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This paper uses an augmented Lagrangian method based on an inexact exponential penalty function to solve constrained
multiobjective optimization problems. Two algorithms have been proposed in this study. The first algorithm uses a projected
gradient, while the second uses the steepest descent method. By these algorithms, we have been able to generate a set of
nondominated points that approximate the Pareto optimal solutions of the initial problem. Some proofs of theoretical
convergence are also proposed for two different criteria for the set of generated stationary Pareto points. In addition, we
compared our method with the NSGA-II and augmented the Lagrangian cone method on some test problems from the
literature. A numerical analysis of the obtained solutions indicates that our method is competitive with regard to the test
problems used for the comparison.

1. Introduction

In the multiobjective optimization area, the goal is to mini-
mize or maximize or both at the same time one or several
objective functions. However, in most cases, there is no
single point that optimizes all objective functions at the same
time. Therefore, many concepts have been developed,
including the Pareto optimal conditions, in order to reach
solutions in the multiple objectives case. Multiobjective opti-
mization modeling has been used to solve many life-related
problems, such as physical, economic, and transport [1–5].

Many methods have been proposed for solving optimi-
zation problems. These methods can be classified into two
groups: exact methods and metaheuristic methods. In gen-
eral, exact methods allow obtaining of the exact Pareto opti-
mal solutions of a given problem, but they are unsuitable for
solving problems with numerous variables and/or a large
number of objective or constraint functions. Metaheuristic
methods try to give good approximations of the true Pareto
optimal solutions. Those methods are subjected to perfor-
mance tests to evaluate some characteristics, such as compu-
tational time, convergence of algorithms to Pareto optimal

solutions, and distribution of provided solutions on the Pareto
front [6–10]. A lot of the methods in this family of metaheur-
istic methods are inspired by natural phenomena, and there
are not any theorems or propositions that show how their
algorithms are optimal or how they are convergent.

The majority of these two classes of methods are
iterative, meaning that the research of the solution begins
at an initial point. At each iteration, the current solution is
improved in order to achieve the optimal solution. Some-
times, it is hard to figure out how many iterations are
needed. However, there is a mathematical foundation and
convergence properties based on theorems and propositions.
Among the most used and well-known methods, we have the
steepest descent, projected gradient, and Newton methods.
Here are the recent works on these topics: the multicriteria
optimization by steepest methods was proposed by Fliege
and Svaiter [11]; the projected gradient methods have been
used in wide work [6, 8, 9, 12, 13]; some of these variants are
the works of Gonçalves and Prudente [14] on the extension
of the Hager-Zhang conjugated gradient method and nonlin-
ear conjugate gradient method proposed by Lucambio Pérez
and Prudente [15]; those of the Newton method were
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proposed in [16, 17]; some variants like that quasi-Newton
methods was presented in [18–20].

In practice, for solving multiobjective optimization prob-
lems with constraints, penalty functions are utilized to trans-
form the initial problem into an unconstrained problem
before commencing the optimization process. As a result,
in recent years, several approaches using penalty functions
have been proposed to address optimization problems
subjected to inequality constraints, such as the augmented
Lagrange function described in the following work [21–33].
This approach has been extensively employed for solving
single-objective optimization problems. More recently, Cocchi
et al. [34, 35] have developed an extension of this approach for
the multiobjective case. Additionally, Upadhayay et al. [36]
have proposed a method based on the cone method, which
involves transforming the initial multiobjective problem into
a single-objective problem and subsequently applying the
augmented Lagrangian method.

In this paper, we extend the augmented Lagrange
method to solve multiobjective optimization problems using
an inexact exponential penalty function. The last version is
Echebest et al.’s [7] work on the augmented Lagrange, using
the penalty exponential function to solve a single-objective
optimization problem. We proposed two algorithms with
the same characteristics as the metaheuristics. They are sto-
chastic, produce a population of solutions at a run, and pro-
vide a good approximation of the Pareto optimal solutions.
One approach focuses on the steepest descent, and the other
focuses on the projected gradient. Additionally, the theoret-
ical convergence study has been done for the two algorithms.
Our results have been compared to those of NSGA-II
method on some test problems from the literature. On the
test problems we have dealt with, our algorithms are best
compared to NSGA-II. Furthermore, we also conducted a
comparison with the augmented Lagrange cone method, as
it also utilizes the augmented Lagrangian.

The following is the structure of the remaining paper. In
Section 2, we have presented some preliminary concepts for
multiobjective optimization. In Section 3, we have detailed
our proposed method throughout the algorithms and theo-
retical and numerical performance studies. In Section 4, we
give our conclusions and perspectives on this work.

2. Preliminaries

In the rest of our work, we will use the following notations:
R++ is the set of positive reals, R

n is the set of column vectors
of dimension n, and the image space of a matrix A ∈ Rm×n

will be denoted by Im A . The unit vector of dimension
q will be denoted e. For any vector u = u1, u2,⋯,un T ,
v = v1, v2,⋯,vn T , we define the convention for the fol-
lowing equalities and inequalities:

(i) u = v⇔ ui = vi for all i = 1, 2,⋯, n
(ii) u < v⇔ ui < vi for all i = 1, 2,⋯, n
(iii) u ≦ v⇔ ui ≤ vi for all i = 1, 2,⋯, n
(iv) u ≤ v⇔ u ≦ v with u ≠ v

(v) u ≨ v⇔ u ≤ v with u ≠ v

Without loss of generality, we will consider the multiob-
jective programming problem defined as follows:

min F x = f1 x , f2 x ,⋯,f q x ,

s t
gi x ≤ 0 ∀i ∈ I = 1, 2, 3,⋯,m ,
x ∈Ω,  

1

where F Rn ⟶ Rq; gi Rn ⟶ R are continuous and differ-
entiable functions. Ω is a nonempty convex subset of Rn. Let
us denote X the admissible space of the problem (1) defined
by X = x ∈Ω g x ≤ 0 .

We can state the following classical definitions of optimal-
ity in the Pareto sense, since it is not certain to find a solution
that simultaneously minimizes all objective functions.

Definition 1. A point x∗ ∈X is the Pareto optimal for prob-
lem (1) if there exists no other x ∈X such that

F x ≤ F x∗ ,
F x ≠ F x∗

2

The set of the Pareto optimality is thus given by Ps =
x ∈X ∄x ∈X F x ≤ F x∗ and F x = F x∗ . Defini-

tion 1 gives an important property of the Pareto optimality,
so we present the following definition, which proposes
simpler conditions to obtain in the application.

