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Bovine tuberculosis (bTB) is a zoonotic disease that is commonly transmitted via inhaling aerosols, drinking unpasteurized milk, and
eating raw meat. We use a fractional-order model with the Caputo sense to examine the evolution of bovine tuberculosis transmission
in human and animal populations, including a vaccine compartment for humans. We derived and obtained the threshold quantity R0
to ascertain the illness state. We established conditions guaranteeing the asymptotic stability of the equilibria (locally and globally).
Sensitivity analysis was conducted to identify the factors that govern the dynamics of tuberculosis. The study demonstrates that the
rate of human-to-animal transmission of tuberculosis and environmental pollution and the rate of bTB transmission between
animals all affect tuberculosis transmission. However, as vaccination rates increase and fewer individuals consume contaminated
environment products (such as meat, milk, and other dairy products), the disease becomes less common in humans. To manage
bovine TB, it is advised that information programmes be implemented, the environment be monitored, infected persons be treated,
contaminated animals be vaccinated, and contaminated animals be quarantined. The usefulness of the discovered theoretical
results is demonstrated through numerical experiments.

1. Introduction

There has been progress in the fight against tuberculosis
(TB) in Africa, but several obstacles are hampering efforts
to end this preventable and curable disease. Global targets
to eradicate the illness by 2030 are increasingly improbable
at the current rate [1]. Contact is the primary means of
transmission for tuberculosis (TB), a chronic infectious dis-
ease mostly affecting the respiratory system. Reports [2]
state that Africa has the highest prevalence of instances.
India, China, and Indonesia followed with 72%, 27%, and
9%, respectively. The reorientation of funds to the COVID-
19 response has hampered the provision of basic services
in a number of countries. Due to the lockdowns, many
who have tuberculosis had found it difficult to receive treat-

ment. The ability to detect drug-resistant tuberculosis has
been influenced by COVID-19 [1]. In comparison to 2019,
the number of cases reported in the WHO African Region
declined by 28% in 2020 [1].

Cattle tuberculosis is a zoonotic infectious disease that is
classified as a class B animal epidemic by the OIE (Office
International des Epizooties). Humans and other animals
may contract an infection mostly from an infected animal.
The respiratory and digestive systems are the primary path-
ways of transmission. Contact with ill animals or consump-
tion of their raw milk can result in infection in both healthy
humans and animals [3–5]. Since bTB-infected animals are
put down as soon as they get ill, the disease has a significant
negative economic impact [5]. In addition, bTB deteriorates
health and can occasionally be lethal. Some people may lose
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their self-employment as a result of it, especially those whose
primary source of income is cattle rearing [6]. Bovine tuber-
culosis can transmit from cattle to humans through three
primary routes: consuming raw meat, inhaling aerosols,
and drinking unpasteurized milk [7]. Other ways that bTB
spreads among animals include the consumption of contam-
inated milk, particularly during lactation, and breathing in
of aerosols [8]. It can also spread through close contact
between infected and uninfected animals.

The intradermal skin test is the most established and
widely used approach for bTB diagnosis [9]. The fluctuating
sensitivity and specificity are its principal drawbacks, as
demonstrated in a number of papers. Furthermore, the use
of tuberculosis vaccination procedures makes this test diffi-
cult because sensitised animals yield false-positive results
[8]. A deterministic mathematical model is developed in
[5] to explore the dynamics of bTB transmission in infected
individuals as well as animals. To determine the disease’s
behaviour, the basic reproduction number R0 is computed.
According to the sensitivity analysis, the frequency at which
dairy products are generated, animals infect other animals
with bTB, and humans contract bTB from contaminated
dairy products is what causes bTB to spread.

A meta-analysis by specialists from India, the USA, the
UK, the Netherlands, and Ethiopia that assesses the impact
of the BCG vaccination on cattle is an intriguing article [10].
According to their analyses, BCG immunization may hasten
the control of bTB in endemic areas. Publications pertaining
to the immunology of Mycobacterium bovis (Mb) infections
have been written. The pathophysiology of tuberculosis in cat-
tle is typified by lesions in the lymph nodes and lungs, which
eventually lead to the development of granulomas. The immu-
nopathology and chronic evolution of bTB are comparable to
that of human TB in many aspects [8].

In [11], Ahmad et al. devised the reaction-diffusion
model and applied the fractional differential equation to
obtain traditional solutions to the nonlinear partial differen-
tial equation. The fraction differential calculus is a useful
tool that may be used to explain the dynamics of many life
events in the form of fractional orders. In [12], mathematical
models for the evolution of potato leaf roll virus propagation
are created using the differential equations with both integer
and fractional orders. The models considered the combina-
tion of vectors and potato populations. The potato leaf roll
virus (PLRV) model initially was created in integer order;
however, the model was later extended into fractional order
since fractional order gives memory and other benefits for
modelling real-life occurrences.

In [3], the study looks at the evolution of bovine tuber-
culosis transmission in both human and animal populations,
utilising a fractional-order model with the Caputo sense.
The threshold quantity R0 was also calculated using the Lya-
punov functions of the Volterra type. In their study titled
Review of Fractional Epidemic Models [13], concentrated
on summarising several variants of the fractional epidemic
model and assessing the outcomes of epidemiological
modelling, specifically the fractional epidemic model. They
developed simple, effective analytical techniques for solving
fractional epidemic models that are easy to adapt and use.

These techniques can assist the relevant organisations in
managing, preventing, and even forecasting the spread of
infectious diseases.

2. TB Model Description and Formulation

At any given time (t), the model divides total populations of
humans and animals into seven (7) subpopulations (com-
partments), with contaminated environment Ce.

The following are bTB model assumptions: immigration
and birth rates are within the susceptible human population,
there exists a continuous interaction between human and ani-
mal populations, and because the model lacks a recovery class,
it is presumed that there is no natural recovery. Consuming
dairy and meat from sick animals can spread the illness to
people.

The animal population size, ΩA, is classified into three
categories: susceptible (SA), exposed (EA), and infectious
(IA), where

SA + EA + IA =ΩA 1

The individual population size, denoted by ΩH, is classi-
fied into vaccinated humans VH, exposed EH, infected IH,
and susceptible SH.

SH +VH + EH + IH =ΩH 2

2.1. Model Formulation. Table 1 shows bTB variables.
The bTB vulnerable population is recruited at an average

rate of ΛH. Furthermore, individuals catch the latent illness
at aΛH rate by eating uncookedmeat andmilk and other dairy
products from animals that are infected, along with regular
coming into contact with contaminated people and livestock.

