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This work presents a stochastic model of malaria spread. We first calculated the basic reproduction number R0 of the models
ShIhRhSh‐SvIv and ShLhIhRhSh‐SvLvIv in order to show that the malaria-free equilibrium is asymptotically stable; then, we
used a finite Markov chain model to describe the interactions between the different compartments of the model SeLeIeRe
Se‐SaLaIaRaSa‐SvIv . We carried out numerical simulations of our results for two types of transmission zones: a zone with
low malaria transmission and an endemic zone. Through these simulations, we first determined the invariant stationary
distribution π∗ of the model, and then, we found that the use of the indoor residual spraying (IRS) method by regular
application of insecticides is more effective for the elimination of malaria than the use of long-acting impregnated
mosquito nets (LLINs).

1. Introduction

Mathematical models of the spread of malaria date back to
the beginning of the 20th century by Ross [1]. Several math-
ematical models have been developed to study the dynamics
of malaria spread. We can cite the models ShIhSh‐SvIvSv of
Ross, the models ShIhRhSh‐SvIv in [2–4], and the models
ShEhIhRhSh in [5, 6]. The mathematical theory of the
spread of malaria was solidified by Reiner et al. [7] in the
1960s. In 2018, Mbogo et al. [2] use the Galton-Watson
branching processes to propose an extension of the model
formulated by [4]. There are also results in the following
works [8–13] that could well explain the literature. In this
work, we first present in Section 2 some preliminary results,
necessary for the conduct of our work by successively
studying the models ShIhSh‐SvIvSv , ShIhRhSh‐SvIv , and
ShLhIhRhSh‐SvLvIv . Then, we present an extension of
the Markovian SIS model in a hypoendemic and endemic
area in Sections 3.2 and 3.3, respectively. And finally,

Section 4 is devoted to the work of numerical simulations
of our results.

2. Mathematical Preliminaries and Notations

2.1. Ross’s ShIhSh‐SvIvSv Model. In 1911, Sir Ronald Ross
proposed a model which took into account both anopheline
and human populations. This model is certainly the starting
point for vector-host models. Ross divided hosts (humans)
and vectors (anopheles) into two classes, susceptible and
infected, respectively. Let Sh be the population of susceptible
humans and Ih the population of infected humans. Ross
assumes that there is no latency period and that, conse-
quently, an infected person is automatically an infectious
person. Similarly, he refers to the population of susceptible
anopheles as Sv and the population of infected anopheles
as Iv. In his model, Ross assumes that both the human and
Anopheles populations are constant and that one mosquito
bites “a” humans per unit of time where “a” is constant
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[14]. The malaria propagation graph in Ross’s ShIhSh‐SvIvSv
model is shown in Figure 1.

He obtained the differential system (1) governing the
ShIhSh‐SvIvSv model of malaria.

dSh
dt

= μhH − b1aIv
Sh
H

− γhIh − μhIh,

dIh
dt

= b1aIv
Sh
H

− γh + μh Ih,

dSv
dt

= b2a V − Iv
Ih
H

− γv + μv Iv,

dIv
dt

= b2a V − Iv
Ih
H

− γv + μv Iv

1

Assuming that the human and Anopheles populations
are constant, Ross used two ordinary differential equations
(2) to model the evolution of the fraction of individuals in
the classes of infected Ih, Iv .

dIh
dt

= b1aIv
Sh
H

− γh + μh Ih,

dIv
dt

= b2a V − Iv
Ih
H

− γv + μv Iv

2

According to Ross, eradicating malaria requires reduc-
ing the number of infectious mosquitoes below a certain
threshold. He determines the basic reproduction number
R0 per

R0 =mab1
1
γ
a
1
μ
b2 3

and formulates the following corollary [15, 16].

Corollary 1.

(1) If R0 ≤ 1, then the disease completely disappears from
the population after a certain time

(2) If R0 > 1, then the disease remains endemic in the
population.

2.2. Model ShIhRhSh‐SvIv . Since malaria provides tempo-
rary immunity and is not lethal if treated, it is possible to
use a SIRS (Susceptible-Infected-Recovered-Susceptible)
model, since recovered individuals return to the S class with
probability p p > 0 or relapsed individuals become infected
again with probability 1 − p. So to Ross’s ShIhSh‐SvIvSv
model, we add the R recovered compartment. These types
of model are also solved in [17, 18]. Figure 2 illustrates the
scheme of disease progression.

