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This paper focuses on the impact of mosquito biting bias on the success of malaria intervention strategies. The initial model is
developed considering the existence of symptomatic and asymptomatic humans, as well as vector bias. The model is then
analyzed to demonstrate how the malaria-endemic equilibrium always exists and is globally asymptotically stable if the basic
reproduction number is larger than one. On the other hand, malaria will always go extinct in the population if the basic
reproduction number is less than one. For intervention analysis, the model is extended by considering mosquito repellent and
hospitalization as control strategies. The control reproduction number is shown analytically. Using the Pontryagin maximum
principle, we characterize our optimal control problem. Several scenarios are conducted to observe the dynamics of control
variables under different circumstances. We found that the intervention of mosquito repellent and hospitalization together is
the most cost-effective strategy to reduce the spread of malaria. Furthermore, we have shown that the more biased the vector
attracted to infected individuals, the higher the cost needed to implement the control strategy.

1. Introduction

The world harbors a wide array of infectious diseases, span-
ning those transmitted through direct human contact to
those necessitating an intermediary animal or transmission
through the environment. Diseases requiring an intermedi-
ary animal for transmission are also referred to as vector-
borne diseases. Examples of such diseases encompass den-
gue, malaria, and chikungunya, among others. Malaria
stands out as one of the most prevalent vector-borne dis-
eases annually, particularly in Africa and Asia [1]. It prevails
in tropical and subtropical regions globally, including Africa,
Asia, and Latin America. Sub-Saharan Africa bears the
heaviest burden in terms of malaria cases and fatalities [2].

Malaria is a life-threatening illness caused by the Plas-
modium parasite, transmitted to humans through the bites
of infected female Anopheles mosquitoes [3]. Typical
malaria symptoms include high fever, chills, headache,

sweating, fatigue, body aches, and nausea. If left untreated,
it can progress to severe complications and potentially prove
fatal [4]. Diagnosis of malaria can be achieved through lab-
oratory tests that detect the presence of the parasite in the
blood [5]. Early diagnosis and prompt treatment are crucial
in preventing severe illness and death.

Effective malaria prevention strategies include the use of
insecticide-treated bed nets, indoor residual spraying to
eliminate mosquitoes, and antimalarial drugs for preventive
treatment in high-risk areas [6–11]. The most effective treat-
ment for uncomplicated malaria is artemisinin-based com-
bination therapies (ACTs) [12]. However, the emergence of
drug-resistant strains of the malaria parasite poses a signifi-
cant challenge to malaria control efforts [13].

Another popular intervention for mosquito-borne dis-
eases is the use of mosquito repellent, designed to deter mos-
quitoes from biting humans or animals. It operates by
creating a barrier or emitting odors that repel mosquitoes,
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thereby reducing the risk of mosquito-borne diseases and
the discomfort of mosquito bites [14].

Global efforts to combat malaria have led to significant
progress in reducing the disease burden. Increased funding,
distribution of bed nets, improved access to diagnostic tests
and treatment, and research on new prevention and treat-
ment methods are crucial for further progress in malaria
control and elimination.

Mathematical models have been employed by many
researchers to comprehend how diseases may spread among
populations, as demonstrated in references [15–18]. In the
context of malaria transmission models, numerous
approaches have been explored to assess how malaria
spreads, considering factors such as vector bias [19, 20],
repellent [21, 22], and treatment [23]. Some researchers also
employ optimal control problems for malaria [24, 25] and
cost-effectiveness methods to determine the best strategies
for malaria prevention [26, 27]. Mojeeb and Li conducted a
study on a mathematical malaria model, taking into account
the effect of vector bias, and concluded that malaria could
worsen if current control strategies are not improved [28].
Buonomo and Vargas-De-León introduced vector bias into
their malaria transmission model and suggested that the
greater attractiveness of infectious humans to mosquitoes
plays a relevant role in malaria dynamics, especially when
human immigration and death-induced mortality cannot
be neglected [19]. Aldila and Seno [29] worked on a mathe-
matical model of a general vector-borne disease with the
presence of vector bias phenomena. The results obtained
suggest that the control of disease becomes more challenging
as the magnitude of vector bias increases. Overall, the dis-
cussed case ideas are intriguing, and the employed mathe-
matical theories are deemed useful. However, it is
noteworthy that the authors did not address optimal control
models and cost-effectiveness, limiting the extent of conclu-
sions that can be drawn for public health professionals.
Unlike the work undertaken by Aldila and Angelina [30],
their study involves the development of a malaria model
incorporating vector bias along with optimal control simula-
tions. However, it is essential to note that the proposed
model has not yet discussed the asymptomatic cases in the
malaria transmission process.

Based on the aforementioned information, it is evident
that repellents and treatments play pivotal roles in mitigating
the rapid transmission of malaria. Furthermore, there is a scar-
city of mathematical models that consider the impact of vector
bias on the efficacy of mosquito repellents and hospitalization
in malaria control strategies. Consequently, we introduce a
novel mathematical model to assess the influence of vector
bias on the effectiveness of mosquito repellents and treatment
in malaria eradication. We conduct optimal control problems
utilizing repellents and treatments as controls and evaluate
cost-effectiveness across various scenarios.

