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The KdV-Burgers equation is one of the most important partial differential equations, established by Korteweg and de Vries to
describe the behavior of nonlinear waves and many physical phenomena. In this paper, we reformulate this problem in the
sense of Caputo fractional derivative, whose physical meanings, in this case, are very evident by describing the whole time
domain of physical processing. The main aim of this work is to present the analytical approximate series for the nonlinear
Caputo fractional KdV-Burgers equation by applying the Laplace residual power series method. The main tools of this method
are the Laplace transform, Laurent series, and residual function. Moreover, four attractive and satisfying applications are given
and solved to elucidate the mechanism of our proposed method. The analytical approximate series solution via this sweet
technique shows excellent agreement with the solution obtained from other methods in simple and understandable steps.
Finally, graphical and numerical comparison results at different values of α are provided with residual and relative errors to
illustrate the behaviors of the approximate results and the effectiveness of the proposed method.

1. Introduction

Many events in chemistry, physics, biology, and other
majors may be efficiently described using fractional calculus
because accurate modeling of physical phenomena depends
not only on immediate time but also on past time [1]. At this
time, fractional calculus is growing in scale because it has
unique and versatile properties [2]. The theory and applica-
tions of fractional F-PDEs have previously received many
notable contributions [3]. These equations can be used, by
researchers, more effectively to analyze and describe many
phenomena in an assortment of fields, including mechanical
and dynamical systems [4], pantograph equations [5],
Navier-Stokes equations [6], and water wave propagation
phenomena [7]. However, due to the complexity of the frac-

tional calculus involving these equations, no approach pro-
vides an exact solution to the F-PDEs.

A variety of techniques is employed to solve several F-
PDEs. The L-RPSM was created in 2020 by Eriqat et al. [5]
to obtain the analytical approximate series solutions of the
linear and nonlinear neutral fractional pantograph equa-
tions, and this method was subsequently used to investigate
the exact and approximate (solitary, vector) solutions
for various linear and nonlinear time-F-PDEs [8, 9]. The
L-RPSM is constructed based on the LT and RPSM by trans-
forming the differential equations to the Laplace space and
then using an appropriate expansion to solve the new equa-
tion. The L-RPSM does not rely on the fractional derivation
to determine the coefficients of the series as in RPSM but
depends on the concept of the limit, so few calculations
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generate the coefficients compared to RPSM. The current
technique is quick, requires little computer memory, and is
not influenced by computational round-off errors. Further-
more, this technique computes the coefficients of the power
series using a chain of equations with more than one variable,
indicating that the present method has a rapid convergence.

In the past two years, many works have employed the L-
RPSM in providing accurate and approximate solutions to
many F-PDEs, for example, fractional Fisher’s equation
and logistic system model [10], nonlinear fractional
reaction-diffusion for bacteria growth model [11], fractional
Lane-Emden equations [12], fuzzy quadratic Riccati FDE
[13], a hyperbolic system of Caputo time-F-PDEs with vari-
able coefficients [9], time-fractional Navier-Stokes equations
[6], and time-fractional nonlinear water wave partial differ-
ential [7].

The KdV-BE was developed by Korteweg and de Vries
[14], derived by Su and Gardner [15], and is used to describe
nonlinear waves and many physical phenomena. It is also
used to model problems established in many applied math-
ematics fields, including heat conduction, acoustic waves,
gas dynamics, and traffic flow [16]. Nonlinear F-PDEs, such
as fractional Burgers equations [17], F-KdV-BE [18], and
fractional Schrödinger-KdV-BE [19], have also recently been
proposed to explain some significant events and dynamic
physics processes.

The homogeneous balancing method in [20], the trun-
cated expansion method in [21], and the exponential func-
tion method in [22] were just a few of the several
techniques used to obtain the exact solution of the KdV-
BEs. Recently, many researchers have given more attention
to the investigation of numerical techniques for solving
KdV-BEs, such as the RPSM [23], Adomian decomposition
method [24, 25], element-free Galerkin method [26], and
explicit restrictive Taylor method [27].

Nonlinear fractional KdV-BEs are most commonly used
in space-fractional or time-fractional derivative applications,
according to studies [28, 29]. There are no applications for
nonlinear fractional KdV-BEs that address the space-time-
fractional state, and it is difficult to solve them using the
established method, as described in the literature [28, 29],
since it requires additional execution time to complete the
approximation task.

The main objective of this work is to predict and create
the ASSs for the following initial value Caputo FKdV-BE
by using the L-RPSM:

Dα
t ψ x, t + ϵψq x, t Dβ

xψ x, t + ηD2
xψ x, t + μD3

xψ x, t
= 0, 0 < α, β ≤ 1, t, x > 0,

ψ x, 0 = g x , 1

where q = 0, 1, 2 and ϵ, η, μ are constants and α and β refer
to the order of time-Caputo and space-CFD, respectively.

One of the main advantages of our proposed method
(L-RPSM) is an efficient simple technique for finding exact
and approximate series solutions to the linear and nonlin-
ear F-PDEs compared with others such as residual power

series, two-stage order-one Runge-Kutta, one-leg θ, varia-
tional iterative, Chebyshev polynomials method, Laguerre
wavelet, Bernoulli wavelet, Boubaker polynomials, Hermit
wavelet, and price-wise fractional-order Taylor methods. It
must be noted that the study of the model’s existence,
uniqueness, and stability analysis of model (1) has been pre-
viously studied. The reader can refer to references [30, 31].