In this model, the differential equation system satisfies
the following equation:

dSh t = λN −
βShIv
N

+ pRh − μSh dt,

dIh t = βShIv
N

+ 1 − p Rh − μ + γ Ih dt,

dRh t = γIh − μ + 1 Rh dt,

dSv t = ηV −
α1SvIh
N

+ α2SvRh

N
− ηSv dt,

dIv t = α1SvIh
N

+ α2SvRh

N
− ηIv dt,

4

where Sh, Ih, Rh, Sv, and Iv represent the number of suscep-
tible humans, infectious humans, recovered humans, suscep-
tible mosquitoes, and infectious mosquitoes, respectively.
These types of models ShIhRhSh‐SvIv are also studied by
authors such as [2–4].

2.3. Model ShLhIhRhSh‐SvLvIv . According to the literature,
the average delay between exposure to parasitised blood
and the first clinical signs of infection is 4 to 17 days for P.
falciparum. There is therefore an additional class of exposed
individuals E or latent individuals L who are not yet
infectious. It is therefore necessary to model the dynamics
of the spread of malaria using the ShLhIhRhSh‐SvLvIv
model, which would be an extension of the ShIhSh‐SvIvSv
and ShIhRhSh‐SvIv models previously studied. The disease
progression diagram in this type of model can be repre-
sented in Figure 3.

The ordinary differential equations (ODEs) governing the
deterministic SLIRS model are presented by the system of

dSh = λN − β
ShIv
N

− μSh + γRh dt,

dLh = β
ShIv
N

− k + μ Lh dt,

dIh = kpLh − α + μ Ih dt,
dRh = αIh − k 1 − p Lh − γ + μ Rh dt

5
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Figure 1: The final graph of disease transmission.
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Mosquito ODEs are neglected for simplicity. All parame-
ters and their biological interpretation are recorded in Table 1.

Once we know the triplet S, L, I , we can work with the
reduced system (6) and then deduce R because N = S + L +
I + R.

dS = λN − β
SI
N

− μS + γR dt,

dL = β
SI
N

− k + μ L dt,

dI = kpL − α + μ I dt

6

The disease-free equilibrium (DFE) of this model is
therefore N , 0, 0 . Authors such as [17, 19, 20] have also
studied these types of models.

3. Main Results

3.1. Basic Reproduction Rate R0

Theorem 2. The basic reproduction rates R0 of the models
ShIhRhSh‐SvIv in Section 2.2 and ShLhIhRhSh‐SvLvIv in
Section 2.3 are given by

R01 =
βα1 1 + μ + βα2γ

η γ + μ 1 + μ + ηγ −1 + p
,

R02 =
βkp

k + μ α + μ

7

Proof. To determine the basic reproduction rate R0, we apply
the Van den Driessche method [15]. The nonlinear ordinary
differential equation system (4) integrating the compartments
of the model in Figure 2 can be expressed as

Rh
Ih

𝜇Rh
𝜇Ih
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𝜇Sh
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Figure 2: Malaria transmission diagram.
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Figure 3: Malaria progression graph.

Table 1: Model parameters and their meanings.

Parameter Biological interpretation

N Size of the human population N = S + L + I + R

λ Birth rate

μ Death rate

k Incubation rate

p Probability of transition from latent to infectious state

1 − p Probability of transition from latent to recovered state

β Transmission rate (susceptible to latent)

α Transmission rate (infectious to removed)

γ Immunity loss rate (removed to susceptible)
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dX
dt

=F j X −V j X , 8

where F j X represents new infections and V j X =V +
j X

−V −
j X represents the rate of individuals entering and exit-

ing the j compartment, respectively [15]. The Jacobian matri-
ces of F X and V X at equilibrium without disease E0 are

DF E0 = F =
0 0 β

0 0 0
α1 α2 0

,

DV E0 = V =
γ + μ p − 1 0
−γ μ + 1 0
0 0 η

9

The inverse matrix of V is

V−1 =

μ + 1
γ + μ μ + 1 + γ p − 1

1 − p
γ + μ μ + 1 + γ p − 1 0

γ

γ + μ μ + 1 + γ p − 1
γ + μ

γ + μ μ + 1 + γ p − 1 0

0 0 η−1

,

FV−1 =
0 0 β

0 0 0
r1 r2 0

,

10

with

r1 =
α1 1 + μ + α2γ

γ + μ 1 + μ + γ −1 + p
,

r2 =
α1 1 − p + α2 γ + μ

γ + μ 1 + μ + γ −1 + p
·

11

The set of eigenvalues of FV−1 is denoted Sp FV−1 and is
equal

Sp FV−1 = 0,± βα1 1 + μ + βα2γ

η γ + μ 1 + μ + ηγ −1 + p
12

The basic reproduction number R0 is the spectral radius of
the next generation matrix:

R0 = ρ FV−1 13

The basic reproduction number R01 of our model (4) in
Section 2.2 is

R01 =
βα1 1 + μ + βα2γ

η γ + μ 1 + μ + ηγ −1 + p
14

Similarly for the model (6) in Section 2.3, we have

F S, L, I = F =
βSI
N
0

,

V S, L, I = V =
k + μ L

kpL + α + μ I

15

Hence,

F DFE =
0 β

0 0
,

V DFE =
k + μ 0
kp α + μ

16

Therefore,

FV−1 =
βkp

k + μ α + μ

β

α + μ

0 0
17

Then, the basic reproduction rate R02 is given by the spec-
tral radius of FV−1.

