the inverse tensor

z-transform of X z given by Eq. (95) using the generalized
contour-integral approach subject to a closed contour ℭ such
that Λ´ P k , k = 1, 2, …, m, denote the spectra inside ℭ. If
there are Jk eigenvalues included in the spectrum Λ´ P k ,
then the ROC of the tensor z-transform given by Eq. (95),
denoted by ROC X z , can be expressed by

ROC X z = ∩
ρc

ic=1
∩
Jic

κic=1
z ∈ℂ z > 1

λic ,κic

∩ ∩
ρa

ia=1
∩
Jia

κia=1

z ∈ℂ z < λic ,κic
,

115

where λic ,κic
∈ Λ́P ic

and λia ,κia
∈ Λ́P ia

are the eigenvalues

of the pole tensors P ic
and P ia

, respectively. Note that the

numbers of eigenvalues in the spectrum Λ́P ic
and the spec-

trum Λ́P ia
are represented by Jic and Jia , respectively. Different

from the power-series approach stated in Section 4.1, the
contour-integral approach here only involves the eigenvalues
of all pole tensors inside ℭ.

The inverse tensor z-transform via the contour-integral
approach can help us to establish the “generalized Parseval’s
relation,” given two tensor-sequences, say X n and Y n
with the corresponding tensor z-transforms as given by
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X z =def Z X n ,Y z =def Z Y n 116

According to the generalized contour-integral approach
stated in this subsection, we have

〠
∞

n=0
X n ⋆MY

∗ n = 〠
∞

n=0

1
2πι C∞

X z zn−1dz ⋆MY
∗ n

= 1
2πι C∞

X z ⋆M 〠
∞

n=0
Y∗ n zn−1 dz

= 1
2πι C∞

X z ⋆M 〠
∞

n=0
Y n

1
z∗

−n ∗

z−1dz

= 1
2πι C∞

X z ⋆MY
∗ 1

z∗
z−1dz

117

Therefore, we establish the generalized Parseval’s relation
below for tensor sequences:

〠
∞

n=0
X n ⋆MY

∗ n = 1
2πι C∞

X z ⋆MY
∗ 1

z∗
z−1dz 118

An example to illustrate how to apply the generalized
contour-integral approach to undertake the inverse tensor
z-transform is presented below.

Example 3. In this example, we will illustrate how to employ
the generalized contour-integral approach to undertake the
inverse tensor z-transform. A rational tensor z-function
X z is given by

According to Eq. (119), the eigenvalues and the eigen-
tensors of the pole tensor P 1 are given by

λ1,1 = 1, Q1,1 =
0 0
1 0

, R1,1 =
−1 0
1 0

,

λ1,2 = 1, Q1,2 =
0 1
0 0

, R1,2 =
0 1
0 0

,

λ1,3 = 2, Q1,3 =
0 0
0 1

, R1,3 =
0 0
0 1

,

λ1,4 = 2, Q1,4 =
1 0
1 0

, R1,4 =
1 0
0 0

120

Similarly, the eigenvalues and the eigentensors of the
pole tensor P 2 are given by

λ2,1 = 3, Q2,1 =
1 0
0 0

, R2,1 =
1 −1
0 0

,

λ2,2 = 3, Q2,2 =
0 0
0 1

, R2,2 =
0 0
0 1

,

λ2,3 = 4, Q2,3 =
0 0
1 0

, R2,3 =
0 0
1 0

,

λ2,4 = 4, Q2,4 =
1 1
0 0

, R2,4 =
0 1
0 0

121

If we consider the inverse tensor z-transform as a causal
tensor-sequence subject to a contour ℭ which is any simple
closed curve in the region: z > 4, and includes the spectrum

119
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1, 1, 2, 2 of the pole tensorP 1 and the spectrum 3, 3, 4, 4
of the pole tensor P 2, we have

Furthermore, if we consider the inverse tensor z
-transform as a causal tensor sequence subject to another
contour ℭ which is any simple closed curve in the region:

3 < z < 4, and includes the spectrum 1, 1, 2, 2 of the
pole tensor P 1 and a partial spectrum 3, 3 of the pole
tensor P 2, we have

Note that we only involve the eigenvalues 3, 3 here
because the contour ℭ does not include the eigenvalues 4, 4.