λH = η1IH + η2IA + η3Ce
ΩH

3

Effective immunizations are administered to a selection of
people at an average rate of κ, where κ ∈ 0, 1 . As the infec-
tious stage advances, the graph shows that the passive infec-
tion of susceptible individuals SH drops at a rate of γH and
grows at a frequency of λH in the exposure class EH. Human
infections IH rise at γH and fall at αH due to disease-related
death.

Natural death occurs in every human compartment at
a rate of μH. Due to the decreasing influence of vaccine
effectiveness with 1 − d ∈ 0, 1 , vaccinated humans may
transition to the exposure compartment at a rate of dλH.
At a rate of ϕ, humans may become sensitive and lose
their immunity.

Supplicant animals SA are bred and transported into
communities at an average of ΛA; thereafter, they acquire a
latent bovine TB infection through dairy consumption and
interaction with ill humans and animals.

λA = η4IH + η5IA + η6Ce
ΩA

4
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Using the Caputo derivatives of order α, let us examine
the fractional model where 0 < α < 1.

Using Diethelm’s method [14], we will use the following
system of fractional-order equations from Figure 1:

C
0D

α
t SH t = 1 − κα Λα

H + ϕαVH −
ηα1IH + ηα2IA + ηα3Ce

ΩH
SH − μαHSH,

C
0D

α
t EH t = ηα1IH + ηα2IA + ηα3Ce

ΩH
SH + d

ηα1IH + ηα2IA + ηα3Ce
ΩH

VH − μαH + σαH EH − καEH,

C
0D

α
t VH t = καΛα

H + καEH − μαH + ϕα VH − d
ηα1IH + ηα2IA + ηα3Ce

ΩH
VH,

C
0D

α
t IH t = σαHEH − μαH + γαH IH,

C
0D

α
t SA t =Λα

A −
ηα4IH + ηα5IA + ηα6Ce

ΩA
SA − μαASA,

C
0D

α
t EA t = ηα4IH + ηα5IA + ηα6Ce

ΩA
SA − μαA + σα

A EA,

C
0D

α
t IA t = σαAEA − μαA + γαA IA,

C
0D

α
t Ce t = ραIA − ωαCe

5

Under initial conditions,

SH ≥ 0, EH ≥ 0, IH ≥ 0, VH ≥ 0, SA ≥ 0, EA ≥ 0, 6

IA ≥ 0, Ce ≥ 0 at t = 0.
C
0D

α
is the Caputo fractional derivative.

Note: let us use the notation Dα instead of C0D
α
in the rest

of the discussion.

3. Model Analysis

3.1. bTB Invariant Region

Theorem 1. Assume that Ψ = SH t , EH t , VH t , IH t ,
SA t , EA t , IA t , Ce t ∈ℝ8

+ 0 ≤NH ≤ΛH/μH ∪ 0 ≤NA
≤ΛA/μA ∪ 0 ≤ Ce ≤ ΛA/μA ρ/ω .

Then, the model’s system equation has a feasible solution
set SH t , EH t , VH t , IH t , SA t , EA t , IA t , Ce t ,
which is bounded in the region Ψ.

Proof.

(i) By summing the system equations of human popula-
tion from model 3, the fractional derivative of the
entire human population is as follows:

DαNH =DαSH +DαEH +DαVH +DαIH, 7

DαNH =Λα
H + ϕαVH − λαHSH − καSH − μαHSH + λαHSH − μαH + σα

H EH, 8

+κα SH + EH − μαHVH + σαHEH − μαH + γαH IH, 9

DαNH =Λα
H − μαHSH − μαHEH − μαHVH − μαHIH − γαHVH − γαHIH, 10

DαNH =Λα
H − μαHNH − γαHIH, 11

DαNH ≤Λα
H − μαHNH 12

Note: compute without α on the right side in order to
simplify the expressions. On both sides of Equation (12)
using the Laplace transform [15],

L Dα
t NH t s +L μHNH t s ≤L ΛH s 13

On the LHS,

L aD
α
t NH t s = sαN H t − 〠

n−1

k=0
sα−k−1N k

H 0 , n − 1 < α ≤ n,

0 < α < 1, so n = 1 14

Table 1: Parameter values and descriptions.

Parameter Value Interpretation Sources

ΛH Human recruitment rate 37 [4, 5]

ΛA Animal recruitment rate 200 [5]

μA Natural mortality rate of animals 0.015 Given

μH Natural mortality rate of humans 0.04 Given

η1, η2, η3 Infection rates in humans IH, IA, and Ce, respectively 0.350, 0.550, 0.999 [5]

σA Incubation period for animals 0.3805 Given

σH Incubation period for humans 0.3805 Given

κ Vaccination rate in humans 0.805 Given

αA Death rate from animal sickness 0.2507 Given

αH Death rate from human sickness 0.0500 [4]

ρ Rate of dairy production 0.600 [3]

ϕ Human waning immunity rate 0.0300 Given

d Vaccine efficacy rate 0.500 Given

ω Environmental contamination rate 0.7 Given

η4, η5, η6 Infection rate of animals from IH, IA, and Ce, 0.25, 0.70, 0.50 [5], given, given
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Then, L Dα
t NH t s = sαN H s − sα−1NH 0 , and

L μHNH t s = μHN H s 15

Regarding the RHS,

L ΛH s =ΛHL 1 = ΛH
S

16

Equation (13) now looks like the following:

L Dα
t NH t s +L μHNH t s ≤L ΛH s , 17

sαN H s − sα−1NH 0 + μHN H s ≤
ΛH
s
, 18

N H s sα + μH ≤
ΛH
s

+ sα−1NH 0 19

Assuming that sα−1NH 0 = 0 at t = 0 [12], then

N H s ≤ΛH
s−1

sα + μH
20

The Mittag-Leffler function and the inverse Laplace
transform of N H s are used; we obtain

NH t ≤ΛHL
−1 s−1

sα + μH
≤ΛHt

αEα,α+1 −μHt
α

≤
ΛH
μH

1 − Eα −μHt
α ,

NH t ≤
ΛH
μH

1 − Eα −μHt
α

21

μH > 0, and as t⟶ 0, then NH t ⟶ΛH/μH ≥ 0.
Therefore,

0 ≤NH t ≤
ΛH
μH

,

ΨH = SH, EH, VH, IH ∈ℝ4
+ SH + EH +VH + IH ≤

Λα
H

μαH
22

(ii) Using the same methodology, the animal population
will yield

ΨA = SA, EA, IA ∈ℝ3
+ SH + EH + IH ≤

Λα
A

μαA
23

(iii) The contaminated environment will use 0 < IA ≤
Λα

A/μαA.