Definition 2. A point x∗ ∈X is the weakly Pareto optimal for
problem (1) if there exists no other x ∈X such that

F x < F x∗ 3

The set of Pareto optimality is thus given by P = x∗ ∈X
∄x ∈X F x < F x∗ . An existing relation between P

and Ps is that P is large and contains Ps, i.e., Ps ⊆ P. We say that
x∗ ∈ Rn is a local Pareto optimal (resp., local weak Pareto
optimal) if there exists a neighborhood V x∗ ∈ Rn such that
x∗ is the Pareto optimal (resp., weak Pareto optimal) for F
restricted to V x∗ . Here, we are using a partial order induced
by Rn

++, F x < F x∗ ⇔ F x − F x∗ ∈ − Rq
++ ; this implies

that a necessary but generally not sufficient condition for weak
Pareto optimality is given by the following relation:

− Rq
++ ∩ Im JF x∗ =∅, 4

where J F denotes the Jacobianmatrix of F. A point x∗ ∈X is
stationary for F if it satisfies the relation (4). Now, a necessary
condition for stationary optimality is given by the following
definition.
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Definition 3. A point x∗ ∈X is said to be the Pareto-
stationary for problem (1) if, for all d ∈ Rn,

max
j=1;q

∇f j x
∗ Td ≥ 0 5

Note also that if x∗ is not the Pareto stationary, there exists
a feasible direction d such that maxj=1;q∇f j x∗

Td < 0. By
posing ϕx d =maxj=1;q∇f j x∗

Td, we can see that ϕx is

continuous but does not admit a unique solution. Thus, we
can define, as in [11], a problem which is well defined, i.e., it
has a unique solution given by the following relation:

min
d∈Rn

max
j=1;q

∇f j x
∗ Td + 1

2 d 2 6

Now, by positing θ Rn ⟶ R, the function indicating
the optimal value of problem (6), and d, the one indicating
the optimal solution of problem (6), we have θ x ≤ 0 for
all x ∈ Rn, and a point x∗ is said to be the Pareto stationary
if and only if θ x∗ = 0.

Now, we can give the following lemma, which proposes a
well-known equivalent characterization of a Pareto-
stationary point from the point of view of the projection.

Lemma 4. A point x∗ ∈X is said to be Pareto-stationary for
problem (1) if, for all d ∈ Rn,

x∗ =ΠX x∗ − arg min
d

max
j=1;q

∇f j x
∗ Td , 7

where ΠΩ x is the projection operator of the point x in the
convex set X .

Now, taking into account Definition 3 and Lemma 4,
which characterize a Pareto-stationary point, we can define
two equivalent definitions which characterize an ε-Pareto-
stationary point.

Definition 5. ε-Approximate-Pareto-stationary-point APSP1.
Let ε > 0. We say that x ∈X is an ε-Pareto-stationary point
for the problem (1) if

min
d∈Rn

max
j=1;q

∇f j x
∗ Td ≥ −ε 8

Definition 6. ε-Approximate-Pareto-stationary-point APSP2.
Let ε > 0. We say that x ∈X is an ε-Pareto-stationary point
for problem (1) if

x∗ −ΠX x∗ − arg min
d

max
j=1;q

∇f j x
∗ Td ≤ ε, 9

The methods we propose were established from the strat-
egies of MOPG and MOSD methods. We have presented
them, respectively, through Algorithm 1 and Algorithm 2. In

these two algorithms, Armijo’s rule was used to find the step
of descent. Its algorithm is given by Algorithm 3, and we must
note that the principle of Armijo’s rule is to determine a real
αk, ∀k ∈N such as the values of the objective function always
decrease in partial order by component in a finite number of
iterations.

Now, we can present some main results that prove that
the MOPG and MOSD algorithms produce solutions in a
finite number of iterations. We will start by presenting the
following lemma [11], which shows that Algorithm 3 is
well-defined.

Lemma 7. Let σ ∈ 0 ; 1 , x ∈X, and d ∈X − x such as JTF x

d < 0. Then, there exists γ < 1 such as F x + γd < F x + σγ

J F x T d for all γ ∈ 0, γ .

The following lemma [11, 34] shows that the MOPG and
MOSD algorithms are well-defined, i.e., that these algo-
rithms stop in a finite number of iterations.

Lemma 8. Let xk be the sequence generated by Algorithm 1
and Algorithm 2. If F has bounded level sets in the sense that
x ∈ Rn F x ≦ F x0 is compact, then each limit point of

xk is a Pareto-stationary point.

3. Main Results

3.1. Algorithms. In this section, we present the augmented
Lagrangian function method with an inexact exponential pen-
alty function to transform the constrained multiobjective pro-
gramming problem into an unconstrained problem. The
augmented Lagrangian function established from an inexact
exponential penalty function is given by the following formula:

Lρ x, μ = F x + 〠
m

i=1

μi
2ρ emax 0,ρgi x − 1

2
e, 10

for all x ∈Ω, μ ∈ Rm
+ the Lagrange multiplier, ρ ∈ R++ a penalty

parameter and e a unit vector of Rq. It is important to note that
the augmented Lagrangian function established from an expo-
nential penalty function is differentiable. The technique is the
same as the one used for quadratic cases, but we adapt it to
exponential cases.

The gradient of the jth component of the augmented
Lagrangian based on an inexact exponential penalty is given by

∇f j x + 〠
m

i=1
μi emax 0;ρkgi x − 1 ∇gi x 11

Definition 5 and Definition 6 of the augmented Lagrangian
subproblem established from an inexact penalty function are
written as follows:

3Journal of Applied Mathematics



min
d∈Rn

max
j=1;q

∇f j x
∗ + 〠

m

i=1
μi emax 0;ρkgi x∗ − 1 ∇gi x

∗
T

d ≥ 0,

x∗ =ΠΩ x∗ − arg min
d

max
j=1;q

∇f j x
∗ + 〠

m

i=1
μi emax 0;ρkgi x∗ − 1 ∇gi x

∗
T

d

12

We can now define two different ways of defining ε-Pareto-
stationary, expressed by the following two definitions.