5. Applications of Tensor z-Transform

In this section, we will introduce two applications of our
proposed tensor z-transform, namely, “tensor filters.” Ten-

sor filters can be widely adopted to characterize massive
MIMO (multi-input multioutput) linear-time-invariant
(LTI) systems [29–33].

5.1. Infinite-Impulse-Response (IIR) Tensor Filters. Without
loss of generality, we consider a discrete-time MIMO LTI
system (filter) characterized by a higher-order difference

122

123

15Journal of Applied Mathematics



equation with the coefficient tensors A i ∈ℂI1×⋯×IM×I1×⋯×IM

and Bi ∈ℂI1×⋯×IM×I1×⋯×IM such that

Y k − 〠
n

i=1
Bi⋆MY k − i = 〠

m

i=0
A i⋆MX k − i , 124

where X k ∈ℂI1×⋯×IM×I1×⋯×IM and Y k ∈ℂI1×⋯×IM×I1×⋯×IM

denote the discrete-time input tensor sequence and the
discrete-time output tensor sequence, respectively. The
tensor-based MIMO system formulated by Eq. (124) is actu-
ally a “generalized autoregressive (AR) and moving average
(MA) filter,” denoted by a GARMA- n,m filter, which
can accommodate arbitrary-dimensional input and output
tensor sequences and thus can have much broader applica-
bility than the conventional (single-dimensional) ARMA fil-
ters. When there exists a nonzero coefficient tensor among
Bi’s, we call Eq. (124) an infinite-impulse-response (IIR) ten-
sor filter. When there exists a nonzero coefficient tensor
among A i’s and all of Bi’s are all-zero tensors, we call Eq.
(124) a finite-impulse-response (FIR) tensor filter. When
there exists a nonzero coefficient tensor Bn and all of A i’s
are all-zero tensors, we call Eq. (124) a GAR- n filter. When
there exists a nonzero coefficient tensor Am and all of Bi’s
are all-zero tensors, we call Eq. (124) a GMA- m filter.

Taking the tensor z-transform of both sides of Eq. (124),
we have the “transfer tensor” (the definition of a transfer ten-
sor can be found in [8]) ℌ z such that

H z =def Y z
X z

= ∑m
i=0A iz

−i

I − ∑n
i=1Biz−i

125

Let us define U k by

U k =def 〠
m

i=0
A i⋆MX k − i 126

Then, the output tensor sequence Y k is given by

Y k = 〠
n

i=1
Bi⋆MY k − i +U k 127

The block diagram given by Figure 1 illustrates how to
realize a GARMA- n,m filter.

Now consider a special case ofm = n. We can decompose
Eq. (125) into the following two equations:

W z =def X z
I −∑n

i=1Biz−i
, 128

Y z = 〠
n

i=0
A iz

−i W z 129

Taking the inverse tensor z-transform of both sides of
Eqs. (128) and (129), we can get

W k = 〠
n

i=1
BiW k − i +X k , 130

Y k = 〠
n

i=0
A iW k − i 131

The block diagram illustrated by Figure 3 demonstrates
how to implement the aforementioned GARMA- n, n filter
formulated by Eqs. (130) and (131).

5.2. Finite-Impulse-Response (FIR) Tensor Filters. Given the
input tensors X k ∈ℂI1×⋯×IM×I1×⋯×IM , the output ten-
sors Y k ∈ℂI1×⋯×IM×I1×⋯×IM , and the coefficient tensors
A i ∈ℂI1×⋯×IM×I1×⋯×IM and Bi ∈ℂI1×⋯×IM×I1×⋯×IM , the gen-
eral formula of the finite-impulse-response (FIR) tensor filter
can be written as

Y k = 〠
m

i=0
A i⋆MX k − i , 132

where m specifies the maximum tap number. The filter
impulse response for Eq. (132) can thus be given by

H i =def
A i, i = 0, 1, 2,⋯,m,
0, otherwise

133

The block diagrams (for the direct forms I and II)
illustrated by Figure 4 demonstrate how to implement the
aforementioned m-th order FIR tensor filter formulated by
Eq. (132).