We arrange this paper as follows: In Section 2, we review
some definitions and properties of some basic concepts and
results related to the CFD, LT, and fractional Taylor and
Laurent expansions, which are essential in constructing the
L-RPS solutions for the FDEs. Section 3 gives an analytical
solution of the nonlinear Caputo FKdV-BE based on the
L-RPSM approach. In Section 4, the efficiency, effectiveness,
and applicability of the L-RPSM are demonstrated by testing
four nonlinear Caputo FKdV-BEs and comparing them with
the results obtained in [23]. Finally, we summarize the out-
comes of this paper in Conclusion.

2. Basic Concepts and Results

This section reviews some basic concepts and results related
to the Caputo fractional operator, Laplace transform, and
fractional Taylor and Laurent expansions which are essential
in constructing the L-RPSM solutions for the FPDEs.

Definition 1. The fractional derivative of order α > 0 for the
real-valued function w x, t in the time-Caputo sense is
denoted by Dα

t w x, t and defined as

Dα
t w x, t =

Jn−αt ∂nt w x, t , n − 1 < α ≤ n, x ∈ K t > 0,
∂nt w x, t , α = n,

2

where ∂nt w x, t = ∂nw x, t /∂tn, n ∈ℕ, K is an interval, and
Jαt is the time-Riemann-Liouville fractional integral of order
α of the function w x, t that defines as

Jαt w x, t =
1

Γ α

t

0
t − τ α−1w x, τ dτ, t > τ > 0,

w x, τ , α = 0
3

Note that the space-CFD is denoted and defined by the
expression Dα

xw x, t = Jn−αx ∂nxw x, t .

Definition 2 ([32]). Let w x, t be a piecewise continuous
function on 0,∞ and of exponential order δ The LT of
the w x, t is denoted and given by

W x, s =L w x, t =
∞

0
e−stw x, t dt, s > δ, 4
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whereas the inverse LT of the function W x, s is defined as

w x, t =L−1 W x, s =
z+i∞

z−i∞
estW x, s ds, z = Re s > z0

5

The following Lemma gives the critical properties of the
Laplace and inverse Laplace transformations required in this
work.

Lemma 3 ([32]). If w x, t and u x, t are piecewise continu-
ous functions on the region K × 0,∞ and of exponential
orders δ1 and δ2, respectively, where δ1 < δ2. Suppose that
W x, s =L w x, t , U x, s =L u x, t , and a, b are con-
stants, then

(i) L aw x, t + bu x, t = aW x, s + bU x, s , x ∈ K ,
s > δ2

(ii) L−1 aW x, s + bU x, s = aw x, t + bu x, t , x ∈
K , t ≥ 0

(iii) lim
s⟶∞

sW x, s =w x, 0 , x ∈ K

(iv) L Dα
t w x, t = sαW x, s − ∑n−1

k=0s
α−k−1∂kt w x, 0 , n

− 1 < α ≤ n

Theorem 4 (see [10]). Let w x, t be a piecewise continuous
function on K × 0,∞ and of exponential order δ. Suppose
that the function W x, s =L w x, t has the following frac-
tional power series:

W x, s = 〠
∞

n=0

gn x
snα+1

, 0 < α ≤ 1, x ∈ K , s > δ 6

Then, gn x =Dnα
t w x, 0 .

For more details regarding the convergence conditions for
the fractional expansions, see [23].

Theorem 5 (see [10]). Let w x, t be a piecewise continuous
function on K × 0,∞ and of exponential order δ and W
x, s =L w x, t can be represented as the fractional

expansion in Theorem 4. If sL D
n+1 α
t w x, t ≤M x

on K × δ,γ where 0 < α ≤ 1, then the remainder Rn x, s
of the fractional expansion as in Eq. (6) satisfies the follow-
ing inequality:

Rn x, s ≤
M x ,
s n+1 α+1 , x ∈ K , δ < s ≤ γ 7

3. L-RPSM Solutions to the Caputo FKdV-BE

This section provides an analytical solution for the Caputo
FKdV-BE in Eq. (1) based on the L-RPS approach. Before
we start with that and without losing the other cases, we will
set the value of q to be 2, leaving the reader to repeat the
same steps to reach the construction required for the solu-

tion in the other two cases, q = 1 and q = 0. Part (iv) of
Lemma 3 produces the following equation when the LT is
applied to both sides concerning t:

Ψ x, s −
g x
s

+ ϵ

sα
L t L−1

t Ψ x, s 2
Dβ

x L−1
t Ψ x, s

+ η

sα
D2

xΨ x, s + μ

sα
D3

xΨ x, s = 0,

8

where Ψ x, s =L t ψ x, t , s > δ ≥ 0.
According to Theorem 4, we assume the L-RPS

approach dictates that the series solution of Eq. (8) takes
the following fractional expansion:

Ψ x, s = 〠
∞

n=0

gn x
snα+1

, x ∈ K , s > δ ≥ 0 9

Since lim
s⟶∞

sΨ x, s = ψ x, 0 = g x , the kth truncated

series solution of Ψ x, s takes the following form:

Ψk x, s = g x
s

+ 〠
k

n=1

gn x
snα+1

, x ∈ I, s > δ ≥ 0, k = 1, 2,⋯

10

We define the Laplace residual function and the kth
Laplace residual function, respectively, of Eq. (8) as follows:

LRes x, s =Ψ x, s −
g x
s

+ ϵ

sα
L L−1 Ψ x, s 2

Dβ
x L−1 Ψ x, s

+ η

sα
D2

xΨ x, s + μ

sα
D3

xΨ x, s = 0,

11

LResk x, s =Ψk x, s −
g x
s

+ ϵ

sα
L L−1 Ψk x, s 2

Dβ
x L−1 Ψk x, s

+ η

sα
D2

xΨk x, s + μ

sα
D3

xΨk x, s

= 0, k = 1, 2, 3,⋯
12

The following are some relevant facts to determine the
ASS according to the L-RPS technique, see [8]:

i   lim
k⟶∞

LResk x, s = LRes x, s = 0, x ∈ K , s > δ ≥ 0,

ii   lim
s⟶∞

skα+1LRes x, s = lim
s⟶∞

skα+1LResk x, s

= 0, 0 < α ≤ 1, k = 1, 2, 3,
13
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Therefore, to obtain the unknown coefficients gn x ,
we must first substitute the kth truncated series solution
Ψk x, s for k = 1, 2, 3,⋯, into the kth Laplace residual
function in Eq. (12). Then, we solve lim

s⟶∞
skα+1LResk x, s

= 0 and gather the acquired coefficients gn x in terms of
fractional expansion series Ψk x, s . After that, we apply
the inverse LT to both sides of the resulting Laplace
series solution to get the ASS of the original problem in
Eq. (1).

Now, Ψ1 x, s is substituted into the first-residual func-
tion LRes1 x, s to get

LRes1 x, s = g1 x
sα+1

+ ϵ

sα
L L−1 g x

s
+ g1 x

sα+1

2

Dβ
x L−1 g x

s
+ g1 x

sα+1

+ η

sα
D2

x
g x
s

+ g1 x
sα+1

+ μ

sα
D3

x
g x
s

+ g1 x
sα+1

14

The first coefficient g1 x can be obtained by multiplying
both sides of Eq. (14) by sα+1 and then by solving lim

s⟶∞
sα+1

LRes1 x, s = 0. Then, we have

g1 x = − ϵg2 x Dβ
xg x + ηg′′ x + μg′′′ x 15

Thus, the 1st truncated series solution can be expressed
as

Ψ1 x, s = g x
s

−
ϵg2 x Dβ

xg x g x + ηg′′ x + μg′′′ x
sα+1

16

Similar to how g1 x was calculated, g2 x is likewise
calculated by inserting the 2nd truncated series Ψ2 x, s =
g x /s + g1 x /sα+1 + g2 x /s2α+1 into Eq. (12) to obtain

LRes2 x, s = g1 x
sα+1

+ g2 x
s2α+1

+ ϵ

sα
L L−1 g x

s
+ g1 x

sα+1
+ g2 x

s2α+1

2

Dβ
x L−1 g x

s
+ g1 x

sα+1
+ g2 x

s2α+1

+ η

sα
D2

x
g x
s

+ g1 x
sα+1

+ g2 x
s2α+1

+ μ

sα
D3

x
g x
s

+ g1 x
sα+1

+ g2 x
s2α+1

17

Next, multiply both sides of Eq. (17) by s2α+1, and then
by solving lim

s⟶∞
s2α+1LRes2 x, s = 0, one can get

g2 x = − ϵ 2g x g1 x Dβ
xg x + g2 x Dβ

xg1 x

+ ηg1′′ x + μg1′′′ x
18

So, the 2nd truncated series solution of Eq. (8) is
given as

Ψ2 x, s = g x
s

−
ϵg2 x Dβ

xg x g x + ηg′′ x + μg′′′ x
sα+1

−
ϵ 2g x g1 x Dβ

xg x + g2 x Dβ
xg1 x + ηg1′′ x + μg1′′′ x

s2α+1

19

The following results are also easily obtained for k = 3 by
following the same procedure as above:

g3 x = − ϵ 2g2
1 x Dβ

xg x + 4g x g1 x Dβ
xg1 x + 2g x g2 x Dβ

xg x

+ g2 x Dβ
xg2 x + ηg2′′ x + μg2′′′ x

20

In fact, the 3rd truncated series solution of Eq. (8),
based on the prior findings of g1 x , g2 x , and g3 x ,
is provided by

Ψ3 x, s = g x
s

−
ϵg2 x Dβ

xg x g x + ηg′′ x + μg′′′ x
sα+1

−
ϵ 2g x g1 x Dβ

xg x + g2 x Dβ
xg1 x + ηg1′′ x + μg1′′′ x

s2α+1

−
ϵ 2g21 x Dβ

xg x + 4g x g1 x Dβ
xg1 x + 2g x g2 x Dβ

xg x + g2 x Dβ
xg2 x + ηg2′′ x + μg2′′′ x

s3α+1

21
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One may derive gk x for k = 4, 5, 6,⋯ by processing the
preceding stages and utilizing the solution of the system

lim
s⟶∞

skα+1LResk x, s = 0. Then, we get the kth truncated

series solution Ψk x, s as follows:

In the following step, we operate the inverse LT to both
sides of Eq. (22) to get the kth ASS of the initial value prob-
lem of the Caputo FKdV-BE of Eq. (1) as follows:

Finally, the ASS of the Caputo FKdV-BE of Eq. (1) is
given by

Using the same procedure as before, we can discover
ASSs to the same Caputo FKdV-BE of Eq. (1) in the case
of q = 1 and q = 0 as we mentioned above.