Definition 9. Let ε > 0. A point x ∈Ω is an ε-approximate
Pareto stationary point APSP1 for the Lagrange based on
an inexact exponential penalty if for all feasible direction d
∈ Rn, it holds

min
d∈Rn

max
j=1;q

∇f j x
∗ + 〠

m

i=1
μi emax 0;ρkgi x∗ − 1 ∇gi x

∗
T

d ≥ −ε

13

Definition 10. Let ε > 0. A point x ∈Ω is an ε-approximate
Pareto stationary point APSP2 for the Lagrange based on
an inexact exponential penalty if for all feasible direction d
∈ Rn, it holds

x∗ −ΠΩ x∗ − arg min
d

max
j=1;q

∇f j x
∗ + 〠

m

i=1
μi emax 0;ρkgi x∗ − 1 ∇gi x

∗
T

d ≤ ε

14

Thus, based on the ideas of [7, 34], we propose an aug-
mented Lagrangian algorithm based on an inexact exponen-
tial penalization for solving multiobjective optimization
programs.

A detailed description of the two algorithms is as follows.
As an input, we define a set of nondominated points of the
initial problem under bound constraint (without the other
constraints). This is the set that will be considered as the
set of reference points to find the Pareto optimal solutions.
At each iteration, the Lagrange function established from
an exponential penalty function is used with a penalty

Data: F Rn ⟶ Rq; x1 ∈ Rn.
1 k=1
2 while xk is not Pareto-stationary do
3 Compute

dk ⟵ arg min
d∈X−xk

max
j=1;q

∇f j x
k T

d + 1/2 d 2 ;

αk = Armijo − Rule − Line − Search F , xk, dk ;
4 xk+1 = xk + αkd

k

5 k = k + 1;
6 end

Algorithm 1: Multiobjective projected gradient (MOPG).

Data: F Rn ⟶ Rq; x1 ∈ Rn.
1 k=1
2 while xk is not Pareto-stationary do
3 Compute

dk ⟵ arg min
d∈Rn

max
j=1;q

∇f j x
k T

d + 1/2 d 2 ;

αk = Armijo − Rule − Line − Search F , xk, dk ;
4 xk+1 = xk + αkd

k

5 k = k + 1;
6 end

Algorithm 2: Multiobjective steepest descent (MOSD).

Data: F Rn ⟶ Rq; x ∈ Rn; d ∈ Rn α0 > 0; δ ∈ 0, 1 ; β ∈ 0, 1 .
1 α = α0;;
2 while F x + αd ≥ F x + βαJ F x d do
3 α = δα;
4 end

Algorithm 3: Armijo-rule-line-search.

4 Journal of Applied Mathematics



parameter ρk and Lagrange multipliers μk. The multiplier
estimate for each point xt ∈X

k+1 is given by the relation
μk+1i = μki e

ρkgi xt which is a multiplicative form, unlike the
quadratic penalty form, where the dual update is additive.
In the equation σk+1i =maxx∈Xk+1 μk+1i − μi

k/ρk in line 17
of both algorithms, we have the parameter that measures
progress in terms of infeasibility and complementarity. In
line 4 of Algorithm 4 and Algorithm 5, each xt ∈X

k is used
for exploration. If for Algorithm 5, θk x < 0, or for Algo-
rithm 4,

x∗ −ΠΩ x∗ − arg min
d

max
j=1;q

∇f j x
∗ + 〠

m

i=1
μi emax 0;ρkgi x∗ − 1 ∇gi x

∗
T

d > 0,

15

where θk is the optimal value of the dk = arg mind∈Rn

maxj=1,q∇L
j
ρ xt , μk

T
d + 1/2 d problem; the point xt

is used to generate a new descent direction d and a descent
step α, which is obtained by α = Armijo − Rule − Line −
Search d, xt ,Lρk

,μk . Then, a new point z is determined
by the MOPG or MOSD algorithm which is an εk-Pareto-
stationary point where εk varies and converges to zero at
each iteration. This new point is used to filter the points in
Xtmp. If z dominates points in the set Xtmp, then we delete
these points and add z to the set. For updating the Lagrange
multipliers, note that for a μki > 0, such that ρk ⟶ 0, the
penalty term μki /ρk emax 0,ρkgi xk − 1 ⟶∞ for nonfeasi-
ble points (i.e., gi x

k > 0) and tends to 0 for feasible points
(i.e. gi x

k ≤ 0) [10].
We will now proceed to an analysis of the convergence of

the two algorithms taking into account assumptions such as
the convexity of the objective functions of the constraints
and also the admissible space is nonempty.

3.2. Convergence Analysis. In this section, we present conver-
gence results for Algorithm 4 and Algorithm 5. As usual in
the scalar case, we also assume that the objective functions
are convex, as indicated by the assumptions below.

Assumption 11. The set Ω ⊆ Rn is closed and convex. The set
X = x ∈ Rn x ∈Ω gi x ≤ 0,∀i, i = 1,m is not empty.

Assumption 12. The objective function F has bounded level
sets in the multiobjective sense, i.e., the set x ∈ Rn, F x ≦
F x0 is compact.

Assumption 13. The sequence εk k∈N is such that limk⟶∞
εk ⟶ 0.

Note that under Assumption 11, Assumption 12, and
Proposition 14 from the work of Cocchi and Lapucci [34],
we can deduce that the MOPG and MOSD algorithms of
Algorithms 4 and 5, respectively, are well-defined, i.e., they
stop in a finite number of iterations. For the step size, the
good definition of Algorithm 3 results from Lemma 7 which

is a main result proving that the step size is determined in a
finite number of iterations.

The following proposition characterizes the solutions of
the solution set generated by Algorithms 4 and 5.

Proposition 14. Let Xk+1 be the sequence of set generated
by Algorithm 4 and Algorithm 5. Then, for each k and for
each xk+1 ∈ Xk+1, xk+1 is an εk -Pareto-stationary point and
is not dominated by any other point in Xk+1 with respect to
equation (10).

Now, for the convergence results for each point xk ∈ Xk,
we start by giving the following technical result.

Lemma 15. Let Xk be a sequence of set generated by Algo-
rithm 4 or Algorithm 5. Let xk ∈ Xk be a sequence for all
k such that

lim
k⟶∞

xk = x∗, 16

Assume that x∗ is admissible. Then, for all i = 1, 2,⋯,m
such that gi x

∗ < 0, we have μki e
ρkgi x

k+1 = 0 for all k suffi-
ciently large.