Figure 1: bTB model flow diagram.
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The 8th equation of model (3) yields the following:

DαCe t ≤ ρα
Λα

A
μαA

− ωαCe 24

Using the equality case and performing the Laplace
transform of Equation (24) on both sides, we have

L Dα
t Ce t s ≤L ρα

Λα
A

μαA
− ωαCe t s 25

Using the identical calculus method as the human popu-
lation example, we obtain the following:

On the LHS,

L Dα
t Ce t s = sαC e s − sα−1Ce 0 26

On the RHS,

L ρ
ΛA
μA

− ωCe t s = ρ
ΛA
μA

L 1 − ωL Ce t

= ρ ΛA/μA
S

− ωC e s

27

Now, Equation (28) becomes

C e s = ρ
ΛA
μA

s−1

sα + ω
+ sα−1

sα + ω
Ce 0 28

Taking sα−1Ce 0 = 0 at t = 0, then

C e s = ρ
ΛA
μA

s−1

sα + ω
29

Using (29)’s inverse Laplace transform, we obtain

Ce t = ρ
ΛA
μA

L−1 s−1

sα + ω
= ρ

ΛA
μA

tαEα,α+1 −ωtα ,

Ce t ≤
ΛA
μA

ρ

ω
1 − Eα −ωtα

30

ω > 0 and, as t⟶ 0, then Ce t ⟶ ΛA/μA ρ/ω ≥ 0.
Therefore,

0 ≤ Ce t ≤
ΛA
μA

ρ

ω
, 31

and so

ΨCe
= Ce ∈ℝ+ Ce ≤

Λα
A

μαA

ρα

ωα
32

Given a system of fractal-order equations in (5), the via-

ble region is as follows:

Ψ ⊂ℝ4
+ ×ℝ3

+ ×ℝ+ 33

That comprises a set of positive invariants.

This exhibits the model solution’s boundedness.

3.2. Positivity. Since the initial values of each model equation
are positive, then all of the model equations’ solutions (5)
remain positive for future times.

Lemma 2 (see [16]). Assuming that k t ∈ C x, y and C
0D

α
t k

t ∈ C x, y for 0 < α ≤ 1, then

k t = k x + 1
Γ α

C
0D

α
t k ε t − x α, 34

where x ≤ ε ≤ t, ∀t ∈ x, y .

Remark 3. Consider k t ∈ C x, y and C
0D

α
t k t ∈ C x, y for

0 < α ≤ 1. It follows from Lemma (2) that if C
0D

α
t k t ≥ 0,

∀t ∈ x, y , then k t increases for ∀t ∈ x, y , and if C
0D

α
t k t

≤ 0, ∀t ∈ x, y , thus k t decreases for ∀t ∈ x, y .

Theorem 4. Let SH 0 , EH 0 , VH 0 , IH 0 , SA 0 , EA 0 ,
IA 0 , Ce 0 be nonnegatives; then, SH t , EH t , VH t , IH
t , SA t , EA t , IA t , Ce t are nonnegatives for all time
t > 0.

Proof. Taking all of the model’s equations in Equation (5) at
t = 0, we obtain

C
0D

α
t SH

SH=0
= 1 − κα Λα

H + ϕαVH ≥ 0, 35

C
0D

α
t EH

EH=0
= λHSH + dλHVH ≥ 0, 36

C
0D

α
t VH

VH=0
= καΛα

H + καEH ≥ 0, 37

C
0D

α
t IH

IH=0
= σαHEH ≥ 0, 38

C
0D

α

t SA
SA=0

=Λα
A > 0, 39

C
0D

α

t EA
EA=0

= λASA ≥ 0, 40

C
0D

α

t IA
IA=0

= σαAEA ≥ 0, 41

C
0D

α

t Ce
Ce=0

= ραIA ≥ 0 42

The solution SH t , EH t , VH t , IH t , SA t , EA t , IA
t , Ce t cannot escape from the hyperplanes of U t = 0,
∀U ∈Ψ and for t > 0, because SH 0 , EH 0 , VH 0 , IH 0 ,
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SA 0 , EA 0 , IA 0 , Ce 0 are nonnegatives, as per Equations
(35)–(42) and by using Remark (3). Consequently, for all t > 0,
all of the model’s solutions with initial conditions in the set Ψ
stay in Ψ. This area is a positive invariant set as a result.

3.3. Disease-Free Equilibrium (DFE). According to Φ0, this is
reached when there exists no disease in both the animal and
human populations as a whole.

C
0D

α

t SH t = 0,
C
0D

α

t EH t = 0,
C
0D

α

t VH t = 0,
C
0D

α

t IH t = 0,
C
0D

α

t SA t = 0,
C
0D

α

t EA t = 0,
C
0D

α

t IA t = 0,
C
0D

α

t Ce t = 0

43

Following some math, we obtain

Φ0 =
Λα

H ϕα + 1 − κα μαH
μH μαH + ϕα

, 0, καΛα
H

μαH + ϕα
, 0, Λ

α
A

μαA
, 0, 0, 0

44

3.4. The Basic Reproduction Number. We use the next-
generation matrix algorithm to generate the bTB fundamen-
tal reproduction number R0, as described in [17, 18].

C
0D

α

t EH t = λαHSH + dλαHVH − μαH + σα
H EH − καEH,

C
0D

α

t IH t = σαHEH − μαH + γαH IH,
C
0D

α

t EA t = λαASA − μαA + σα
A EA,

C
0D

α

t IA t = σα
AEA − μαA + γαA IA,

C
0D

α

t Ce t = ραIA − ωαCe

45

Let Fi represent the total quantity of newly acquired
infections entering the system and Vi represent the number
of infections leaving the system owing to births or deaths.

Fi =

ηα1IH + ηα2IA + ηα3Ce
ΩH

SH + d
ηα1IH + ηα2IA + ηα3Ce

ΩH
VH

0
ηα4IH + ηα5IA + ηα6Ce

ΩA
SA

0
0

,

Vi =

μαH + σαH EH + καEH

−σαHEH + μαH + γαH IH

μαA + σαA EA

−σαAEA + μαA + γαA IA

−ραIA + ωαCe

46

Denote the Jacobian matrices of Fi and Vi by F and V ,
respectively.