Corollary 3. The disease-free equilibrium of the system (6) is
locally and asymptotically stable if R01 < 1 and unstable if
R01 > 1.

Corollary 4. The malaria-free equilibrium E0 of the system
(4) is locally asymptotically stable if R02 < 1 and unstable if
R02 > 1.

3.2. Extension of the Markov SIS Model in a Hypoendemic
Zone. In this section, we develop a stochastic model for
malaria transmission by considering two types of host
(“nonimmune” and “semi-immune”) in the human popula-
tion. The “nonimmune” group comprises human individuals
who have never acquired any immunity to malaria. It is
assumed that these hosts are vulnerable because they can suf-
fer and/or die from malaria. “Semi-immune” people are those
who have acquired or lost at least some immunity to malaria
in their lifetime. It is assumed that these hosts are nonvulner-
able, so they cannot die from malaria but can only suffer from
it. We envisage a model of the type SeLeIeReSe for nonim-
munes until they enter the semi-immune category and then fol-
low amodel of the type SaLaIaRaSa , where e and a denote the
index for nonimmunes and semi-immunes, respectively. For
the mosquito population, we use a model of the type SvIv .

3.2.1. Elaboration of the Model. We consider that it is the
gametocyte form of Plasmodium in humans that transmits
the infection to mosquitoes and the sporozoite form in the
mosquito that transmits the infection to humans. In our
model, we adopt a number of operational definitions.

4 Journal of Applied Mathematics



(1) Terminology.

(i) Susceptible S : an individual bitten by infectious
mosquitoes and capable of contracting malaria

(ii) Latent L : individual who has contracted malaria
but does not transmit it initially

(iii) Infectious I : an individual who harbours a high
level of parasites in gametocyte form. They can suf-
fer and/or die from malaria

(iv) Immune (R): an asymptomatic carrier of the para-
site. This is a state of protection against the disease,
but not against the parasite; it is a healing stage

A human being is said to be ill with malaria if he or she is
either in a latent or infectious state. In order to write the
model, the nonimmune human host types are subdivided
into four (4) compartments: susceptible Se , latent Le ,
infectious Ie , and immune (Re). Semi-immune human host
types are also subdivided into four (4) compartments: sus-
ceptible Sa , latent La , infectious Ia , and immune (Ra).
The mosquito population is made up of susceptible Sv
and infectious Iv mosquitoes. We are studying two hetero-
geneous populations made up of several pathological classes,
in which individuals can move from one class to another.
There are ten different disease states. The pattern of disease
progression in this model is illustrated in Figure 4.

The solid arrows indicate the direction of propagation of
Plasmodium, thus creating states of health in the subjects.

The red dotted arrows indicating the direction of
infection from an infectious mosquito (Iv) to a nonimmune
susceptible human individual Se or a semi-immune sus-
ceptible human individual.

The black dotted arrows indicate the direction of infec-
tion of a susceptible mosquito Sv on an infectious nonim-
mune human (Ie) or an infectious nonimmune human (Ia).

3.2.2. Model Assumptions. A1: the probabilities ηve, ηva, αev,
αav , and α are in the interval 0, 1 .

A2: the parameters βe, θe, ηe, ρe, βa, θa, ηa, and ρa are
assumed to be strictly positive in the interval 0, 1 and

represent the probabilities of moving from a subfund i to a
subfund j.

A3: these passage probabilities and parameters designate
the conditional probabilities ℙ X1 = compartment j X0 =
compartment i satisfying the Markov property. These con-
ditional probabilities linking two consecutive pathological
states are between 0, 1 if the transition has a biological
meaning and 0 otherwise.