Ψk x, s = g x
s

−
ϵg2 x Dβ

xg x g x + ηg′′ x + μg′′′ x
sα+1

−
ϵ 2g x g1 x Dβ

xg x + g2 x g β
1 x + ηg1′′ x + μg1′′′ x

s2α+1

−
ϵ 2g21 x Dβ

xg x + 4g x g1 x Dβ
xg1 x + 2g x g2 x Dβ

xg x + g2 x Dβ
xg2 x + ηg2′′ x + μg2′′′ x

s3α+1
−⋯ −

gk x
skα+1

22

ψk x, t = g x −
ϵg2 x Dβ

xg x g x + ηg′′ x + μg′′′ x
Γ α + 1 tα

−
ϵ 2g x g1 x Dβ

xg x + g2 x Dβ
xg1 x + ηg1′′ x + μg1′′′ x

Γ 2α + 1 t2α

−
ϵ 2g2

1 x g x + 4g x g1 x Dβ
xg1 x + 2g x g2 x Dβ

xg x + g2 x Dβ
xg2 x + ηg2′′ x + μg2′′′ x

Γ 3α + 1 t3α−⋯

−
gk x

Γ kα + 1 tkα

23

ψ x, t = lim
k⟶∞

ψk x, t = g x −
ϵg2 x Dβ

xg x g x + ηg′′ x + μg′′′ x
Γ α + 1 tα

−
ϵ 2g x g1 x Dβ

xg x + g2 x Dβ
xg1 x + ηg1′′ x + μg1′′′ x

Γ 2α + 1 t2α

−
ϵ 2g21 x g x + 4g x g1 x Dβ

xg1 x + 2g x g2 x Dβ
xg x + g2 x Dβ

xg2 x + ηg2′′ x + μg2′′′ x
Γ 3α + 1 t3α−⋯

24
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When q = 1, the initial coefficients of the kth truncated
series solution to Eq. (1) are:

g0 x = g x , 25

g1 x = − ϵg x Dβ
xg x + ηg′′ x + μg′′′ x ,

g2 x = − ϵ g1 x Dβ
xg x + g x Dβ

xg1 x + ηg1′′ x + μg1′′′ x ,

g3 x = − ϵ g2 x Dβ
xg x + 2g1 x Dβ

xg1 x + g x Dβ
xg2 x

+ ηg2′′ x + μg2′′′ x ,

⋮

26

Whereas for q = 0, the first four coefficients will be as
follows:

g0 x = g x ,

g1 x = − ϵDβ
xg x + ηg′′ x + μg′′′ x ,

g2 x = − ϵDβ
xg1 x + ηg1′′ x + μg1′′′ x ,

g3 x = − ϵDβ
xg2 x + ηg2′′ x + μg2′′′ x ,

⋮

27

In the next section, we utilize the obtained coefficients in
Eqs. (23), (25), and (27) to introduce ASSs to four examples
of time, space, and time-space Caputo FKdV-BE.

4. Some Attractive Applications

In this section, the efficiency, effectiveness, and applicability
of the L-RPSM are demonstrated by testing four nonlinear
Caputo FKdV-BE initial value problems and comparing
them with the results in [23]. It should be noted that the
MATHEMATICA 12 software package is used for all
numerical and symbolic operations.

Application 6. Consider the following nonlinear time-
Caputo FKdV-BE

Dα
t ψ x, t + 6ψ2 x, t Dxψ x, t +D3

xψ x, t = 0, x ∈ K , t > 0, 0 < α ≤ 1,

ψ x, 0 = c sech ω + cx

28

Comparing Eq. (28) with Eq. (1), we find that q = 2,
β = 1, ϵ = 6, η = 0, and μ = 1 with the initial condition
g0 x = c sech ω + cx , where c and ω are constants.
As a result, using the methodology described in Section
3, the LT of Eq. (28) is

Ψ x, s −
c sech ω + cx

s

+ 6
sα

L t L−1
t Ψ x, s 2

Dx L−1
t Ψ x, s

+ 1
sα

D3
xΨ x, s = 0,

29

the ASS of Eq. (29) is

Ψ x, s = 〠
∞

n=0

gn x
snα+1

, x ∈ K , s > δ ≥ 0, 30

and consequently the kth truncated series of Ψ x, s will
be

Ψk x, s = c sech ω + cx

s
+ 〠

k

n=1

gn x
snα+1

, k = 1, 2,⋯

31

According to the results in Eqs. (15), (18), and (20),
we derive gn x for n = 1, 2, and 3 as:

g1 x = c2 tanh ω + cx sech ω + cx ,

g2 x = −
1
2 c

7/2 sech3 ω + cx 3 − cosh 2 ω + cx ,

g3 x = −
c5

8 sech5 ω + cx tanh ω + cx
24Γ 1 + 2α
Γ 1 + α 2

7 − 3 cosh 2 ω + cx + 315 − 164 cosh 2 ω + cx

+ cosh 4 ω + cx

32

Then, the 3rd truncated series in Eq. (31) becomes

Ψ3 x, s = c sech ω + cx

s
+ c2 tanh ω + cx sech ω + cx

sα+1

−
c7/2

2
sech3 ω + cx 3 − cosh 2 ω + cx

s2α+1

−
c5

8 sech5 ω + cx tanh ω + cx
24Γ 1 + 2α
Γ 1 + α 2

7 − 3 cosh 2 ω + cx + 315 − 164 cosh 2 ω + cx

+ cosh 4 ω + cx
1

s3α+1

33

Consequently, the 3rd approximate L-RPS solution of
Eq. (28) takes the following expansions:
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ψ3 x, t = c sech ω + cx

+ c2 tanh ω + cx sech ω + cx
tα

Γ 1 + α

−
1
2 c

7/2 sech3 ω + cx

3 − cosh 2 ω + cx
t2α

Γ 1 + 2α

+ c5

8
24Γ 1 + 2α
Γ 1 + α 2 tanh ω + cx sech5 ω + cx

−7 + 3 cosh 2 ω + cx +315 + cosh 4 ω + cx

− 164 cosh 2 ω + cx
t3α

Γ 1 + 3α
34

The authors introduced in [23] an approximate RPSM
solution for Eq. (28), where the obtained 3rd ASS coin-
cided with ψ3 x, t in Eq. (34).