Proof. Let gi x
∗ < 0, for all i = 1, 2,⋯,m. From the instruc-

tions of the algorithms, we consider the following two cases:

(a) ρk ⟶∞

The sequence μki is bounded by definition, since gi x
∗

< 0; for k ∈ K sufficiently large, we get eρkgi x
k+1 = 0.

(b) ρk bounded

According to line (25) of the instructions of Algorithm 4 or
Algorithm 5, there exists a k0 such that for all k > k0, σk+1

≤ τ σk . We obtain for k sufficiently large limk∈Kσ
k+1 = 0.

Thus, eρkgi x
k+1 − 1/τk ≠ 0 which implies that μki = 0. By the

definition of μk+1i , we get the result.

Then, we will prove that the points generated by the
ALEPMO1 and ALEPMO2 algorithms are feasible based
on the following propositions.

Proposition 16. Feasibility for ϵ-approximate ALEPMO1.
Let Xk be the sequence of set generated by Algorithm 4 with
APSP1. Let xk be any sequence of points such that xk ∈ Xk

for all k. Then, each cluster point x∗ of xk is a feasible point
of problem (1), i.e., gi x

∗ ≤ 0.

Proof. The proof of this proposition can be found in the very
nature of the definition of Algorithm 4 and proposition 5 in
the work of Drummond and Iusem in [12].

Proposition 17. Feasibility for ϵ-approximate ALEPMO2).
Let Xk be the sequence of set generated by Algorithm 5 with
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APSP2. Let xk be any sequence of points such that xk ∈ Xk

for all k, with εk ⟶ 0. Let limk⟶∞xk = x∗, μki > 0 for all k
and for all i ∈ 1,⋯,m . Then, x∗ is a feasible point of prob-
lem (1), i.e., gi x

∗ ≤ 0.

Proof. Let K ⊆ 0, 1,⋯ be an infinite subset such that

lim
k⟶∞

xk = x∗ 17

Consider the two cases:

(i) the sequence ρk is bounded

(ii) the sequence ρk is unbounded, i.e., limk⟶∞ρk =∞

Case 1. Since ρk is bounded, from the instruction of the
algorithm, there must exist k such that, for all k > k, we have
σk+1 ≤ τ σk . This means that

lim
k⟶∞

σk+1 = 0, 18

i.e.,

lim
k⟶∞

σk+1i = lim
k⟶∞

max
x∈Xk+1

μk+1i − μki
ρk

= 0 19

Since by assumption μk > 0 for all i and k, it has to be

lim
k⟶∞

max
x∈Xk+1

eρkgi x − 1
ρk

= 0 20

Thus, we obtain limk⟶∞ maxx∈Xk+1 eρkgi x ≤ 1 which
implies that limk⟶∞ maxx∈Xk+1 gi x ≤ 0. But maxx∈Xk+1

gi x ≥ gi x
k+1 ; hence,

gi x
∗ = lim

k⟶∞
gi xk+1 ≤ lim

k⟶∞
max
x∈Xk+1

gi x ≤ 0 21

Data: μmax ∈ R
p
++ − ∞ ; τ ∈ 0, 1 ; γ > 0; ρ0 ∈ R++; μ0 ∈ 0, μmax ;

σ0 > 0; εk ∈ R+ such that limk⟶∞εk = 0; X0 a list of feasible
nondominated points for the original problem.

1 for k = 1, 2,⋯ do
2 Let Lρk

the current Augmented Lagrangian using the Exponential Penalty
Function defined as:

Lρ x, μ = F x + ∑m
i=1 μi/2ρ emax 0,ρgi x − 1 2

e ;
Set Xtmp = Xk;

3 for xt ∈ Xk do

4 if x∗ −ΠΩ x∗ − arg mind maxj=1;q ∇f j x
∗ +∑m

i=1μi e
max 0;ρkgi x∗ − 1 ∇gi x

∗ T
d > 0

then

5 Set dk = arg mind∈ X−xk maxj=1,q∇L
j
ρ xt , μk

T
d + 1/2 d ;

6 Set α = Armijo − Rule − Line − Search dk, xt ,Lρk
,μk ;

7 Set z =MOPG xt + αdk,Lρk ,μk , εk ;
8 if ∃y ∈ Xtmp Lρk y,μk ≨Lρk z,μk then

9 Set Xtmp = Xtmp \ x ∈ Xtmp Lρk z,μk ≨Lρk x,μk ∪ z ;
10 end
11 end
12 end
13 Set Xk+1 = Xtmp;
14 for i = 1, 2,⋯,m do
15 Set μk+1i = μki e

ρkgi x ;
16 Set μk+1i =max 0, min μk+1i , μmax ;
17 Set σk+1i =maxx∈Xk+1 μk+1i − μki /ρk ;
18 Set μk+1i =maxx∈Xk+1μk+1i ;
19 end
20 if σk+1 ≤ τ σk then
21 Set ρk+1 = ρk;
22 else
23 Set ρk+1 = γρk;
24 end
25 end

Algorithm 4: Augmented Lagrangian based on an inexact exponential penalty for multiobjective optimization (ALEXPMO1).
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Case 2. From the instruction of Algorithm 5, we have at
each iteration

max
j=1,q

∇f j xk+1 + 〠
m

i=1
μki emax 0;ρkgi xk+1 − 1 ∇gi xk+1

T

d

≥ −εk ∀d ∈ Rn

22

Letting dk+1 = x − xk+1 and gi = emax 0,ρkgi xk+1 − 1, we
obtain for all k

max
j=1,q

∇f j xk+1
T

x − xk+1 ≥ −εk − 〠
m

i=1
μki gi xk+1 ∇gi xk+1

T

x − xk+1  ∀x ∈Ω

23

Since X is nonempty, we can choose x ∈ x ∈X g x
≤ 0 . Using the convexity of the gi, we can bound the last
term as follows:

− 〠
m

i=1
μki gi xk+1 ∇gi xk+1

T

x − xk+1

≥ 〠
m

i=1
μki gi xk+1 gi xk+1 − gi x

≥ 〠
m

i=1
μki gi xk+1 gi xk+1

24

This inequality is satisfied if the gis are convex (i.e.,

gi x ≥ gi x
k+1 + ∇gi x

k+1 T
x − xk+1 ), and −g x is non-

negative since x ∈X .