F =

∂F1
EH

∂F1
IH

∂F1
EA

∂F1
IA

∂F1
Ce

∂F2
EH

∂F2
IH

∂F2
EA

∂F2
IA

∂F2
Ce

∂F3
EH

∂F3
IH

∂F3
EA

∂F3
IA

∂F3
Ce

∂F4
EH

∂F4
IH

∂F4
EA

∂F4
IA

∂F4
Ce

∂F5
EH

∂F5
IH

∂F5
EA

∂F5
IA

∂F5
Ce

=

0 η1SH
ΩH

+ d
η1VH
ΩH

0 η2SH
ΩH

+ d
η2VH
ΩH

η3SH
ΩH

+ d
η3VH
ΩH

0 0 0 0 0

0 η4SA
ΩA

0 η5SA
ΩA

η6SA
ΩA

0 0 0 0 0

0 0 0 0 0

,

V =

∂V1
EH

∂V1
IH

∂V1
EA

∂V1
IA

∂V1
Ce

∂V2
EH

∂V2
IH

∂V2
EA

∂V2
IA

∂V2
Ce

∂V3
EH

∂V3
IH

∂V3
EA

∂V3
IA

∂V3
Ce

∂V4
EH

∂V4
IH

∂V4
EA

∂V4
IA

∂V4
Ce

∂V5
EH

∂V5
IH

∂V5
EA

∂V5
IA

∂V5
Ce

=

μαH + σα
H + κα 0 0 0 0

−σαH μαH + γαH 0 0 0

0 0 μαA + σα
A 0 0

0 0 −σα
A μαA + γαA 0

0 0 0 −ρα ωα

,

V−1 =

1
μαH + σαH + κα

0 0 0 0

σα
H

μαH + σα
H + κα μαH + γαH

1
μαH + γαH

0 0 0

0 0 1
μαA + σα

A
0 0

0 0 σα
A

μαA + σαA μαA + γαA

1
μαA + γαA

0

0 0 ρασα
A

μαA + σαA μαA + γαA ωα

ρα

μαA + γαA ωα

1
ωα

47

R0 = FV−1. Let

A1 =
η1σH dVH + SH

μH + σH + κ μH + γH
,

A2 =
dVHη1 + η1SH

μH + γH
,

A3 =
dVHη2 + η2SH σA
μA + γA μA + σA

+ dVHη3 + η3SH ρ σA
μA + γA μA + σA ω

,

A4 =
dVHη2 + η2SH

μA + γA
+ dVHη3 + η3SH ρ

μA + γA ω
,
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A5 =
dη3VH + η3SH

ω
,

B1 =
η4σHSA

μH + σH + κ μH + γH
,

B2 =
η4SA

μH + γH
,

B3 =
η5SAσA

μA + γA μA + σA
+ η6SAρσA

μA + γA μA + σA ω
,

B4 =
η5SA

μA + γA
+ η6SAρ

μA + γA ω
,

B5 =
η6SA
ω

48

Compute the eigenvalues of FV−1 and select the domi-
nant one.

X is the eigenvalue of the matrix.

A1 − X A2 A3 A4 A5

0 −X 0 0 0
B1 B2 B3 − X B4 B5

0 0 0 −X 0
0 0 0 0 −X

= 0 49

Equation (49) can be translated as follows:

X3 A1 − X A3

B1 B3 − X
= 0 50

Characteristic equation is given as

X3 X2 − A1 + B3 X + A1B3 − A3B1 = 0 51

Therefore, the highest eigenvalue is

X = A1 + B3
2 +

A1 − B3
2 + 4A3B1

2 52

Evaluating and substituting A1, A3, B1, and B3 at the
DFE Φ0, we obtain

R1 = A1 + B3 =
η1σH dκ μH − κ μH + ϕ + μH
μH + ϕ μH + σH + κ μH + γH

+ σA η5ω + η6ρ

μA + σA μA + γA ω
,

53

R2 = A1 − B3 =
η1σH dκ μH − κ μH + ϕ + μH
μH + ϕ μH + σH + κ μH + γH

−
σA η5ω + η6ρ

μA + σA μA + γA ω
,

54

R3 = A3B1 =
η4σHσA dκ μH − κ μH + ϕ + μH ωη2 + ρ η3

ω μH + ϕ μA + σA μA + γA μH + σH + κ μH + γH
,

55

R0 =
R1
2 + R2

2 + 4R3
2

56

The terms 1/ μH + σH + κ and 1/ μA + σA in Equa-
tion (53) represent the mean amount of each humans
and animals in their respective exposed compartment,
and 1/ μH + ϕ denotes the mean duration of time that each
individual is exposed to in their respective classes, 1/ μH +
γH denotes the mean ratio of time spent by each human in
the vaccinated class, and 1/ μA + γA denotes the mean ratio
of time each infectious populace devotes time to their infec-
tious compartment.

η1σH ϕ + μH 1 + dκ − κ

μH + ϕ μH + γH μH + σH + κ
57

The proportion of diseased animals is represented by
σA ωη5 + ρη6 / ω μA + γA μA + σA .

Equation (54) gives the sum of infected bTB through
contact with diseased animals through ingestion of dairy
products.

3.5. Analysis of Local Stability for DFE. If the eigenvalues of
the Jacobian matrix are negative or have a negative real por-
tion, DFE is considered locally asymptotically stable [5].

Theorem 5. If all of the J Φ0 eigenvalues satisfy the condi-
tion that arg λj > απ/2, with j = 1, 2, 3⋯ and 0 < α ≤ 1,
Φ0 is locally asymptotical and it is stable.

Proof. Evaluating the Jacobian at DFE Φ0, we end up with

J Φ0 =

−μαH 0 ϕα ηα1 0 0 −ηα2 −ηα3
0 −μαH − σαH − κα 0 dηα1 0 0 dηα2 dηα3

0 κα −μαH − ϕα −d
ηα1κ

α

μαH + ϕα
0 0 −d

ηα2κ
α

μαH + ϕα
−d

ηα3κ
α

μαH + ϕα

0 σα
H 0 −μαH − γαH 0 0 0 0

0 0 0 −ηα4 −μαA 0 −ηα5 −ηα6
0 0 0 ηα4 0 −μA − σA ηα5 ηα6

0 0 0 0 0 σα
A −μαA − γαA 0

0 0 0 0 0 0 ρα −ωα

58

Matrix (58) has negative eigenvalues −μαH, −μαA, and
−μαH − ϕα, and those three eigenvalues satisfy the condition
arg λj > απ/2 for all 0 < α ≤ 1.
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Matrix (58) reduces now to

R =

−μαH − σαH − κα dηα1 0 dηα2 dηα3

σα
H −μαH − γαH 0 0 0
0 ηα4 −μA − σA ηα5 ηα6

0 0 σα
A −μαA − γαA 0

0 0 0 ρα −ωα

59

If det R > 0 and tr R = 0, thus DFE is locally stable.
Equation (60) gives the trace of matrix R.