Remark 7. The solution of Eq. (28) has a general form that
coincides with the following exact solution when α = 1.

ψ x, t = c sech ω + c x − ct 35

To demonstrate the geometric behaviors of the L-RPS
solution of Eq. (28) and the range of its accuracy, a compar-
ison between the approximate solution ψ3 x, t and exact
solution ψ x, t is given in 3D for a different value of α
and c = 1, ω = 0, see Figure 1. From Figure 1, it is clear
that the behaviors of the subfigures are almost identical
and coincidental, especially for Figures 1(c) and 1(d)
where α = 1. These subfigures appear identical and in per-
fect agreement in terms of accuracy with each other. As a
result, compared to the exact solution, computing a few
terms can yield an outstanding approximation. Conse-
quently, the overall error can vanish by finding a larger
number of the series terms.

To confirm this, numerical values for the actual and the
relative errors of the approximation ψ3 x, t are calculated in
Table 1 when α = 1. Table 2 shows the residual error of the
approximation ψ3 x, t when α = 0 80 and 0.90. The numer-
ical results show that the obtained approximation is accept-
able mathematically. The actual and relative errors are
defined, respectively, as follows:

Actual error = ψ x, t − ψk x, t ,

Relative error = ψ x, t − ψk x, t
ψ x, t ,

36

while the residual error for the problem in Eq. (28) is given
by:

Residual error x, t = ∂αψk x, t
∂tα

+ ϵψr
k x, t ∂βψk x, t

∂xβ

+ η
∂2ψk x, t

∂x2
+ μ

∂3ψk x, t
∂x3

37

Application 8. Consider the nonlinear time-Caputo FKdV-BE

Dα
t ψ x, t − 6ψ x, t Dxψ x, t +D3

xψ x, t = 0, x, t > 0, 0 < α ≤ 1,

ψ x, 0 = −2ω2eωx

1 + eωx 2

38

As we discussed in the previous application, comparing
Eq. (38) with Eq. (1), we find that q = μ = β = 1, ϵ = −6, and
η = 0 with the initial condition g0 x = −2ω2eωx/ 1 + eωx 2,
where ω is a constant. Therefore, according to the working
mechanism of the L-RPSM, we transfer Eq. (1) to the Laplace
space as

Ψ x, s + 2ω2eωx

1 + eωx 2
1
s
−

6
sα

L t L−1
t Ψ x, s Dx L−1

t Ψ x, s

+ 1
sα

D3
xΨ x, s = 0,

39

where s > δ ≥ 0, assume the solution of Eq. (39) in the follow-
ing form:

Ψ x, s = 〠
∞

n=0

gn x
snα+1

, x ∈ K , s > δ ≥ 0, 40

and the kth truncated series of Ψ x, s will be

Ψk x, s = −2ω2eωx

1 + eωx 2
1
s
+ 〠

k

n=1

gn x
snα+1

, k = 1, 2,⋯ 41

According to the results in Eqs. (15), (18), and (20), we set
gn x , n = 1, 2, 3 as follows:

g1 x = −2ⅇωx ⅇxω − 1 ω5

1 + ⅇωx 3 ,

g2 x = −2ⅇωx 1 − 4ⅇωx + ⅇ2ωx ω8

1 + ⅇωx 4 ,

7Journal of Applied Mathematics
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g3 x = −
2ⅇxω ⅇxω − 1 ω11

1 + ⅇxω 7

1 − 32ⅇxω + 78ⅇ2xω − 32ⅇ3xω + ⅇ4xω

+ 12ⅇxω 1 − 4ⅇxω + ⅇ2xω Γ 1 + 2α
Γ 1 + α 2

42

Using the same procedures as in Application 6, we get the
3rd approximate L-RPS solution of Eq. (38) as follows:

ψ3 x, t = −2ω2eωx

1 + eωx 2 + −2ⅇωx ⅇxω − 1 ω5

1 + ⅇωx 3
tα

Γ 1 + α

+ −2ⅇωx 1 − 4ⅇωx + ⅇ2ωx ω8

1 + ⅇωx 4
t2α

Γ 1 + 2α

−
2ⅇxω ⅇxω − 1 ω11

1 + ⅇxω 7 1 − 32ⅇxω + 78ⅇ2xω − 32ⅇ3xω + ⅇ4xω

+ 12ⅇxω 1 − 4ⅇxω + ⅇ2xω Γ 1 + 2α
Γ 1 + α 2

t3α

Γ 1 + 3α

43

It is worth mentioning that the solution in Eq. (43)
matches the solution obtained in RPSM [23].
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Figure 1: The graph of the exact solution ψ x, t and the approximate solution ψ3 x, t of Eq. (28): (a) ψ3 x, t when α = 0 8, (b) ψ3 x, t
when α = 0 90, (c) ψ3 x, t when α = 1, and (d) ψ x, t when α = 1.