6. Numerical Evaluation

In this section, we will present the numerical evaluation for an
IIR tensor filter. The corresponding frequency and phase
responses will be discussed in Section 6.1 while the approxi-
mation of discrete-time tensor signals through our proposed
spectral-selection technique along with the implementation-

� (k) y (k)W (k) A0+
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+
+
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+
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+ +

+
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z−1

z−1
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Am−1
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B1

Σ

Σ

Σ Σ

Σ

Σ

Figure 3: Illustration of the block diagram of the GARMA-(n,m)
filter for n =m. Note that the input and output signal sequences
and all coefficients involve tensors.
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complexity analysis will be investigated in Sections 6.2, and
Section 6.3, respectively.

Let us consider the following:

6.1. Frequency and Phase Responses. Given a tensor z-trans-
form ℌ z ∈ℂI1×⋯×IM×I1×⋯×IM , the frequency response is
given by

H z z=eιω =
def

H eιω =def HRe ω + ιHIm ω , 135

where −π ≤ ω < π; ℌRe ω and ℌIm ω denote the real and
imaginary parts of the frequency response ℌ eιω (a

complex-valued tensor ω-function). If an IIR tensor filter, or
a GARMA- n,m filter, is realized according to Eq. (125), both
ℌRe ω andℌIm ω are real-valued tensorω-functions. There
can be two different definitions about the magnitude response
of ℌ eιω . Let us write H eιω = def hi1,⋯,iM ;j1,⋯,jM eιω .
The first is called the “entry-wise magnitude response”
hi1,⋯,iM ;j1,⋯,jM eιω for each entry indexed by i1,⋯, iM ;
j1,⋯, jM. The second is called the “ensemble magnitude

� (k)

y (k)
A0 A1 A2

+ + + + + + + +

z−1 z−1 z−1

Am−1 Am

Σ Σ Σ Σ

(a)

� (k)
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+
+ +

+ +
+

+
+ +

+
z−1 z−1 z−1 z−1

Am−1Am Am−2

ΣΣΣΣΣ

(b)

Figure 4: Illustration of the block diagrams of the m-th order FIR tensor filter: (a) the direct form I and (b) the direct form II.
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response” ℌ eιω as defined by

H eιω =def HRe ω 2 + HIm ω 2, 136

where “ ” represents the tensor norm as introduced in [3].
Figure 5 depicts the magnitude responses for the IIR tensor fil-
ter characterized by Eq. (134). Two entry-wise magnitude
responses h1,1;1,1 eιω and h2,1;2,1 eιω are delineated. The
ensemble magnitude response ℌ eιω (denoted by “Ensem-
ble” in the figure) is also delineated in Figure 5. Since the
ensemble magnitude response includes the absolute values of
all entries according to Eq. (136), it should be larger than
any entry-wise magnitude response as illustrated in Figure 5.
Besides, we have two definitions for the phase response of
the IIR tensor filter having the tensor z-transform H z

= def hi1,⋯,iM ;j1,⋯,jM eιω ∈ℂI1×⋯×IM×I1×⋯×IM . First, we define
the “entry-wise phase spectrum” of ℌ eιω by ∠hi1,⋯,iM ;j1,⋯,jM
eιω , which represents the phase response of the entry index
i1,⋯, iM ; j1,⋯, jM . Second, we define the “ensemble phase
response” of ℌ eιω by ∠ℌ eιω as given by

∠H eιω = 〠
i1,⋯,iM ,j1,⋯,jM

ϕi1,⋯,iM ,j1,⋯,jM × ∠hi1,⋯,iM ,j1,⋯,jM eιω ,

137

where ϕi1,⋯,iM ,j1,⋯,jM ≥ 0 for all i1, i2, …, iM and j1, j2, …, jM
and ∑i1,⋯,iM ,j1,⋯,jMwi1,⋯,iM ,j1,⋯,jM = 1.