tr R = − μαH + σα
H + κα + μαH + γαH + μA + σA

+ μαA + γαA + ωα < 0
60

R has a determinant that is provided by

det R = − μαH + σα
H + κα

−μαH − γαH 0 0 0

ηα4 −μA − σA ηα5 ηα6

0 σαA −μαA − γαA 0

0 0 ρα −ωα

− σαH

dηα1 0 dηα2 dηα3

ηα4 −μA − σA ηα5 ηα6

0 σαA −μαA − γαA 0

0 0 ρα −ωα

= μαH + σαH + κα μαH + γαH σαA ωαηα5 + ραηα6
− μA + σA μαA + γαA ωα + σα

Hdη
α
1 μA + σA μαA + γαA ωα

+ dσαHσ
α
A ωα ηα2η

α
4 − ηα1η

α
5 + ρα ηα3η

α
4 − ηα1η

α
6

61

Assume det R = 0; thus,

0 = σαA μαH + σαH + κα μαH + γαH ωαηα5 + ραηα6
− μαH + σαH + κα μαH + γαH μA + σA μαA + γαA ωα

+ σα
Hdη

α
1 μA + σA μαA + γαA ωα + dσα

Hσ
α
A

ωα ηα2η
α
4 − ηα1η

α
5 + ρα ηα3η

α
4 − ηα1η

α
6

= σα
A ωαηα5 + ραηα6

μA + σA μαA + γαA
+ σα

Hdη
α
1ω

α

μαH + σα
H + κα

+ dσαHσ
α
A ωα ηα2η

α
4 − ηα1η

α
5 + ρα ηα3η

α
4 − ηα1η

α
6

μαH + σαH + κα μαH + γαH μA + σA μαA + γαA ωα
− 1

62

Thus, det R > 0 if

σαA ωαηα5 + ραηα6
μA + σA μαA + γαA

+ σα
Hdη

α
1ω

α

μαH + σα
H + κα

+ dσαHσ
α
A ωα βα

2η
α
4 − ηα1η

α
5 + ρα ηα3η

α
4 − ηα1η

α
6

μαH + σα
H + κα μαH + γαH μA + σA μαA + γαA ωα

> 1

63

Eigenvalues have a negative real portion as a result of the
trace and determinant criteria being proven. For every α ∈
0, 1 , arg λj > απ/2.

When R0 < 1 and condition (63) holds, the DFE ψ0 of
the model (5) is locally asymptotically stable; otherwise, it
is unstable.

3.6. Global Stability of DFE. Theorem by [19] is used to study
the global asymptotic stability (GAS) of the model’s DFE
state. Based on (5),

dV
dt

= F V , T ,

dT
dt

=G V , T , withG V , 0 = 0
64

The uninfected population consists of V = SH, VH, SA ,
and infected population consists of T = EH, IH, EA, IA, Ce .

For the system dV/dt = F V , 0 , assume that V∗ is DFE,
with

V∗ = Λα
H ϕα + 1 − κα μαH
μH μαH + ϕα

, καΛα
H

μαH + ϕα
, Λ

α
A

μαA
65

It is assured that the model’s disease-free equilibrium
(DFE) point Φ0 is GAS if R0 < 1, which is LAS (local asymp-
totical and stable).

(i) A1: for dV/dt = F V , 0 , V∗ is GAS for model (5)

(ii) A2: G V , T = AT −G∗ V , T ,G∗ V , T ≥ 0, ∀ V ,
T ∈Ψ

The model is biologically meaningful if Ψ0, and A =
∂G Φ0 /∂T is an M-matrix with nonnegative nondiago-
nal elements.

If the two aforementioned assumptions are met by
model (5), then the following theorem holds.

Theorem 6. If R0 < 1 is LAS and assumptions A1 and A2 are
true, then DFE, Φ0, is GAS for model (5).

Proof. In order to demonstrate that V ⟶ V∗, we must first
demonstrate that assumptions A1 and A2 hold for R0 < 1.

C
0D

α
t SH t =Λα

H + ϕαVH − καΛα
H − μαHSH,

C
0D

α
t VH t = καΛα

H − μαH + ϕα VH,
C
0D

α
t SA t =Λα

A − μαASA

66

The α’s order linear ODEs are represented by the second
and third equations of (66), and their solutions look like this
C
0D

α
t SH t =Λα

H + ϕαVH − καΛα
H − μαHSH; using Laplace

transform, we will get

Wα + μαA SA W = Λα
A

W
⇒ 67
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We can now obtain the following using the Mittag-Leffler
function and the Laplace inverse transform of SA W :

SA t = Λα
A

μαA
1 − Eα −μαAt

α with μαA > 0 68

Then, SA t ⟶Λα
A/μαA if t⟶∞.

Using the same technique, we get

VH t = καΛα
H

μαH + ϕα
1 − Eα − μαH + ϕα tα with μαA + ϕα > 0

69

Then, VH t ⟶ καΛα
H/μαH + ϕα if t⟶∞.

Subtracting VH t from the initial equation of (66) pro-
duces

Dα
t SH t =Λα

H 1 − κα − μαHSH + ϕα
καΛα

H
μαH + ϕα

1 − Eα − μαH + ϕα tα

70

We get the following from the Laplace transform of (70):