Table 1: Numerical comparisons between the 3rd approximate L-RPSM solution and the exact solution of Eq. (28) and the actual and
relative errors when x = 10, α = 1, c = 1, and ω = 0.

t ψ3 x, t ψ x, t Actual error Relative error

0.01 0 917124 × 10−4 0 917124 × 10−4 1 51334 × 10−11 1 65009 × 10−7

0.02 0 926340 × 10−4 0 926341 × 10−4 1 21069 × 10−10 1 30696 × 10−6

0.04 0 945045 × 10−4 0 945055 × 10−4 9 68609 × 10−10 1 02492 × 10−5

0.08 0 983546 × 10−4 0 983623 × 10−4 7 75076 × 10−9 7 87981 × 10−5

0.16 0 106493 × 10−3 0 106555 × 10−3 6 20675 × 10−8 5 82495 × 10−4

0.32 0 124544 × 10−3 0 125043 × 10−3 4 98569 × 10−7 3 98718 × 10−3

0.64 0 168142 × 10−3 0 172199 × 10−3 4 05788 × 10−6 2 35649 × 10−2

0.70 0 177514 × 10−3 0 182848 × 10−3 5 33436 × 10−6 2 91737 × 10−2

0.80 0 194045 × 10−3 0 202079 × 10−3 8 03345 × 10−6 3 9754 × 10−2

0.90 0 211776 × 10−3 0 223332 × 10−3 1 15557 × 10−5 5 17423 × 10−2

1.00 0 230783 × 10−3 0 246820 × 10−3 1 60366 × 10−5 6 49731 × 10−2
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Remark 9. For α = 1, a little focus while simplifying the series
solution in Eq. (43) leads us to the exact solution of Eq. (38)
in the following closed form:

ψ x, t = −
2ⅇω x−ω2t ω2

1 + ⅇω x−ω2t 2 44

To confirm the efficiency of the L-RPS method and the
accuracy of the ASS obtained with it, Figure 2 graphically
shows the behavior of the solution and its compatibility
with the exact solution in the case of α = 1. It also shows
the consistency of the solution’s behavior with different
values of α.

For more analysis of the results, numerical values for
the actual and the relative errors of the approximation
ψ3 x, t are calculated in Table 3 when the α = 1.
Table 4 shows the residual error of the approximation
ψ3 x, t when α = 0 80 and 0.90. The numerical results
show that the obtained approximation is acceptable
mathematically.

Application 10. Consider the nonlinear space-Caputo
FKdV-BE

Dtψ x, t + ψ x, t Dβ
xψ x, t +D2

xψ x, t +D3
xψ x, t

= 0, 0 < β ≤ 1, x, t > 0,

ψ x, 0 = x3

45

In this application, the parameter values of Eq. (1) are
q = ϵ = η = μ = α = 1 while β is arbitrary in 0, 1 and the

initial condition ψ x, 0 = g0 x = x3. Depending on the
steps of the L-RPSM, the form of Eq. (1) in Laplace
space is

Ψ x, s −
x3

s
+ 1

s
L t L−1

t Ψ x, s 2
Dβ

x L−1
t Ψ x, s

+ 1
s
D2

xΨ x, s + 1
s
D3

xΨ x, s = 0,

46

the series solution of Eq. (46) is

Ψ x, s = 〠
∞

n=0

gn x
sn+1

, x ∈ K , s > δ ≥ 0, 47

and the kth truncated series of Ψ x, s is

Ψk x, s = x3

s
+ 〠

k

n=1

gn x
sn+1

, k = 1, 2,⋯ 48

According to the results in Eqs. (15), (18), and (20),
we compute gn x for n = 1, 2, and 3 considering α = 1
as

g1 x = − 6 + 6x + r1x
6−β ,

g2 x = r2x
9−2β + r3x

4−β + r4x
3−β,

g3 x = − r5x
12−3β + r6x

7−2β + r7x
6−2β + r8x

2−β + r9x
1−β + r10x

−β ,

49

Table 2: Numerical results of the 3rd approximate L-RPSM solution of Eq. (28) at α = 0 80 and α = 0 90 and the corresponding residual
error when x = 10, c = 1, and ω = 0.

t
α = 0 80 α = 0 90

ψ3 x, t Residual error ψ3 x, t Residual error

0.01 0 932888 × 10−4 9 33684 × 10−5 0 923098 × 10−4 9 23369 × 10−5

0.02 0 951850 × 10−4 9 54255 × 10−5 0 936394 × 10−4 9 37336 × 10−5

0.04 0 985919 × 10−4 9 93154 × 10−5 0 961753 × 10−4 9 65016 × 10−5

0.08 0 104845 × 10−3 1 0701 × 10−4 0 101098 × 10−3 1 02224 × 10−4

0.16 0 116721 × 10−3 1 23148 × 10−4 0 110953 × 10−3 1 14808 × 10−4

0.32 0 140545 × 10−3 1 59391 × 10−4 0 131735 × 10−3 1 44774 × 10−4

0.64 0 192924 × 10−3 2 47494 × 10−4 0 179596 × 10−3 2 22943 × 10−4

0.70 0 203721 × 10−3 2 66307 × 10−4 0 189666 × 10−3 2 40237 × 10−4

0.80 0 222526 × 10−3 2 99316 × 10−4 0 207315 × 10−3 2 70925 × 10−4

0.90 0 242424 × 10−3 3 34448 × 10−4 0 226116 × 10−3 3 03988 × 10−4

1.00 0 263508 × 10−3 3 71783 × 10−4 0 246156 × 10−3 3 39491 × 10−4
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where

r1 =
6

Γ 4 − β
,

r2 = r1
Γ 7 − β

Γ 7 − 2β + r21,

r3 =
6

Γ 2 − β
+ 6r1 + r1 6 − β 5 − β ,

r4 = 6r1 + r1 6 − β 5 − β 4 − β ,

r5 = r2
Γ 10 − 2β
Γ 10 − 3β + r1r2 + 2r1 r2 − r21 ,

r6 = r3
Γ 5 − β

Γ 5 − 2β + r1
12

Γ 2 − β
+ 12 r2 − r21 + r1r3 + 8 − 2β 9 − 2β r2,

r7 = r4
Γ 4 − β

Γ 4 − 2β + 12 −r21 + r2 + r1r4 + 7 − 2β 8 − 2β 9 − 2β r2,

r8 =
72

Γ 2 − β
+ 3 − β 4 − β r3,

r9 =
72

Γ 2 − β
+ 4 − β 3 − β 2 − β r3 + 2 − β 3 − β r4,

r10 = 1 − β 2 − β 3 − β r4

50

Consequently, by considering the values of r1,⋯, r10
in Eq. (50) and the form of the coefficients in Eq. (49),
the 3rd approximate L-RPS solution of Eq. (45) is given by
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Figure 2: The graph of the exact solution ψ x, t and the approximate solution ψ3 x, t of Eq. (38): (a) ψ3 x, t when α = 0 8, (b) ψ3 x, t
when α = 0 90, (c) ψ3 x, t when α = 1, and (d) ψ x, t when α = 1.