Data: μmax ∈ R
p
++ − ∞ ; τ ∈ 0, 1 ; γ > 0; ρ0 ∈ R++; μ0 ∈ 0, μmax ;

σ0 > 0; εk ∈ R+ such that limk⟶∞εk = 0; X0 a list of feasible
nondominated points for the original problem.

1 for k = 1, 2,⋯ do
2 Let Lρk

the current Augmented Lagrangian using the Exponential Penalty
Function defined as:

Lρ x, μ = F x + ∑m
i=1 μi/2ρ emax 0,ρgi x − 1 2

e, x ∈X ;
Set Xtmp = Xk;

3 for xt ∈ Xk do
4 if θk xt < 0

then

5 Set dk = arg mind∈Rn maxj=1,q∇L
j
ρ xt , μk

T
d + 1/2 d ;

6 Set α = Armijo − Rule − Line − Search dk, xt ,Lρk
,μk ;

7 Set z =MOSD xt + αdk,Lρk ,μk , εk ;
8 if ∃y ∈ Xtmp Lρk y,μk ≨Lρk z,μk then

9 Set Xtmp = Xtmp \ x ∈ Xtmp Lρk z,μk ≨Lρk x,μk ∪ z ;
10 end
11 end
12 end
13 Set Xk+1 = Xtmp;
14 for i = 1, 2,⋯,m do
15 Set μk+1i = μki e

ρkgi x ;
16 Set μk+1i =max 0, min μk+1i , μmax ;
17 Set σk+1

i =maxx∈Xk+1 μk+1i − μki /ρk ;
18 Set μk+1i =maxx∈Xk+1μk+1i ;
19 end
20 if σk+1 ≤ τ σk then
21 Set ρk+1 = ρk;
22 else
23 Set ρk+1 = γρk;
24 end
25 end

Algorithm 5: Augmented Lagrangian based on exponential penalty for multiobjective optimization (ALEXPMO2).
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Using equation (23) and by dividing by eρk , we obtain

max
j=1,q

∇f j x
k+1 T

x − xk+1

eρk
≥ −

εk
eρk

+ 〠
m

i=1
μki e

−ρkgi xk+1 g xk+1

25

Now, suppose by contradiction that i ∈ 1,⋯,q : gi x∗
> 0 ≠∅.

Given that, ρk ⟶∞, μk is bounded, and the gi are
continuous; for sufficiently large k, we have

e−ρkgi xk+1 = emax −ρk ,ρk gi xk+1 −1 − e−ρk = 0,∀i gi x
∗ < 0

26

In addition, we have

lim
k⟶∞

〠
i gi x

∗ =0
emax −ρk ,ρk gi xk+1 −1 − e−ρk gi xk+1 = 0

27

Let us set A = limk⟶∞ maxj=1,q ∇f j x
k+1 T

x − xk+1 /
eρk . Thus, using the equation (25), we have

A ≥ lim
k⟶∞

−
εk
eρk

+ lim
k⟶∞

〠
i gi x

∗ >0
μki emax −ρk ,ρk gi xk+1 −1 − e−ρk g xk+1

≥ lim
k⟶∞

−
εk
eρk

+ lim
k⟶∞

〠
i gi x

∗ >0
μki eρk gi xk+1 −1 − e−ρk g xk+1

28

For k sufficiently large k ∈ K , we obtain

0 ≥ lim
k⟶∞

〠
i gi x

∗ >0
μki eρk gi xk+1 −1 − e−ρk g xk+1 , 29

which is absurd. Thus, the set i ∈ 1,⋯,q : gi x∗ > 0 =∅,
i.e., x∗ is feasible.

Finally, we prove that a limit point of the sequence gen-
erated by the algorithm is a Pareto-optimal point.

Proposition 18. Optimality for ϵ-approximate ALEPMO1.
Let Xk be the sequence of set generated by Algorithm 4 with
APSP1. Let xk be any sequence of points such that xk ∈ Xk

for all k. Suppose that the sequence εkρk is bounded. Then,
every cluster point x∗ of xk is a Pareto-stationary point of
problem (1).

Proof. Let K ⊂ 0, 1,⋯ be an infinite subset such as

lim
k⟶∞

xk+1 = x∗ 30

According to the Proposition 16, we have x∗ ∈Ω. Let us
suppose by contradiction that x∗ is not the Pareto-stationary
for problem (1), since by definition, Ω is convex; there exists
z ∈Ω such that g z ≤ 0 and

max
j=1;q

∇f j x
∗ T z − x∗ < 0 31

Instructions of Algorithm 1, by posing

gk
i = emax 0,ρkgi xk+1 − 1,

x̂k+1 =ΠΩ xk+1 − max
j=1;q

∇f j xk+1 − 〠
m

i=1
μig

k
i ∇gi xk+1 ,

32

we get at each iteration that

xk+1 − x̂k+1 ≤ εk 33

Using the properties of the projection, we have for all
x ∈Ω that

xk+1 − max
j=1;q

∇f j xk+1 − 〠
m

i=1
μki g

k
i∇gi xk+1 − x̂k+1

T

z − x̂k+1 ≤ 0

34

Table 1: List of multiobjective optimization test problems.

Problems n q Parameter bounds Source

BNH1 2 2 [0, 5]2 [42]

SCH 1 2 [-4, 4] [5]

M-LAP1 2 2 [-7, 1]2 [34]

M-LAP2 a 2 0, 1 n [34]

JOS1 b 2 0, 1 n [42]

ZLT1 c 2 −1000, 1000 n [42]

MLF1 1 2 [0, 20] [42]

M-MLF2 1 2 [0, 20] [42]

LRS1 2 2 [-50, 50] [42]

MHHM1 1 3 [0, 1] [42]

MHHM2 2 3 [0, 1] [42]

IKK1 1 3 [-50, 50] [42]

VFM1 2 3 [-2, 2] [42]

DGO1 1 2 [-10, 13] [42]

SSFYY1 1 2 [-100, 100] [42]

VU1 2 2 [-3, 3] [42]

BK1 2 2 [-5, 10]2 [42]

SSFYY1 1 2 [-100, 100] [42]

VU2 2 2 [-3, 3]2 [42]

COSH 1 2 [0, 5] [43]

KD1 2 2 0 1, 1 × 0, 1 [44]

SRN 2 2 [-20, 20]2 [42]