3.2.3. Interaction between Humans and Mosquitoes. Initially,
infectious mosquitoes (Iv) bite susceptible humans Se with
a ηve probability. The latter may remain susceptible Se with
probability r for some time or become latent Le with prob-
ability βe. Individuals can remain latent for a given time with
probability q or become infectious (Ie) with θe as the transi-
tion probability. In this infectious state (Ie), humans can die
with a probability μ or become immune with a probability
equal to νe, or even remain infectious with a probability p
for an interval of time. Having completed the 1st cycle, the
immune (Re) becomes susceptible Sa to the ρe immunity
rate, and through the intermediary of the infectious mosquito
(Iv), the cycle resumes as shown in Figure 4. At stage (Ra), hav-
ing acquired a certain immunity, the individual re-enters the
susceptible class Sa at the rate ρa. The susceptible mosqui-
toes Sv inoculate the parasite from a bloodmeal on the infec-
tious (Ie) and Ia with probabilities αev and αav, respectively;
then, they become infectious (Iv) with probability α.

Tables 2–4 summarise the parameters that will be
described in the model.

Proposition 5. Let Ω,F ,ℙ be a probability space and
X = Xn, n ≥ 0 the process of the mode of transmission of
plasmodia with values in the discrete state space E. Then,
the process X defined on Ω,F ,ℙ with values in E is an
irreducible and aperiodic homogeneous Markov chain with
initial distribution π0 = π1

0,⋯, π10
0 and transition matrix

H, where πi
0 is the probability that the process X is in state

i at time 0. And this Markov chain has a stationary distri-
bution π∗ such that π∗ = limk⟶∞π0H

k.

Proof. We consider that the ten compartments Se, Le, Ie, Re, Sa,
La, Ia, Ra, Sv, and Iv in Figure 4 represent the ten states of a

Re

Ra
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Ia

I𝜐

Le

La

S𝜐

Sa

Se

𝜂𝜐a

𝜂𝜐e𝛼e𝜐

𝛼a𝜐

𝛼

𝛽e

𝛽a

𝜌e

𝜌a

𝜃e

𝜃a

𝜈e

𝜈a

Mosquitoes

Humans

Humans

Figure 4: Diagram of malaria progression.
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Markov chain. These ten states are denoted i1, i2, i3, i4, i5, i6,
i7, i8, i9, i10 , respectively. Let E be the set of ten states of the
Markov chain. Let X = Xn, n ≥ 0 be the process of the mode
of transmission and evolution of Plasmodium. Let pnij denote
the probability that the process is in state j at time n + 1 know-
ing that it is in state i at time n. Furthermore, the probability pnij
is assumed to be independent of n. For all i, j ∈ E2, pij is called
the transition probability from state i to state j. The probabilis-

tic transition graph of the Markov chain model is given in
Figure 5, where the xi, i ∈ 1,⋯, 23 correspond to the differ-
ent parameters of the model and represent the transition prob-
abilities of the chain. The chain is irreducible because its
representative graph (Figure 5) is strongly connected.

Under hypothesis A3, the pij are grouped together in a
matrix H defined by the relation

Table 3: Contact parameters between humans and mosquitoes and their dimensions.

Param. Meaning Unity

na Number of times a mosquito could bite a human being per unit of time, if human beings were freely available Time–1

ηev
Probability of transmission of an infection from an infectious mosquito Iv to a susceptible nonimmune human

Se
Without
Dim.

ηva
Probability of transmission of an infection from an infectious mosquito Iv to a susceptible nonimmune human

Sa
Without
Dim.

αev
Probability of transmission of infection from an infectious human being Ie to a susceptible mosquito Sv , given

that there has been contact between the two
Without
Dim.

αav
Probability of transmission of infection from an infectious human being Ia to a susceptible mosquito Sa , given

that there has been contact between the two
Without
Dim.

Table 4: Plasmodium transmission parameters for the semi-immune host type.

Param. Meaning Unity

βa Rate of transition from the susceptible state Sa to the latent state La Without Dim.

θa Rate of transition from latent state La to infectious state Ia Without Dim.

νa Rate of transition from infectious state Ia to immune state Ra Without Dim.

ρe Rate of transition from the immune state Re to the susceptible state Sa Without Dim.

ρa Rate of transition from the immune state Ra to the susceptible state Sa Without Dim.

Table 2: Plasmodium transmission parameters for the nonimmune host type.

Param. Meaning Unity

βe Rate of transition from the susceptible state Se to the latent state Le. Without Dim.

θe Rate of transition from latent state Le to infectious state Ie. Without Dim.

νe Rate of transition from infectious state Ie to immune state Re. Without Dim.

18
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The H matrix thus constructed is stochastic by extension
of the SIS model.