Table 3: Numerical comparisons between the 3rd approximate L-RPSM solution and the exact of Eq. (38) and the actual and relative errors
when x = 10, α = 1, and ω = 1.

t ψ3 x, t ψ x, t Actual error Relative error

0.01 −0 91704 × 10−4 −0 917040 × 10−4 7 55689 × 10−17 8 24052 × 10−13

0.02 −0 926256 × 10−4 −0 926256 × 10−4 2 4223 × 10−15 2 61515 × 10−11

0.04 −0 944965 × 10−4 −0 944965 × 10−4 7 77739 × 10−14 8 23035 × 10−10

0.08 −0 983526 × 10−4 −0 983526 × 10−4 2 50549 × 10−12 2 54745 × 10−8

0.16 −0 106543 × 10−3 −0 106543 × 10−3 8 12640 × 10−11 7 62732 × 10−7

0.32 −0 125025 × 10−3 −0 125027 × 10−3 2 67257 × 10−9 2 13759 × 10−5

0.64 −0 172080 × 10−3 −0 172171 × 10−3 9 04760 × 10−8 5 25502 × 10−4

0.70 −0 182672 × 10−3 −0 182815 × 10−3 1 43158 × 10−7 7 83074 × 10−4

0.80 −0 201754 × 10−3 −0 202038 × 10−3 2 84229 × 10−7 1 40681 × 10−3

0.90 −0 222760 × 10−3 −0 223282 × 10−3 5 21702 × 10−7 2 33652 × 10−3

1.00 −0 245859 × 10−3 −0 246759 × 10−3 9 00116 × 10−7 3 64776 × 10−3
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ψ3 x, t = x3 − 6 + 6x + r1x
6−β t + r2x

9−2β + r3x
4−β + r4x

3−β t2

2

− r5x
12−3β + r6x

7−2β + r7x
6−2β + r8x

2−β + r9x
1−β + r10x

−β t3

3
51

Figure 3 shows a simulation of the solution of Eq. (45)
on 0, 1 × 0, 1 in 3D space. Additionally, it displays the
approximate solution ψ3 x, t on the domain 0, 1 × 0, 1 for
several values of β = 0 4, β = 0 6, β = 0 8, and β = 1.

We noticed from Figures 3(a)–3(d) that while each sur-
face almost agrees well in its behavior, the representations
of the surface graph solutions decrease steadily as the values
of t and x increase in the definite domain. Also, the space-
CFD plays a consistent role in the solutions.

Application 11. Consider the following nonlinear time-
space-Caputo FKdV-BE

Dα
t ψ x, t + ψ x, t Dβ

xψ x, t +D2
xψ x, t

+D3
xψ x, t = 0, 0 < α ≤ 1, 0 < β ≤ 1, x, t > 0,
ψ x, 0 = x

52

Comparing Eq. (52) with Eq. (1), we find that q = ϵ = η
= μ = 1 with the initial condition g0 x = x. As a result,
using the methodology described in Section 3, the LT of
Eq. (52) is

Ψ x, s −
x
s
+ 1
sα

L t L−1
t Ψ x, s Dβ

x L−1
t Ψ x, s

+ 1
sα

D2
xΨ x, s + 1

sα
D3

xΨ x, s = 0,

53

the series solution of Eq. (53) is

Ψ x, s = 〠
∞

n=0

gn x
snα+1

, x ∈ K , s > δ ≥ 0, 54

and consequently the kth truncated series of Ψ x, s will be

Ψk x, s = x
s
+ 〠

k

n=1

gn x
snα+1

, k = 1, 2,⋯ 55

According to the results in Eqs. (15), (18), and (20), we
derive gn x for n = 1, 2,and 3 as

g1 x = −r1x
2−β,

g2 x = r2x
3−2β + r3x

−β − βr3x
−1−β,

g3 x = − r4x
4−3β + r5x

1−2β + r6x
−2β + r7x

−4−β + r8x
−3−β + r9x

−2−β ,

56

where

r1 =
1

Γ 2 − β
,

r2 = r31 1 − β + r1
Γ 3 − β

Γ 3 − 2β ,

r3 = 2 − β 1 − β r1,

r4 = r21 1 − β r2 − 1 − β r31
Γ 1 + 2α
Γ 1 + α 2 + r2

Γ 4 − 2β
Γ 4 − 3β + r2r

2
1 1 − β ,

r5 = r3r
2
1 1 − β + r3

Γ 1 − β

Γ 1 − 2β + 2r2 1 − β 3 − 2β ,

r6 = 2r2 1 − β 3 − 2β 1 − 2β − r3r
2
1β 1 − β − 2r3β

Γ 1 − β

Γ 1 − 2β ,

Table 4: Numerical results of the 3rd approximate L-RPSM solution of Eq. (38) at α = 0 80 and α = 0 90 and the corresponding residual
error when x = 10 and ω = 1.