SSFYY2 2 2 [-100, 100]2 [42]
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By adding and subtracting xk+1 and rearranging, we get

max
j=1;q

∇f j xk+1
T

z − xk+1 ≥ − max
j=1;q

∇f j xk+1
T

xk+1 − x̂k+1

+ xk+1 − x̂k+1
2
+ xk+1 − x̂k+1

T
z − xk+1

− 〠
m

i=1
μki g

k
i∇gi xk+1

T

z − xk+1

− 〠
m

i=1
μki g

k
i∇gi xk+1

T

xk+1 − x̂k+1

35

Let us set

C = 〠
m

i=1
μki g

k
i ∇gi xk+1

T

z − xk+1

− 〠
m

i=1
μki g

k
i∇gi xk+1

T

xk+1 − x̂k+1

36

And using the convexity of g the last two terms can be
bounded as follows:
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Figure 1: Performance profiles of CPU time of the ALEXPMO1, ALEXPMO2, and NSGA-II.
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C ≥ 〠
m

i=1
μki g

k
i gi xk+1 − gi z − 〠

m

i=1
μki g

k
i∇gi xk+1

T

xk+1 − x̂k+1 ≥ 〠
m

i=1
μki g

k
i gi xk+1

− 〠
m

i=1
μki g

k
i ∇gi xk+1 xk+1 − x̂k+1

37

Now, considering the term ∑m
i=1μ

k
i g

k
i gi x

k+1 , we have

〠
m

i=1
μki g

k
i gi xk+1 = 〠

i gi x
∗ =0

μki gi xk+1 emax 0,ρkgi xk+1 − 1

+ 〠
i gi x

∗ <0
μki gi xk+1 emax 0,ρkgi xk+1 − 1

= 0

38

Recalling that xk+1 − x̂k+1 ≤ εk, we have

−〠
m

i=1
μki g

k
i ∇gi xk+1 xk+1 − x̂k+1 ≥ −εk 〠

m

i=1
μki g

k
i ∇gi xk+1

39

Let us set B =maxj=1;q∇f j xk+1
T
z − xk+1 . Now, replac-

ing the different transformations in equation (35), we obtain

B ≥ − max
j=1;q

∇f j xk+1
T

xk+1 − x̂k+1 + xk+1 − x̂k+1
2

+ xk+1 − x̂k+1
T

z − xk+1 − εk 〠
m

i=1
μki g

k
i ∇gi xk+1
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Figure 2: Performance profiles of the purity metric of the ALEXPMO1, ALEXPMO2, and NSGA-II.
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Passing to the limit for k ∈ K, k sufficiently large, since ∇f j
j = 1,⋯, q, ∇gii = 1,⋯,m are continuous, xk+1 − x̂k+1 ⟶

0, the sequence μki is bounded, and emax 0,ρkgi xk+1 − 1
⟶ 0, we obtain

max
j=1;q

∇f j x
∗ T z − x∗ ≥ 0, 41

which contradicts our initial hypothesis.

Proposition 19. Optimality for ϵ-approximate ALEPMO2.
Let Xk be the sequence of set generated by Algorithm 4 with
APSP2. Let xk be any sequence of points such that xk ∈ Xk

for all k. Then, every cluster point x∗ of xk is a Pareto-
stationary point of problem (1).

Proof. Let K ⊂ 0, 1,⋯ be an infinite subset such as

lim
k⟶∞

xk+1 = x∗ 42

According to Proposition 17, we have x∗ ∈Ω. Suppose
by contradiction that x∗ is not Pareto-stationary for problem
(1), since by definition, Ω is convex, there exists z ∈Ω such
that g z ≤ 0 and

max
j=1;q

∇f j x
∗ T z − x∗ < 0 43

By posing

gki = emax 0,ρkgi xk+1 − 1, 44
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Figure 3: Performance profiles of the Γ-spread metric of the ALEXPMO1, ALEXPMO2, and NSGA-II.
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and instructions of Algorithm 5, we have at each iteration

max
j=1;q

∇f j xk+1
T

z − x̂k+1 ≥ −εk − 〠
m

i=1
μki g

k
i∇gi xk+1

T
z − x̂k+1

45

Now consider the term

−〠
m

i=1
μki g

k
i ∇gi xk+1

T
z − x̂k+1 , 46

since by definition the constraints are convex, using the
properties of convexity, we get

gki ∇gi xk+1
T

z − x̂k+1 ≤ gi z − gi xk+1 , 47

which implies that

−〠
m

i=1
μki g

k
i∇gi xk+1

T
z − x̂k+1 ≥ 〠

m

i=1
μki g

k
i gi xk+1 − gi z

48

Using the fact that gi z ≤ 0 by definition, we have

−〠
m

i=1
μki g

k
i ∇gi xk+1

T
z − x̂k+1 ≥ 〠

m

i=1
μki g

k
i gi xk+1 49
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Figure 4: Performance profiles of the Δ-spread metric of the ALEXPMO1, ALEXPMO2, and NSGA-II.
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Equation (25) becomes

max
j=1;q

∇f j xk+1
T

z − x̂k+1 ≥ −εk + 〠
m

i=1
μki g

k
i gi xk+1 50

Thus, considering the term

μki g
k
i gi xk+1 = μki emax 0,ρkgi xk+1 − 1 gi xk+1 , 51

if x∗ ∈X , for k sufficiently large, we have

μki emax 0,ρkgi xk+1 − 1 gi xk+1 = 0,∀i gi x ≤ 0 52

Recalling that for k ∈ K , k⟶∞, and εk ⟶ 0, we
obtain

max
j=1;q

∇f j x
∗ T z − x∗ ≥ 0, 53

which contradicts our initial assumption.

3.3. Numerical Experiences. In this section, we apply Algo-
rithms 4 and 5 to problems with bound constraints l ≤ x ≤ u,
linear and nonlinear constraints. We first compared the

two methods that we named, respectively, ALEXPMO1 and
ALEXPMO2, and then, as our methods are nonscalar, we
compared them with a well-known nonscalar method for
solving multiobjective optimization programs, namely, the
NSGA-II method. As a reminder, the NSGA-II method is
a genetic algorithm based on a nondominant strategy. The
code of the NSGA-II method is available at https://www
.mathworks.com/matlabcentral/fileexchange/49806-matlab-
code-for-constrained-nsga-ii-dr-s-baskar-s-tamilselvi-and-p-
r-varshini.