Furthermore, during the clinical manifestations of
malaria, the future state of the patient does not depend on
the previous state, but rather on the current state (the system
has no “memory”). All the information needed to predict the
future is contained in the current state of the process. So we
can say that the spread and evolution of malaria satisfy the
weak Markov property (discrete time, discrete space): for
any n ≥ 0, for any sequence of states i0,⋯, in−1, i, j ∈ En+2,

ℙ Xn+1 = j X0 = i0, X1 = i1,⋯, Xn−1 = in−1, Xn = i =ℙ Xn+1 = j Xn = i ,

19

as soon as ℙ X0 = i0, X1 = i1,⋯, Xn−1 = in−1, Xn = i > 0. This
property expresses the fact that the law of Xn+1 depends on
X0,⋯, Xn only through the value of Xn: the “present” Xn
gives as much information about the “future” Xn+1 as if
we knew all the “past” X0,⋯, Xn. By hypothesis, the transi-
tion mechanism does not change over time. The weak
Markov property then takes the following form:

∀n ≥ 0, i0,⋯, in−1, i, j ∈ En+2,
ℙ Xn+1 = j X0 = i0, X1 = i1,⋯, Xn−1 = in−1, Xn = i =ℙ X1 = j X0 = i ,

20

i.e.,

∀ i, j ∈ E2 ℙ Xn+1 = j Xn = i =ℙ X1 = j X0 = i , 21

which expresses the homogeneity of the process in time.

3.3. Extending the SIS Markov Model to an Endemic Area.
Children under 5 years old are the most vulnerable to
malaria in endemic areas [21–24]. They have not yet devel-
oped their own immunity and are therefore considered non-
immune. We do not take into account the age of the
individual but rather his or her immunological status,
because according to studies [25, 26], children and adults

have the same probability of being infected by malaria. It is
assumed that there has been one case of death in the infec-
tious nonimmune human compartments. Then, the Plasmo-
dium propagation diagram takes the form of Figure 6.

The solid arrows indicate the direction of propagation of
Plasmodium, thus creating states of health in the subjects.

The blue dotted arrows indicate the direction of
infection from an infectious mosquito (Iv) to a nonimmune
susceptible human individual Se or a semi-immune sus-
ceptible human individual.

The black dotted arrows indicate the direction of infec-
tion of a susceptible mosquito Sv on an infectious nonim-
mune human (Ie) or an infectious nonimmune human (Ia).

The red dotted arrows indicate a case of death:

(i) of infectious nonimmune human (Ie) thus entering
compartment D, where μ represents the probability
of dying from malaria knowing that the nonimmune
human is infectious

(ii) mosquitoes by intradomiciliary spraying

The green dotted arrow indicates the use of long-lasting
impregnated mosquito nets.

3.3.1. Model Assumptions. We supplement the list of
assumptions in the previous Section 3.2 with two more:

A4: infectious mosquitoes Iv are eliminated by intradomi-
ciliary insecticide spraying with a probability p, p ∈ 0, 1 .

A5: humans use long-acting impregnated mosquito nets
with a probability of 1 − p, and for reasons of model simpli-
fication, environmental factors that could have more or less
significant effects are neglected.

Proposition 6. Let Ω,F ,ℙ be a probability space and
X = Xn, n ≥ 0 the process of the mode of transmission of
plasmodia with values in the discrete state space E. Then,
the process X defined on Ω,F ,ℙ with values in E is a
homogeneous absorbing Markov chain with transition
matrix P.

x1
x2

x3
x4

x6

x10

x19
x18

x17

x11

x16

x15x14

x13

i10

x12

x23
x22

x21

x20

x8 x7

x9

x5

i4

i1 i2 i3

i9

i7i6i5

i8

Figure 5: Transition graph of irreducible Markov chain.
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Proof. The graph representing the Markov chain model is
given in Figure 7, where the xi, i ∈ 1,⋯, 26 correspond
to the different parameters of the model and represent the
transition probabilities of the chain.

There are three absorbing states i11, i12, i13 on the
graph. As a result, the chain is absorbent. And under the

assumptions A1,...,A5 and under the same interactions
between humans and mosquitoes described in the previous
section, we group the pij in a matrix P whose canonical form
is represented by the relation

𝜇

Ra

Re

Ia

Ie

E

D

La

I𝜐

Le

Sa

S𝜐

Se

𝜂𝜐e

𝜂𝜐a
𝛼a𝜐

𝛼e𝜐

𝛼

𝛽a

𝛽e

𝜃a

𝜃e

𝜈a

𝜈e

M Impregnated mosquito net

Insecticides and mosquitoes

Humans

Humans

Death

𝜌e

Figure 6: Diagram showing the progression of malaria in an endemic area.
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The matrix of transient states Q and that of absorbing
states R are given by the relations

x1 x3 x5
x24x4x2

x6x8

x10

x7

x9

x20x18

x19x17

x16

x11
x15x14

x13

x25

1x22x23

x21

i4

i10

i13 i1 i2 i3 i11

x12x26

i9

i7

i12i8

i6i5

1 1

Figure 7: Transition graph of the absorbing Markov chain.