SH W = Λα
H 1 − κα

W Wα + μαH
+ ϕα

καΛα
H

μαH + ϕα Wα + μαH W

−
ϕακαΛα

H
μαH + ϕα

1
Wα + μαH

× Wα−1

Wα + μαH + ϕα

71

From the Laplace inverse transform, we obtain

SH t = Λα
H 1 − κα

μαH
1 − Eα −μαHt

α

+ ϕακαΛα
H

μαH μαH + ϕα
1 − Eα −μαHt

α −
ϕακαΛα

H
μαH + ϕα

× tα−1Eα,α −μαHt
α × Eα,1 − μαH + ϕα ,

lim
t⟶∞

SH t = Λα
H 1 − κα

μαH
+ ϕακαΛα

H
μαH μαH + ϕα

= Λα
H ϕα + μαH 1 − κα

μαH μαH + ϕα

72

So all points concerning these conditions converge at

V∗ = Λα
H ϕα + 1 − κα μαH
μH μαH + ϕα

, καΛα
H

μαH + ϕα
, Λ

α
A

μαA
73

Thus, V∗ is asymptotically stable globally.
Consider

G V , T =

G1 V , T = ηα1IH + ηα2IA + ηα3Ce
ΩH

SH + d
ηα1IH + ηα2IA + ηα3Ce

ΩH
VH − μαH + σα

H + κα EH,

G2 V , T = σα
HEH − μαH + γαH IH,

G3 V , T = ηα4IH + ηα5IA + ηα6Ce
ΩA

SA − μαA + σα
A EA,

G4 V , T = σα
AEA − μαA + γαA IA,

G5 V , T = ραIA − ωαCe

74

We then obtain

∂G
∂T

=

− μαH + σαH + κα
ηα1
ΩH

SH + d
ηα1
ΩH

VH 0 ηα2
ΩH

SH + d
ηα2
ΩH

VH
ηα3
ΩH

SH + d
ηα3
ΩH

VH

σαH − μαH + γαH 0 0 0

0 ηα4
ΩA

SA − μαA + σαA
ηα5
ΩA

SA
ηα6
ΩA

SA

0 0 σαA − μαH + γαH 0
0 0 0 ρα −ωα

,

A = ∂G V∗, 0
∂T

=

− μαH + σα
H + κα Y1 0 Y2 Y3

σα
H − μαH + γαH 0 0 0
0 ηα4 − μαA + σαA ηα5 ηα6

0 0 σαA − μαH + γαH 0
0 0 0 ρα −ωα

,

75
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where

Y1 =
ηα1ϕ

α + ηα1μ
α
H 1 − κα + dκα

ϕα + μαH
,

Y2 =
ηα2ϕ

α + ηα2μ
α
H 1 − κα + dκα

ϕα + μαH
,

Y3 =
ηα3ϕ

α + ηα3μ
α
H 1 − κα + dκα

ϕα + μαH
,

G∗ V , T = AT −G V , T

=

ηα1 + ηα2 + ηα3 IH 1 − SH + dVH
ΩH

+ μαHκ
α d − 1

0

ηα4 + ηα5 + ηα6 IH 1 − SA
ΩA

0

0

76

We have SH + dVH /ΩH ≪ 1 and μαHκ
α d − 1 ≪ 1 since

all parameters are positive as well. Since G1 ≥ 0, G3 ≥ 0 must
also follow.

As a result, G∗ V , T ≥ 0∀ V , T ∈Ψ.
Hence, model (5)’s DFE point Φ0 is GAS.

3.7. bTB Endemic Equilibrium Points. Let SH, EH,VH, IH,
SA, EA, IA, Ce ∈ℝ8

+. E∗ = S∗H, E∗
H, V∗

H, I∗H, S∗A, E∗
A, I∗A, C∗

e
denotes bTB endemic equilibrium point.

Given that

Λα
H + ϕαV∗

H −
ηα1I

∗
H + ηα2I

∗
A + ηα3C

∗
e

ΩH
S∗H − καΛα

H − μαHS
∗
H = 0,

ηα1I
∗
H + ηα2I

∗
A + ηα3C

∗
e

ΩH
S∗H + d

ηα1I
∗
H + ηα2I

∗
A + ηα3C

∗
e

ΩH
V∗

H − μαH + σαH + κα E∗
H,

κα Λα
H + E∗

H − μαH + ϕα V∗
H − d

ηα1I
∗
H + ηα2I

∗
A + ηα3C

∗
e

ΩH
V∗

H = 0,

σα
HE

∗
H − μαH + γαH I∗H = 0,

Λα
A −

ηα4I
∗
H + ηα5I

∗
A + ηα6C

∗
e

ΩA
S∗A − μαAS

∗
A = 0,

ηα4I
∗
H + ηα5I

∗
A + ηα6C

∗
e

ΩA
S∗A − μαA + σαA E∗

A = 0,

σα
AE

∗
A − μαA + γαA I∗A = 0,

ραI∗A − ωαC∗
e = 0,

S∗H = ΛH 1 − κα + ϕαV∗
H ΩH

μαHΩH + η1I
∗
H + ηα2 + ηα3ρ

α/ωα I∗A
,

E∗
H = μαH + γαH

σHα
I∗H,

V∗
H = καΩH Λα

Hσ
α
H + μαH + γαH

ΩH μαH + ϕα + d η1I
∗
H + ηα2 + ηα3ρ

α/ωα I∗A
,

I∗H = μαA + γαA μαA + σαA ΩAμ
α
A + ηα5 + ηα6ρ

α/ωα I∗A −Λα
Aσ

α ηα5 + ηα5ρ
α/ωα

A
ηα4Λ

α
Hσ

α
H − ηα4 μαA + γαA μαA + σα

A
,

S∗A = ΛA
μA

−
μαA + γαA μαA + σα

A
μαAσ

α
A

I∗A,

E∗
A = μαA + γαA

σα
A

I∗A,

I∗A = I∗A,

C∗
e =

ρα

ωα
I∗A

77

3.8. Global Stability of EE Points. Let E∗ = S∗H, E∗
H, V∗

H, I∗H,
S∗A, E∗

A, I∗A, C∗
e be the global stability.

Theorem 7. Consider α ∈ 0, 1 and R0 > 1. Then, in the inte-
rior of Ψ, endemic equilibruim of the fractional-order model
(5) is globally stable.

Proof. To define a function, we use the Volterra-type Lyapu-
nov functional approach in [3, 20].

L t : ε t = SH t , EH t , VH t , IH t , SA t , EA t , IA t ,
Ce t T ⟶ℝ, as

L t = 1
a1

SH − S∗H − S∗H log SH
S∗H

+ 1
a2

EH − E∗
H − E∗

H log EH
E∗
H

+ 1
a3

VH − V∗
H − V∗

H log VH
V∗

H
+ 1
a4

IH − I∗H − I∗H log IH
I∗H

+ 1
a5

SA − S∗A − S∗A log SA
S∗A

+ 1
a6

EA − E∗
A − E∗

A log EA
E∗
A

+ 1
a7

IA − I∗A − I∗A log IA
I∗A

+ 1
a8

Ce − C∗
e − C∗

e log
Ce
C∗
e

,

78

where

a1 = λαH + μαH,
a2 = μαH + σα

H + κα,
a3 = μαH + ϕα + dλαH,
a4 = μαH + γαH,
a5 = λαA + μαA,
a6 = μαA + σαA,
a7 = μαA + γαA,
a8 = ωα

79

Table 2: R0 sensitivity indexes.

Parameters Indexes

μA -0.08

μH -0.17

η1 0.03

η4 0.14

η5 0 42
η6 0 26
σA 0.03

σH 0.12

κ -0.13

αA -0.78

αH -0.09

ρ 0.26

ϕ -0.06

d 0.01

ω -0.40
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Figure 2: Bovine tuberculosis dynamics in the human and animal populations for α = 65.
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Figure 3: α variation for a given population.
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L t is specified as a continuous function and definite
positive for any t > 0. If and only if SH = SH ∗ , EH = EH ∗ ,
VH =VH∗,IH = IH∗,SA = SA∗,EA = EA∗,IA = IA∗,Ce = Ce ∗,
the equivalence may be demonstrated [3].