In order to compare the different methods, we use the
performance profiles developed by Dolan and Moré [37]
and later used in many works [34, 35, 38–41] regarding
the purity metric and the spread metrics (Δ-spread and
Γ-spread metrics). The purity metric measures the quality
of the Pareto front generated by an algorithm. It gives the per-
centage of nondominated solutions generated by the method
[41]. The purity metric is given by the following formula:

Purity S =
Fp,s Fp

Fp,s
, 54

with Fp,s, the solutions generated by a solver s ∈ S for a problem
p ∈ P, where S is the set of solvers and P is the set of test

Table 4: M-LAP2-30.

Methods Time Purity Δ-spread Γ-spread

ALEXPMO1 213.68 0.9806 0.7937 33.5762

ALEXPMO2 206.40 0.9806 0.7938 32.6896

NSGA-II 072.07 0.0300 0.9198 0.047

Table 5: M-LAP2-100 problem.

Methods Time Purity Δ-spread Γ-spread

ALEXPMO1 2068.5145 0.9720 0.7798 0.0187

ALEXPMO2 0791.4442 0.9900 0.7791 0.0183

NSGA-II 0071.8289 0.0000 0.8403 0.0931

Table 2: MLF1 problem.

Methods Time Purity Δ-spread Γ-spread

ALEXPMO1 039.3581 1.0000 10.4368 0.0334

ALEXPMO2 039.3456 1.0000 10.4368 0.0334

NSGA-II 141.3812 0.0000 01.3681 1.0986

Table 3: BNH1 problem.

Methods Time Purity Δ-spread Γ-spread

ALEXPMO1 52.21 1.00 0.78 5.47

ALEXPMO2 54.13 1.00 0.77 6.70

NSGA-II 40.62 0.91 0.83 7.76

13Journal of Applied Mathematics
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problems. Fp represents the set of solutions generated by all
solvers for the problem p (Fp = Fp,s) without the dominated
points.

The spread metrics used are Γ-Spread and Δ-Spread.
The Γ-Spread metric measures the maximum spacing of
solutions generated by a solver [41]. It is given by the follow-
ing formula:

Γ − Spread S = max
j∈ 1;⋯;q

max
i∈ 0;⋯;N

δi,j , 55

where N represents the number of solutions generated by a
solver, m is the number of objective functions, and δi,j = f j
xk+1 − f j xk whose values of f j xk are arranged in
ascending order. The Δ-spread metric measures the distribu-
tion of solutions generated by a solver [41]. It is calculated
by the following formula:

Δ − Spread S = max
j∈ 1;⋯;q

δ0,j + δN ,j +∑N−1
i=1 δi,j − δi,j

δ0,j + δN ,j + N − 1 δi,j
, 56

where δi,j is the average of the δi,j with j = 1,⋯,N − 1. δ0,j
and δN ,j represent the extreme points indexed by 0 and
N + 1. Thus, we used the technique proposed in [41] to com-

pute the extreme points for problems that do not have an ana-
lytic front. We first removed the dominant points from the
meeting on all these fronts. Then, for each component of the
objective function, we selected the pair corresponding to the
highest distance in pairs measured using f j .

We then use the performance profiles proposed in [37,
40] for an appreciation of the performance of the four met-
rics presented above. We refer the reader to the articles cited
above for more information on performance profiles. Recall
that the performance profiles are presented by a diagram of a
cumulative distribution function ρ τ which is defined as
follows:

ρs τ = 1
P

p ∈ P rp,s ≤ τ , 57

with rp,s = tp,s/min tp,s s ∈ S . Since performance profiles
are used for metrics whose lowest value indicates better per-
formance and metric purity, we will pose tp,s = 1/tp,s as pro-
posed in [40]. For more information on the metrics, we refer
the reader to the references cited above.

We have implemented Algorithm 4 and Algorithm 5 in
MATLAB. The search directions dk and the optimal value
θk are computed by solving the subproblem (6). Algorithm 4
and Algorithm 5 are implemented with the following
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Figure 5: Pareto front of MLF1 and BNH1 problems.

Table 6: M-JOS-100 problem.

Methods Time Purity Δ-spread Γ-spread

ALEXPMO1 034.7689 1.0000 0.7479 0.0443

ALEXPMO2 045.9536 1.0000 1.0878 0.3084

NSGA-II 110.6087 0.8651 1.0000 0.1397
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parameters: μ0 = 1 ∈ Rm, ρ0 = 106, τ0 = 0 9, γ = 10, σ0 = 10
∈ Rm, and μmax = 104. Since we use Armijo’s rule to deter-
mine the descent step, we use δ = 0 9 and β = 10−4. For the
NSGA-II method, we used the default parameters except
for the number of generations which was set to 20,000 since
the number of generations and the number of executions for
each problem allows it to reduce the sensitivity of its genetic
operators.

As we presented previously, in the section devoted to the
convergence analysis, Algorithms 4 and 5 converge for con-
vex problems. Therefore, we have tested their performance
with convex problems existing in the literature. Table 1 pre-
sents the set of test problems that we used, which are a total
of 70. The first column gives the name of the problems, the
second shows the number of variables, the third presents the
number of objectives, the fourth is devoted to the bound
constraints, and the last column is dedicated to highlight
the sources of the problem. Since the algorithms run on
problems that have bound constraints, we have defined
search domains in the form l ≤ x ≤ u for problems that do
not have bound constraints. These problems have their
names preceded by the letter M in Table 1 to indicate that
they have been modified. The bound constraints are
transformed to linear constraints in the following way: given
that the domain is defined as x ∈ Rn l ≤ x ≤ u , we obtain
l − x ≤ 0 and x − u ≤ 0 whose number is 2n with n as the
number of variables. For Algorithm 4 and Algorithm 5, the
set of initial nondominated points is determined in the Ω
space and the projection in Algorithm 4 into the Ω
domain.We used an HP EliteBook laptop equipped with an
Intel Core i7-3687U processor with a base frequency range
of 2.10GHz to 2.60GHz and 4GB of RAM to test our
algorithms.

where

a ∈ 2, 5, 10,15,20,25,30,35,40,45,50,60,70,80,90,100 ,
b ∈ 2, 5, 10,15,20,25,30,35,40,45,50,60,70,80,90,100 ,
c ∈ 2, 5, 10,15,20,25,30,35,40,45,50,60,70,80,90,100

58

We begin our analysis by comparing the performance of
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the algorithms ALEXPMO1, ALEXPMO2, and NSGA-II in
terms of computation time, the purity metric, and the spread
metrics.