23

24
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The fundamental matrix will be determined by appli-
cation.

Proposition 7. The matrix elements ni,j ≔ I −Q i,j give us
the expectation of the total number Ni j of stays in j before
passing beyond the transient states, and the i line of
I −Q −1 gives us the “expected life balance,” with a given
initial state i.

Proof. Let Ik be the indicator of being present in the transient
state at time k. We pose

N = 〠
∞

k=0
Ik 25

We have ni =∑∞
k=0EiIk. Considering also the breakdown into

indicators

Ik =〠
j∈E

Ik,j,

Ik,j = 1 X k =j ,
26

where Ik,j is the indicator of being in position j ∈ E at time k.
As a result,

ni = 〠
∞

k=0
〠
j∈E

EiIk = 〠
∞

k=0
〠
j∈E

Q k
i,j 27

By changing the order of summation, we obtain

ni =〠
j∈E

〠
∞

k=0
Q k

i,j =〠
j∈E

I −Q i,j =〠
j∈E

ni,j, 28

where ni,j = I −Q i,j is the total expected time spent in j
starting from state i.

4. Numerical Simulations

4.1. Values Assigned to Transition Probabilities. In this sec-
tion, we numerically analyse the stochastic matrices (18)
and (22). We consider two malaria transmission zones: zone
A corresponding to a low transmission zone and zone B cor-
responding to a high transmission zone. We begin by deter-
mining the values of the biological parameters equivalent to
the transition probabilities in each zone. Most of these data
are obtained from the literature, in particular from models
developed by [27–31].

4.1.1. The Transition Probabilities between the Three Types of
Host. The probability of effective transition between the
three host types is the average number of contacts per unit
of time (in this case the day) that could lead to infection of
a specific host type.

na: we estimate that the average number of mosquito
bites a human being can suffer per day is 0.28 for the low
transmission zone and 0.38 for the high transmission zone.

This average number na is a function of the exposed surface
area of the human and any vector control interventions used
by humans to reduce exposure to mosquitoes [27, 30].

ηve: we estimate that the probability of transmission of
an infection from an infectious mosquito Iv to a suscepti-
ble nonimmune human being Se , knowing that there has
been contact between the two, is 0.021 for the low transmis-
sion zone and 0.07 for the high transmission zone [30].

ηva: we estimate that the probability of transmission of
an infection from an infectious mosquito Iv to a suscepti-
ble semi-immune human being Sa , knowing that there has
been contact between the two, is 0.012 for the low transmis-
sion zone and 0.022 for the high transmission zone [28, 31].

αev: we assume that the probability of transmission of
infection from an infectious nonimmune human being Ie
to a susceptible mosquito Sv , given that there has been
contact between the two, is 0.11 for a low transmission zone
and 0.45 for a high transmission zone [31].

αav : we assume that the probability of transmission of
infection from an infectious semi-immune human being
Ia to a susceptible mosquito Sv , given that there has been
contact between the two, is 0.08 for an area of low transmis-
sion and 0.35 for an area of high transmission.

4.1.2. Transitions in Nonimmune Host Compartments. βe:
the probability of transition from the susceptible state Se
to the latent state Le . This parameter results from the
infection force which is defined by

βe = ηvenaiv
Nv

Nh
, 29

where Nh is the human population size and Nv is the mos-
quito population size [28–30].

θe: the probability of transition from the latent state Le
to the infectious state Ie . We assume that θe = 0 10 for both
types of zone.

νe: the probability of transition from the infectious state
Ie to the immune state Re . We have assumed that this
rate is 0.005 for the zone of low transmission and 0.001 for
the zone of high transmission zone.

ρe: the probability of transition from the immune state
Re to the susceptible state Sa . This is a phase of change
of status from nonimmune to semi-immune hosts. We have
assumed that this probability is 5 5 × 10−4 for the low trans-
mission zone and 2 7 × 10−3 for the high transmission zone
[27, 29, 31].

4.1.3. Transitions in the Compartments of Semi-immune
Hosts. βa: the probability of transition from the susceptible
state Sa to the latent state La . This parameter results from
the strength of infection of the semi-immunes, which is
defined by

βa = ηvanaiv
Nv

Nh
, 30

where Nh is the size of the human population and Nv is the
size of the mosquito population [28–30].

10 Journal of Applied Mathematics



θa: the probability of transition from the latent state La
to the infectious state Ia . We assume that θa = 0 09 for
both types of zone.

νa: the probability of transition from the infectious state
Ia to the immune state Ra . We have assumed that this
rate is 0.01 for both types of zone.