Let us demonstrate that Dα
t L ≤ 0 at the EE point.

Dα
t L =

1
a1

SH − S∗H
SH

Dα
t SH + 1

a2

EH − E∗
H

EH
Dα

t EH

+ 1
a3

VH −V∗
H

VH
Dα
t VH + 1

a4

IH − I∗H
IH

Dα
t IH

+ 1
a5

SA − S∗A
SA

Dα
t SA + 1

a6

EA − E∗
A

EA
Dα
t EA

+ 1
a7

IA − I∗A
SA

Dα
t IA + 1

a8

Ce − C∗
e

Ce
Dα
t Ce

80

We get from Equation (80) the following by simpli-
fication:

Dα
t L = −

SH − S∗H
2

SH
−

EH − E∗
H

2

EH
−

VH −V∗
H

2

VH

−
IH − I∗H

2

IH
−

SA − S∗A
2

SA
−

EA − E∗
A

2

EA

−
IA − I∗A

2

SA
−

Ce − C∗
e

2

Ce

81

It can be established that Dα
t L ≤ 0.

Hence, if R0 > 1, (81) is less than zero (0) and equivalent
to zero (0) if SH = S∗H, EH = E∗

H, VH =V∗
H, IH = I∗H, SA = S∗A,

EA = E∗
A, IA = I∗A, Ce = C∗

e .
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Figure 4: α variation for the infected population.
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Figure 5: Variation of κ.
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Solutions in Ψ converge to E∗ by LaSalle’s invariance
principle [3, 20, 21]. Consequently, if R0 > 1, then (5) is GAS.

4. Numerical Simulations

4.1. Reproductive Rate in the Absence of Immunization. Let
R∗
0 represent R0 without vaccination. R

∗
0 and R0 are obtained

using parameter values in Table 1:

(i) Without vaccination: R∗
0 = 7 4298

(ii) With vaccination R0 = 4 9575

Increasing vaccination rates in human and animal popu-
lations is most effective in reducing bovine tuberculosis.

4.1.1. Threshold of Herd Immunity. Let H1 denotes the Herd
immunity; then,

H1 = 1 − 1
R∗
0
= 0 86 82

This indicates that 86% of humans and animals should
receive vaccination if R∗

0 = 7 4298.

4.2. Sensitivity Analysis. The sensitivity analysis of parame-
ters in Table 2 of R0 determines the contribution of each
parameter [22]. Using the normalized forward sensitivity
analysis in [22, 23],

Ψ
R0
β = ∂R0

∂β
β

R0
83
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Figure 7: Variation of η5 for infected population.
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Figure 6: Variation of ω.
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For every 10% increase in dairy products, R0 rises by
0.018%. There is an increase in the human disease-induced
death rate γH, the human natural mortality rate μH, and
the animal natural mortality rate αA.

4.3. Numerical Simulation. We demonstrate the model
behaviour by varying fractional orders α ∈ 0, 1 and param-
eter values. We use values in Table 1 for our simulations.

As shown in Figure 2, the number of susceptible individ-
uals and animals decreases. However, susceptible class
reduces more than animals, due to human vaccination.

The effects of changing α on humans, animals, and vacci-
nated humans are depicted in Figures 3(a)–3(c), respectively.

As seen in Figure 4, the population of animal appears
more infected than in human population. This can be attrib-
uted or explained through vaccinations.

4.3.1. Influence of Vaccination Rate on Animals and Humans
Who Are Infected. Figure 5 illustrates how the vaccination
rate κ varies across the human population while maintaining
constant values for other parameters. It can be observed that,
as κ rises, the results have no impact on the animal popula-
tion. The biological implication is that the number of
infected individuals falls as the vaccination rate κ increases.

4.3.2. Impact of Decay Rate on the Environment That Is
Contaminated. But while the other parameters remain con-
stant, changing the rate of decay ω for the contaminated
environment (meat and dairy products) demonstrates in
Figure 6 a direct correlation between an increase in infec-
tious humans and animals. A decrease in the decay rate plays
a major role in eliminating the illness in both human and
animal populations.

4.3.3. Effects of the Rate at Which Animals Become Infected.
The outcome of adjusting the animal infection rate η5 while
holding other constant parameter is shown in Figure 7. A
rise in η5 from 0.5 to 0.8 results in a higher number of indi-
viduals and animals afflicted.

The percentage of ill individuals and animals is higher
for η5 = 0 8. Based on numerical findings, there is a direct
correlation between the rate of animal infection and the
quantity of humans and animals that become infected.

To reduce the animal infection rate η5 from affected ani-
mals and halt the spread of the disease, policy makers and
health authorities should think about strategies to isolate
infectious animals.

5. Conclusion

We created a fractional-order mathematical framework that
outlines the evolution of bovine tuberculosis, using environ-
mental pollution and vaccination as compartments. In Sec-
tion 3, we examined the model’s qualitative behaviours by
defining the area that is feasible, the solution’s positivity,
equilibrium points and their global and local stability, and
the model’s fundamental reproduction number.

The reproduction rate was subjected to a sensitivity anal-
ysis, which demonstrated a significant impact on the man-
agement of tuberculosis in cows. A parameter contribution

analysis and numerical simulation were performed. The
effect of parameters κ, ω, and eta5 on the fractional-order
model was explored.

Based on our findings, we can infer that a substantial
reduction in the rate of bovine tuberculosis transmission in
both human and animal populations can be achieved by
raising the vaccination rate, κ, of both populations. Control-
ling the disease requires reducing the rate of animal infection
from diseased animals eta5 while raising the pace at which
the contaminated habitat decays.

Data Availability

The data used to support the conclusion of the study are
included in the paper.

Conflicts of Interest

The authors declare no conflict of interest.

Acknowledgments

This research was funded by the Pan African University.

References

[1] World Health Organization, “quest-ce-qui-entrave-la-lutte-
contre-la-tuberculose-en-afrique?,” World Health Organiza-
tion. https://www.afro.who.int/fr/news/quest-ce-qui-entrave-
la-lutte-contre-la-tuberculose-en-afrique.

[2] World Health Organization, Who and the Union Organize
Landmark Consultation to Galvanize Action against Zoonotic
Tb, WHO, 2016.