Figure 1 shows that ALEXPMO1 and ALEXPMO2 are
competitive, and that ALEXPMO2 has the highest probabil-
ity of being the best method. Comparing with NSGA-II, we
see that ALEXPMO2 is in the lead with an interest factor of
8 and a probability of 0.50. However, if we increase this
interest factor to more than 8, NSGA-II becomes the best
method with a probability of 0.90 for an interest factor of 10.

Figure 2 examines the performance of the algorithms in
terms of purity. Figure 2(a) shows that there is no significant
difference between ALEXPMO2 and ALEXPMO1. However,
Figures 2(b) and 2(c) reveal that ALEXPMO2 andALEXPMO1
surpass NSGA-II with a probability of about 0 90 of being the
best methods.

Figure 3 focuses on the performance of the algorithms in
terms of Γ-spread. According to Figure 3(a), ALEXPMO1 is
better than ALEXPMO2 for an interest factor of less than 21.
However, ALEXPMO2 is better than ALEXPMO1 for an

interest factor greater than 21. As for Figures 3(b) and
3(c), ALEXPMO2 is better than NSGA-II and ALEXPMO1
for an interest factor less than 51 with a probability of about
0.30 and remains competitive for an interest factor greater
than 51.

Figure 4 gives the performance of the algorithms in
terms of Δ-spread. Figures 4(a)–4(c) show that ALEXPMO1
and ALEXPMO2 are competitive compared to NSGA-II in
the uniform distribution of solutions on the Pareto front.

We have especially added a comparative study of MLF1,
BNH1, M-LAP2, and M-JOS problems. At first, we present
the Pareto optimal front of these problems by using our
two algorithms and also the NSGA-II algorithm.

Here, we give the values of the performance parameters
that we present above. It is about the computational time,
purity, and spread (Δ-spread and Γ-spread) of all three algo-
rithms mentioned above presented in Tables 2–6.

We have examined the Pareto fronts for different refer-
ence problems, including one variable MLF1 (a multimodal
problem), BNH1 (two variables constrained), M-LAP2 (30
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Figure 8: Pareto front of SCH, JOS50, and JOS100.
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and 100 variables), and M-JOS1 (100 variables). Figures 5(a)
and 5(b), 6(a) and 6(b), and 7 show the results obtained with
100 solutions. The results indicate that the ALEXPMO1 and
ALEXPMO2 methods are superior to NSGA-II according to
the purity, Δ-spread, and Γ-spread metrics. For the
MLF1 problem, we find that the solutions proposed by

ALEXPMO1 and ALEXPMO2 are closer to the global
front than those generated by NSGA-II.

3.4. Comparisons of ALEXPMO1 with another Lagrangian
Method. In this subsection, we compare the ALEXPMO1
method with another well-established method called
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Figure 9: Pareto front of JOS500, DGO1, and MLF1.

Table 7: Comparative study of ALEXPMO1 and ALCM.

Purity Δ-spread Γ-spread
ALEXPMO1 ALCM ALEXPMO1 ALCM ALEXPMO1 ALCM

SCH 1 1 0.8029 1.1277 0.0561 1.5791

JOS50 0.9967 0.8040 0.7499 0.9818 0.0285 0.6830

JOS100 1 0.8000 0.7496 0.9878 0.0283 0.6821

JOS500 1 0.5165 0.7496 1.2198 0.0288 0.3380

DGO1 1 1 1.0328 0.7398 0.0120 0.2524

MLF1 1 0 1.4367 2.9095 0.0334 0.6335
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“augmented Lagrangian cone method” (ALCM), developed
by Upadhayay et al. [36]. The purpose of this comparison
is to evaluate the relative performances of both approaches,
namely, ALEXPMO1 and ALCM.

We selected six representative test problems that were suc-
cessfully solved by ALCM to conduct this comparison. The
parameters of our method, ALEXPMO1, were fixed as defined
in the previous sections. For the ALCM method, we set the
parameter m1 to 30 for all problems, chose η1 as a random
number generated within the interval (0,1), set ε to a value of
10−4, fixed α at 2.5, set Esup to 10, and set the bounds of the
Lagrange multipliers, λmin and λmax, to 0 and 1, respectively.

To solve the subproblem, we set the parameters ρ to
0.95, ξ to 0.80, initialized x0 with random values within the
interval (0, 1), and set t0 to 0.

By conducting a comprehensive comparative analysis of the
performances of both methods on the six test problems, includ-
ing the SCH problem, JOS problems with 50, 100, and 500 var-
iables, the DGO1 problem, and the MLF1 problem, we found
that ALEXPMO1 outperformed ALCM in terms of solution
distribution on the Pareto front. Although ALCMmay be com-
petitive for specific problems, it is important to highlight that,
with the chosen parameters, ALEXPMO1 manages to identify
solutions on the global Pareto front that are superior to those
obtained by ALCM for the multimodal problem MLF1.

To support our results, we conducted a visual comparison
of the Pareto fronts generated by both methods, illustrated in
Figures 8(a)–8(c) and Figures 9(a)–9(c). These in-depth and
objective analyses provide a better understanding of the
advantages and limitations of each method, thus contributing
to the advancement of research in the field of multiobjective
optimization.

Table 7 presents the comparative study of ALEXPMO1
and ALCM, while Figures 8 and 9 illustrate the Pareto fronts
generated by both methods for each problem. This detailed
and objective analysis allows for a better understanding of
the advantages and limitations of each method and contrib-
utes to the advancement of research in the field of multiob-
jective optimization.

4. Conclusion

In this study, we presented a new approach for solving
multiobjective optimization problems, which combines an
inexact exponential penalty function with the augmented
Lagrangian technique. To solve the subproblem obtained
by using our new approach, we used the steepest descent
or projected gradient, which allowed us to produce, respec-
tively, Algorithms 4 and 5 for general convex multiobjective
optimization problems. The convergence properties of both
methods have been examined using assumptions such as
convexity and boundlessness. Our numerical experiments
indicate that the two proposed algorithms are competitive
compared to existing methods in the literature.
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