ρa: the probability of transition from the immune state
Ra to the susceptible state Sa . Here, the immune cells
heal and return to the susceptible compartment. We assume
that ρa = 0 0083 for the low transmission zone and ρa =
0 033 for the high transmission zone [30].

For i = j, the pii are obtained by stochastic effect. The
other transition probabilities not quoted here are obtained
by using the Markov property.

All these estimated probabilities are summarised in Table 5.

4.2. Study of the H Matrix in a Zone A. In this section, we
numerically analyse the H matrices derived from the relation-
ship (18) using the parameter values obtained in Table 5 (zone
A), which correspond to a stable transmission zone.We obtain
the H matrix of the relationship (31) with values in 0, 1 .

We consider a heterogeneous population of humans and
mosquitoes made up of eighty people and twenty mosqui-
toes assumed to be under normal conditions of temperature
and reproduction. The human population is made up of

fifty-seven nonimmune host types and twenty-three semi-
immune host types. This gives the initial distribution given
by the relationship

that is, 20% of susceptible nonimmune, 15% of latent
nonimmune, 10% of infectious nonimmune, 12% of recov-
ered nonimmune, 9% of susceptible mosquitoes, 11% of
infectious mosquitoes, 5% of susceptible semi-immune, 8%
of latent semi-immune, 6% of infectious semi-immune,

and 4% of recovered semi-immune. We use R version 4.2.1
(2022-06-23 ucrt)-“Funny-Looking Kid” for the simulation
results. Tables 6 and 7 give the probabilities πn = π0H

n for
n = 1, 2,⋯, 21 . They illustrate the evolution of the differ-
ent stages of malaria over a period of twenty-one malaria

Table 5: Transition probabilities in zones A and B.

Param. Zone A Zone B Intervals

na 0.25 0.38 0.13-0.47

ηve 0.021 0.07 0.01-0.27

ηva 0.012 0.022 0.01-0.27

αev 0.11 0.45 0.072-0.64

αva 0.08 0.35 0.072-0.64

θe 0.10 0.10 0.067-0.20

θa 0.09 0.09 0.067-0.20

νe 0.005 0.001 0.0014-0.017

νa 0.01 0.01 0.0014-0.017

ρe 5 5 × 10−4 2 7 × 10−3 1 1 × 10−2 − 5 5 × 10−5

31

π0 = 0 200, 0 150, 0 100, 0 120, 0 090, 0 110, 0 050, 0 080, 0 060, 0 040 , 32
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episodes, using the initial distribution π0 of the relation-
ship (32).

The stationary distribution obtained is π∗ and is given by
the relation

Graphical representations of the results of Tables 6 and 7
are listed in Figure 8.

For a given initial distribution, the population of susceptible
Anopheles mosquitoes increases and stabilises at around 25%.
There has also been an increase in the number of infectious
mosquitoes. The rapid decline in the susceptible nonimmune
curve led to rapid growth in the susceptible semi-immune
curve, creating a peak of probability 0.22 which stabilised after
the twentieth episode. After several episodes of malaria, nonim-

mune individuals gradually migrate to the semi-immune class
to acquire a certain level of immunity, leading to a high level
of semi-immune individuals, which stabilises from the twenti-
eth episode onwards.

4.3. Study of the P Matrix in an Endemic Area. Using the
parameters obtained in Table 5 (zone B), we obtain the
numerical values of the absorbing matrix P of the relation
(22) described by the relation

Table 6: The state of the probability of individuals after twenty-one episodes for an initial vector π0 given by π0 =
0 200, 0 150, 0 100, 0 120, 0 090, 0 110, 0 050, 0 080, 0 060, 0 040 .

1 2 3 4 5 6 7 8 9 10

Se 0.167 0.138 0.114 0.095 0.081 0.072 0.067 0.064 0.063 0.064

Le 0.118 0.093 0.074 0.059 0.047 0.039 0.032 0.028 0.024 0.022

Ie 0.121 0.127 0.125 0.119 0.110 0.102 0.094 0.088 0.083 0.080

Re 0.118 0.117 0.116 0.115 0.113 0.110 0.106 0.102 0.099 0.095

Sv 0.087 0.098 0.116 0.137 0.158 0.177 0.193 0.207 0.218 0.226

Iv 0.085 0.070 0.063 0.062 0.065 0.070 0.076 0.082 0.087 0.092

Sa 0.044 0.039 0.036 0.033 0.030 0.028 0.027 0.026 0.025 0.024

La 0.099 0.112 0.122 0.129 0.133 0.135 0.136 0.136 0.136 0.135

Ia 0.121 0.162 0.188 0.205 0.214 0.219 0.220 0.219 0.218 0.216

Ra 0.042 0.044 0.046 0.047 0.048 0.048 0.048 0.048 0.047 0.047

Table 7: The state of the probability of individuals after twenty-one episodes for an initial vector π0 given by π0 = 0 200, 0 150, 0 100,
0 120, 0 090, 0 110, 0 050, 0 080, 0 060, 0 040 .