Figure 6 plots the phase responses of the IIR tensor filter
characterized by Eq. (134). Two entry-wise phase responses
h1,1;1,1 eιω and h2,1;2,1 eιω together with the ensemble phase
response, denoted by “Ensemble,” are depicted by Figure 6.

6.2. Approximation of Discrete-Time Tensor Signals via
Spectral Selection. According to Section 4.2, we can obtain dif-
ferent inverse tensor z-transforms by selecting different eigen-
values within an integration contour. The norm (the tensor
norm is defined in Section 2 of [3]) of the coefficient-tensor
Hℭ n at the n-th time index (tap) produced by the inverse
tensor z-transform (the transfer tensor) of the IIR tensor filter
characterized by Eq. (134) (such that HC n =Z−1

C H z ) is
depicted in Figure 7. Let Λ P 1 = def 0 09,2 01,2 98,3 01
represent the eigenvalues of the pole tensor P 1 as highlighted
in Eq. (134) enclosed by a contour ℭ selected for the inverse
tensor z-transform.

Similarly, let Λ P 2 = def 0 09,0 21,2 98,4 01 represent
the eigenvalues of the pole tensor P 2 in Eq. (134) enclosed
by a contour C for the inverse tensor z-transform. The red
bar-graph in Figure 7 depicts the tensor norms of the inverse
tensor z-transform subject to a contour ℭ enclosing the
spectra Λ P 1 and Λ P 2 . Now let us change Λ P 2 to Λ́
P 2 = def 0 09,0 21,2 98 and the green bar-graph in
Figure 7 depicts the tensor norms of the inverse tensor
z-transform subject to a contour ℭ enclosing the spectra
Λ P 1 and Λ́ P 2 . Note that the tensor norms marked
in green are always less than those marked in red with
respect to discrete-time indices n since the former tensor

norms result from the spectrum of the pole tensor P 2
without an eigenvalue 4 in comparison with the latter
tensor norms. The legend of Figure 7 denotes the eigen-
values of the two pole tensors P 1 and P 2 inside a
selected contour ℭ.

Given ℌ z , Hℭ n =Z−1
ℭ ℌ z , and Hℭ′ n =Z−1

ℭ′
ℌ z , define the “approximation-error-norm tensor
sequence” Hℭ n −Hℭ′ n , where ℭ encloses all eigen-
values of all pole tensors but ℭ′ leaves out some of them.

Figure 8 depicts the “approximation-error norm”
Hℭ n −Hℭ′ n with respect to the discrete-time index n
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subject to three different contours ℭ′, where the symbol “⋄”
in the figure indicates that ℭ′ encloses the spectra Λ́ P 1
= def 0 09,2 98,3 01 and Λ́ P 2 = def 0 09,0 21,2 98 , the
symbol “°” in the figure indicates that ℭ′ encloses the
spectra Λ́ P 1 = def 0 09,2 98,3 01 and Λ́ P 2 = def

0 09,0 21,2 98,4 01 , and the symbol “ × ” in the figure
indicates that ℭ′ encloses the spectra Λ́ P 1 = def

2 01,2 98,3 01 and Λ́ P 2 = def 2 98,4 01 .
Now we define a “principal eigenvalue” λ such that λ

> 1 where λ ∈Λ P 1 or Λ P 2 . Similarly, we define “minor
eigenvalues” λ such that λ < 1 where λ ∈Λ P 1 or Λ P 2 .
According to Figure 8, we observe that the approximation-
error norm delineated by the symbol “⋄” is the largest at
every k because two repeated principal eigenvalues 2 of the

pole tensor P 1 and a single principal eigenvalue 4 of the pole
tensor P 2 are not involved in the contour integral for the
inverse tensor z-transform. On the other hand, the
approximation-error norm delineated by the symbol “ × ”
is the smallest at every n because all principal eigenvalues
(except some minor eigenvalues) of the pole tensors P 1
and P 2 are involved in the contour integral for the inverse
tensor z-transform. As a matter of fact, the approximation-
error norm delineated by the symbol “ × ” will converge to
zero as the discrete-time index n approaches ∞. This phe-
nomenon implies the flexibility of our proposed tensor z
-transform for the application of approximating an IIR ten-
sor filter characterized by Eq. (125) by another IIR or FIR
tensor filter.