[3] B. Diallo, J. A. Okelo, S. Osman, S. Karanja, and N. S. Agueg-
boh, “A study of fractional bovine tuberculosis model with
vaccination on human population,” Communications inMath-
ematical Biology and Neuroscience, vol. 2023, 2023.

[4] S. Liu, A. Li, X. Feng, X. Zhang, and K. Wang, “A dynamic
model of human and livestock tuberculosis spread and control
in Urumqi, Xinjiang, China,” Computational and Mathemati-
cal Methods in Medicine, vol. 2016, Article ID 3410320, 10
pages, 2016.

[5] T. Shirima Sabini, V. V. Mityushev, J. Ismail Irunde, and
D. Kuznetsov, “Modeling the transmission dynamics of bovine
tuberculosis,” International Journal of Mathematics andMath-
ematical Sciences, vol. 2020, Article ID 7424075, 14 pages,
2020.

[6] M. De Garine-Wichatitsky, A. Caron, R. Kock et al., “A review
of bovine tuberculosis at the wildlife–livestock–human inter-
face in sub-Saharan Africa,” Epidemiology & Infection,
vol. 141, no. 7, pp. 1342–1356, 2013.

[7] S. W. Dejene, I. M. Heitkönig, H. H. Prins et al., “Correction:
Risk factors for bovine tuberculosis (bTB) in cattle in Ethio-
pia,” Plos one, vol. 12, no. 4, article e0176654, 2017.

[8] F. C. Blanco, C. J. Queval, F. R. Araujo, and J. H. De Waard,
“Editorial: Recent advances in bovine tuberculosis,” Frontiers
in Veterinary Science, vol. 9, article 907353, 2022.

[9] M. Good, D. Bakker, A. Duignan, and D. M. Collins, “The his-
tory of in vivo tuberculin testing in bovines: tuberculosis, a
“one health” issue,” Frontiers in Veterinary Science, vol. 5,
p. 59, 2018.

14 Journal of Applied Mathematics

https://www.afro.who.int/fr/news/quest-ce-qui-entrave-la-lutte-contre-la-tuberculose-en-afrique
https://www.afro.who.int/fr/news/quest-ce-qui-entrave-la-lutte-contre-la-tuberculose-en-afrique


[10] S. Srinivasan, A. J. Conlan, L. A. Easterling et al., “A meta-
analysis of the effect of Bacillus Calmette-Guérin vaccination
against bovine tuberculosis: is perfect the enemy of good?,”
Frontiers in Veterinary Science, vol. 8, article 637580, 2021.

[11] H. Ahmad, T. A. Khan, P. S. Stanimirović, Y.-M. Chu, and
I. Ahmad, “Modified variational iteration algorithm-ii: conver-
gence and applications to diffusion models,” Complexity,
vol. 2020, Article ID 8841718, 14 pages, 2020.

[12] G. T. Tilahun, G. A. Wolle, and M. Tofik, “Eco-epidemiologi-
cal model and analysis of potato leaf roll virus using fractional
differential equation,” Arab Journal of Basic and Applied Sci-
ences, vol. 28, no. 1, pp. 41–50, 2021.

[13] C. Yuli, L. Fawang, Y. Qiang, and L. Tianzeng, “Review of frac-
tional epidemic models,” Applied Mathematical Modelling,
vol. 97, pp. 281–307, 2021.

[14] K. Diethelm, “A fractional calculus based model for the simu-
lation of an outbreak of dengue fever,” Nonlinear Dynamics,
vol. 71, no. 4, pp. 613–619, 2013.

[15] A. Apelblat, “Differentiation of the Mittag-Leffler functions
with respect to parameters in the Laplace transform
approach,” Mathematics, vol. 8, no. 5, p. 657, 2020.

[16] H. Kheiri and M. Jafari, “Optimal control of a fractional-order
model for the HIV/aids epidemic,” International Journal of
Biomathematics, vol. 11, no. 7, article 1850086, 2018.

[17] P. Van den Driessche and J. Watmough, “Reproduction num-
bers and sub-threshold endemic equilibria for compartmental
models of disease transmission,” Mathematical Biosciences,
vol. 180, no. 1-2, pp. 29–48, 2002.

[18] J. I. Irunde, L. S. Luboobi, and Y. Nkansah-Gyekye, “Modeling
the effect of tobacco smoking on the in-host dynamics of HIV/
aids,” The Journal of Mathematics and Computer Science,
vol. 6, no. 3, pp. 406–436, 2016.

[19] C. Castillo-Chavez and B. Song, “Dynamical models of tuber-
culosis and their applications,” Mathematical Biosciences and
Engineering, vol. 1, no. 2, pp. 361–404, 2004.

[20] P. A. Naik, J. Zu, M. B. Ghori, and M. U. D. Naik, “Modeling
the effects of the contaminated environments on covid-19
transmission in India,” Results in Physics, vol. 29, p. 104774,
2021.

[21] Z. Shuai and P. van den Driessche, “Global stability of infec-
tious disease models using Lyapunov functions,” SIAM Journal
on Applied Mathematics, vol. 73, no. 4, pp. 1513–1532, 2013.

[22] C. J. Silva and D. F. Torres, “Optimal control for a tuberculosis
model with reinfection and postexposure interventions,”
Mathematical Biosciences, vol. 244, no. 2, pp. 154–164, 2013.

[23] N. Chitnis, J. M. Hyman, and J. M. Cushing, “Determining
important parameters in the spread of malaria through the
sensitivity analysis of a mathematical model,” Bulletin of
Mathematical Biology, vol. 70, no. 5, pp. 1272–1296, 2008.

15Journal of Applied Mathematics


	Fractional-Order Model for Evolution of Bovine Tuberculosis with Vaccination and Contaminated Environment
	1. Introduction
	2. TB Model Description and Formulation
	2.1. Model Formulation

	3. Model Analysis
	3.1. bTB Invariant Region
	3.2. Positivity
	3.3. Disease-Free Equilibrium (DFE)
	3.4. The Basic Reproduction Number
	3.5. Analysis of Local Stability for DFE
	3.6. Global Stability of DFE
	3.7. bTB Endemic Equilibrium Points
	3.8. Global Stability of EE Points

	4. Numerical Simulations
	4.1. Reproductive Rate in the Absence of Immunization
	4.1.1. Threshold of Herd Immunity

	4.2. Sensitivity Analysis
	4.3. Numerical Simulation
	4.3.1. Influence of Vaccination Rate on Animals and Humans Who Are Infected
	4.3.2. Impact of Decay Rate on the Environment That Is Contaminated
	4.3.3. Effects of the Rate at Which Animals Become Infected


	5. Conclusion
	Data Availability
	Conflicts of Interest
	Acknowledgments