11 12 13 14 15 16 17 18 19 20 21

Se 0.065 0.067 0.069 0.071 0.072 0.074 0.075 0.076 0.077 0.078 0.078

Le 0.021 0.020 0.019 0.019 0.019 0.019 0.019 0.019 0.020 0.020 0.020

Ie 0.077 0.076 0.075 0.075 0.076 0.076 0.077 0.078 0.078 0.079 0.079

Re 0.091 0.088 0.085 0.082 0.080 0.078 0.077 0.076 0.075 0.074 0.074

Sv 0.233 0.238 0.241 0.243 0.245 0.246 0.246 0.247 0.247 0.247 0.247

Iv 0.096 0.099 0.101 0.103 0.104 0.105 0.106 0.106 0.107 0.107 0.107

Sa 0.023 0.023 0.023 0.022 0.022 0.022 0.220 0.022 0.022 0.022 0.022

La 0.134 0.133 0.132 0.130 0.130 0.129 0.128 0.127 0.127 0.126 0.126

Ia 0.214 0.212 0.210 0.209 0.208 0.207 0.206 0.205 0.205 0.205 0.205

Ra 0.046 0.045 0.045 0.044 0.044 0.044 0.044 0.043 0.043 0.043 0.043

π∗ = 0 079, 0 020, 0 080, 0 073, 0 247, 0 107, 0 022, 0 125, 0 204, 0 043 33
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Figure 8: Simulation of malaria host trajectories.
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The matrix of transient states Q and that of absorbing
states R of the matrix P are given in the following the relations.

4.3.1. Fundamental Matrix. The fundamental matrix of an
absorbing Markov chain can be used to extract many prop-
erties of this chain. In particular, it can be used to determine
the average number of visits to a given state before absorp-

tion, the time expectancy until absorption starting from a
given state, and the probabilities of being absorbed in a given
state k, starting from a state i. The fundamental matrix
resulting from the P matrix is given by the relation

35
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Thus, for an individual in the state Se, the average num-
ber of months before absorption by D or M is 1 163 ≈ 35
days in Se, 0 047 ≈ 2 days in Le, 0 142 ≈ 4 days in Ie, 0 475
≈ 14 days in La, and 0 757 in Ia. For infectious mosquitoes
Ie, the average number of months before absorption by E
(eliminated by insecticides) or M (eliminated by LLINs) is
0 261 ≈ 7 days in Se, 0 052 ≈ 2 days in Le, and 0 156 ≈ 5 days
in Ie. With absorbing Markov chains, all equilibrium distri-
butions will be limited to state absorbents, here D, E, and
M. Also, we can determine the probabilities of absorption
of states Se to Ra by states D, E, andM. To do this, let us con-
sider the matrix B =NR defined by the relation

38

According to these results, the probability of an individ-
ual Se, Le, Ie, Re, Sa, La, Ia, and Ra dying from malaria is
equal to 0.006, 0.006, 0.046, 0.000, 0.005, 0.002, and 0.001,
respectively. It can be seen that the probability of an infec-
tious individual Ie dying from malaria is consistent with
the clinical results. Susceptible mosquitoes Sv (infectious Iv,
respectively) are absorbed either by insecticides E at 95.3%
(at 82.9%, respectively) or by LLINs at 04.6% (at 16.6%,
respectively). The results show that to eliminate malaria, it
is preferable to use indoor residual spraying (IRS) by regular
application of insecticides rather than long-acting impreg-
nated mosquito nets (LLINs). Susceptible individuals Se
and Sa are absorbed by IRS at 62.1% and 84.5% and by LLIN
at 37.4% and 14.8%, respectively. This means that suscepti-
ble humans prefer IRS rather than LLINs to protect them-
selves against parasite infection.

5. Conclusion

In this study, we proposed aMarkovian stochastic approach to
a compartment model regarding malaria transmission. This
Markovian model SeLeIeReSe‐SaLaIaRaSa‐SvIv generalizes
the host-vector compartment models of types ShIh‐SvIv ,
ShIhRhSh‐SvIv , and ShLhIhRhSh‐SvLvIv . The study of this
model made it possible to identify a technique suitable for
combating malaria. Our model constitutes a valuable tool
for the stochastic modeling of epidemics: it is used to pre-
dict the evolution of the dynamics of malaria in a human
and anopheline population. In the forthcoming paper, we
will study the geometric V-ergodicity of the model by
including the effect of abiotic factors such as temperature.
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