6.3. Computational-Complexity Study of Inverse Tensor z-
Transform. In this subsection, we will investigate the compu-
tational complexity for undertaking the inverse tensor z
-transform. Suppose

XC n =def Z−1
C X z = 〠

υ

i=1
Di⋆MP

n
i , 138

whereDi,P i ∈ℂI1×⋯×IM×I1×⋯×IM and P i denotes the i-th
involved pole tensor with the associated coefficient tensorDi
. If we apply the recursion procedure to carry out Eq. (138),
the required computational complexity is given by O υ4 log
n in terms of the Big-O notation. If we just involve ζ prin-
cipal eigenvalues inside the contour ℂ to approximate a pole
tensor P i, the required computational complexity is given
by O ζυ2 since there are υ elements in each eigentensor.
Figure 9 depicts the computational complexities required
for carrying out Eq. (138) with respect to the entry-size I1
(note that I1 = I2 =⋯IM) using the contour-integral subject
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to the contours enclosing (i) all eigenvalues of all pole ten-
sors (denoted by “○” in the figure), (ii) two eigenvalues of
all pole tensors (denoted by “ × ” in the figure), and (iii) four
eigenvalues of all tensors (denoted by “+” in the figure),
respectively. The approximation approach can reduce com-
putational complexity significantly according to Figure 9.

For the memory-complexity study, the exact computa-
tion of Eq. (138) requires the memory with the size O υ2

in terms of the Big-O notation. If we just involve ζ principal
eigenvalues inside the contour ℂ to approximate a pole ten-
sor P i, the required memory complexity is given by O ζυ
since there are υ elements in each eigentensor. Figure 10
depicts the memory complexities required to carry out
Eq. (138) with respect to the entry-size I1 (note that
I1 = I2 =⋯IM) using the contour-integral subject to the con-
tours enclosing (i) all eigenvalues of all pole tensors (denoted
by “○” in the figure), (ii) two eigenvalues of all pole tensors
(denoted by “ × ” in the figure), and (iii) four eigenvalues of
all tensors (denoted by “+” in the figure). According to both
Figures 9 and 10, our approximation approach by use of the
contour integral involving fewer eigenvalues of the pole ten-
sors inside a contour can greatly reduce the computational
and memory complexities required for the inverse tensor
z-transform.

7. Conclusion

In this work, a new arbitrary-dimensional transform,
namely, the tensor z-transform, is established to characterize
multirelational signals and multi-input multioutput linear-
time-invariant systems. The definition of the tensor z
-transform is first introduced, and then, the essential math-
ematical properties are discussed. We extend the conven-
tional Cauchy’s integral formula and Cauchy’s residue
theorem for dealing with scalar functions to the new gener-
alized Cauchy’s integral formula and the new generalized

Cauchy’s residue theorem for tensor functions. Thus, we
propose a new generalized contour-integral approach for
undertaking the inverse tensor z-transform. The applications
of our proposed new tensor z-transform in this work include
the design and approximation of infinite-impulse-response
(IIR) and finite-impulse-response (FIR) tensor filters. By
selecting the eigenvalues of the pole tensors of a tensor
z-transform inside a contour for the inverse tensor z-trans-
form, we can control the corresponding approximation-error
norm and the required computational/memory complexity.
Our proposed novel tensor z-transform framework can facili-
tate a promising analysis tool for signal and information pro-
cessing over networks in the future.
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