t
α = 0 80 α = 0 90

ψ3 x, t Residual error ψ3 x, t Residual error

0.01 −0 932805 × 10−4 4 54764 × 10−12 −0 923013 × 10−4 4 21998 × 10−13

0.02 −0 951785 × 10−4 4 17935 × 10−11 −0 936312 × 10−4 5 11727 × 10−12

0.04 −0 985957 × 10−4 3 84107 × 10−10 −0 961697 × 10−4 6 20559 × 10−11

0.08 −0 104905 × 10−3 3 53048 × 10−9 −0 101112 × 10−3 7 52597 × 10−10

0.16 −0 117081 × 10−3 3 24555 × 10−8 −0 111095 × 10−3 9 12871 × 10−9

0.32 −0 142500 × 10−3 2 98464 × 10−7 −0 132721 × 10−3 1 10764 × 10−7

0.64 −0 203308 × 10−3 2 74685 × 10−6 −0 186083 × 10−3 1 34502 × 10−6

0.70 −0 186083 × 10−3 1 34502 × 10−6 −0 197934 × 10−3 1 85763 × 10−6

0.80 −0 240277 × 10−3 5 61434 × 10−6 −0 219180 × 10−3 3 00573 × 10−6

0.90 −0 265979 × 10−3 8 18877 × 10−6 −0 242431 × 10−3 4 59547 × 10−6

1.00 −0 242431 × 10−3 4 59547 × 10−6 −0 267845 × 10−3 6 71891 × 10−6
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Figure 3: Continued.
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r7 = r3β 1 + β 2 + β 3 + β ,

r8 = −2r3β 1 + β 2 + β ,

r9 = r3β 1 + β

57

Consequently, by considering the values of r1,⋯, r9 in
Eq. (57), the 3rd approximate L-RPS solution of Eq. (52) is
given as

ψ3 x, t = x − r1x
2−β tα

Γ 1 + α

+ r2x
3−2β + r3x

−β − βr3x
−1−β t2α

Γ 1 + 2α
− r4x

4−3β + r5x
1−2β + r6x

−2β

+ r7x
−4−β + r8x

−3−β + r9x
−2−β t3α

Γ 1 + 3α

58

The advantage of the L-RPSM is that it is possible to pick
any point in the integration domain and as well the ASS and
all its time-space-CFDs will be applicable. In other words, it
is possible to find a continuous ASS in which the ASS is con-
tinuously dependent on the time-space-CFD. Our next
objective is to graphically illustrate the mathematical behav-
ior of the approximate solution of Eq. (52) and its time-
space-CFD geometrically. To do so, we plot the surface
graph of the approximate solution ψ3 x, t when α, β =
0 5,0 5 , α, β = 1,0 5 , α, β = 0 5,1 , and α, β = 1, 1
on the domain 0, 1 × 0, 1 as shown in Figure 4.

5. Conclusion

The L-RPS technique has been used in this study to find an
ASS to the Caputo FKdV-BE. Three well-known physical

applications are examined to confirm the applicability and
superiority of the proposed strategy. In this technique, the
FRPS is modified by coupling it to the LT operator. The
advantage of using the L-RPSM is that it provides a more
accurate convergence of the McLaurin series and requires a
few computations without discretization, perturbation, or
other physical restriction conditions. We explained the
obtained ASS using graphics and numerical simulation,
and they were compared with other well-known techniques
in the literature. Consequently, the results confirm that the
L-RPSM approach is straightforward for handling a variety
of nonlinear FPDEs that might occur in engineering and sci-
entific problems.

The main algorithm of L-RPSM for solving FKdV-BE of
Eq. (1) can be summarized by the following steps:

(i) Applying the Laplace transform to the FKdV-BE

(ii) Using the Laurent series expansion to represent the
solution of Laplace FKdV-BE in a new space. The
coefficients of this expansion are determined in a
similar way to the RPS method but with a new
vision and a new analysis

(iii) Applying the inverse Laplace transform in step (ii),
then we obtain a solution to this problem in the
original space

The main advantages of LRPSM are as follows:

(i) It enables us to use the Laplace transform to solve
nonlinear equations, while that was limited to linear
equations only

(ii) It simplifies the processing of fractional differential
equations by converting them to algebraic equations

(iii) Iterations can be calculated simply by functions
built into any mathematical software using the
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Figure 3: The graph of the approximate solution ψ3 x, t of Eq. (41) when (a) β = 0 4, (b) β = 0 6, (c) β = 0 8, and (d) β = 1.
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concept of limit at infinity, and unlike RPS, they do
not require the derivative at each iteration

(iv) It does not require modeling assumptions, such as
linearization, perturbation, or discretization

Thus, in future studies, the L-RPSM approach may be
extended to find exact ASSs to other equations or model
types that represent real-life phenomena, such as fractional
integral equations, algebraic equations, and differential
equations with boundary conditions instead of initial condi-
tions, a new modified fractional Nagumo equation [33], spa-
tiotemporal dynamic systems of interacting biological and
chemical species [34], high-dimensional chaotic Lorenz sys-
tem [35], generalize Hirota-Satsuma coupled KdV and
MKdV equations [36], time-fractional vibration model of
large membranes [37, 38], and fractional Black–Scholes
option pricing equations [39].

Abbreviations

KdV-BE: The KdV-Burgers equation
PDEs: Partial differential equations
CFD: Caputo fractional derivative
ASSs: Analytical approximate series solutions
L-RPSM: Laplace residual power series method
LT: Laplace transform
RPSM: Residual power series method
F-PDEs: Fractional partial differential equations.
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