2. The Model Formulation

In this section, we formulate our malaria transmission
model. We assume that the human population can be
divided based on their health status as susceptible S ,

asymptomatic infected A , and symptomatic infected I .
Hence, the total population of humans is given by N = S +
A + I. On the other hand, the mosquito population is divided
only into two compartments, namely, susceptible U and
infected V mosquitoes. Hence, the total mosquito popula-
tion is given by M =U +V .

The model is developed based on the transmission dia-
gram in Figure 1 and the following assumptions. All new-
born humans and mosquitoes are assumed to be always
susceptible with a rate of Λh and Λv , respectively. Malaria
infection only occurs due to the bite of infected mosqui-
toes on susceptible humans with a success rate of βh,
and the bite of susceptible mosquitoes on the infected
humans A and I with a success rate of βv. In 2005,
Lacroix et al. [31] discovered that mosquitoes showed a
greater attraction to individuals infected with malaria.
Their research indicated that mosquitoes exhibited a
heightened preference for humans carrying the transmissi-
ble gametocyte stage of malaria parasites, as opposed to
those who were uninfected or had the nontransmissible
asexual stages. This phenomenon is called vector bias.
Hence, using a modification approach as the authors in
[29, 30], with a vector-bias parameter p > 1, we model
the infection process in humans and mosquitoes using a
ratio-dependent term: βhSV/S + p A + I for humans and
βvUp A + I /S + p A + I for mosquitoes. We assume that
not all new infections of human which is denoted by βh
SV/S + p A + I develop symptoms. Hence, we introduced
q and 1 − q as a proportion of new infected human who
do not develop and develop symptoms, respectively.
Therefore, we have qβhSV/S + p A + I goes to compart-
ment A, while 1 − q βhSV/S + p A + I goes to compart-
ment I.

Next, we have a recovery rate for asymptomatic and
symptomatic infected individuals given by γa and γi, respec-
tively. Furthermore, we assume that there is a progression of
health status from asymptomatic to symptomatic individ-
uals, called δ. Lastly, each compartment can decrease due
to the natural death rate, namely, μh and μv for humans
and mosquitoes, respectively. Hence, the mathematical
model of malaria transmission, considering vector bias and
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Figure 1: Transmission diagram of the malaria model in system (1).
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the asymptomatic phase, is given by the following system of
five-dimensional ordinary differential equations.

dS
dt

=Λh −
βhSV

S + p A + I
− μhS + γaA + γiI,

dA
dt

= qβhSV
S + p A + I

− γaA − μhA − δA,

dI
dt

= 1 − q βhSV
S + p A + I

+ δA − γiI − μhI,

dU
dt

=Λv −
pβvU A + I
S + p A + I

− μvU ,

dV
dt

= pβvU A + I
S + p A + I

− μvV ,

1

subject to the initial conditions S 0 > 0, A 0 ≥ 0, I 0 ≥ 0,
U 0 > 0, and V 0 ≥ 0 It is easy to show using an integrat-
ing factor method that each variable always has a nonnega-
tive solution if the initial condition at t = 0 is also
nonnegative.

2.1. Nondimensional Model. We assume the total of
human and mosquito population is constant, then we
have S =N − A − I and U =M − V . Hence, system (1) now
reads as

dA
dt

= qβh N − A − I V
N − A − I + p A + I

− γaA − μhA − δAS,

dI
dt

= 1 − q βh N − A − I V
N − A − I + p A + I

+ δA − γiIn − μhI,

dV
dt

= pβv M −V A + I
N − A − I + p A + I

− μvV

2

By substituting x1 = A/N , x2 = I/N and x3 =V/M into sys-
tem (2), we have

dx1
dt

= qβh 1 − x1 − x2 x3M
1 − x1 − x2 + p x1 + x2 N

− δ + γa + μh x1,

dx2
dt

= 1 − q βh 1 − x1 − x2 x3M
1 − x1 − x2 + p x1 + x2 N

+ δ x1 − γix2 − μhx2,

dx3
dt

= pβv 1 − x3 x1 + x2
1 − x1 − x2 + p x1 + x2

− μvx3

3

Model in system (3) reduced our model from five to three
dimensions. Hence, our model analysis will be focusing on
system (3) instead of its original model in (1).

3. Model Analysis

Some mathematical analysis is given in this section, such as
the existence of trivial and nontrivial equilibrium points,
their stability, the basic reproduction number, and their
global stability analysis.

3.1. Malaria-Free Equilibrium and the Basic Reproduction
Number. The malaria-free equilibrium point (MFE) is a con-
dition where malaria is no longer present in a population.
Based on this definition, the malaria-free equilibrium point
for system (3) is given by

MFE = x01, x02, x03 = 0, 0, 0 4

The basic reproduction number is determined from the
spectral radius of the next-generation matrix of the respec-
tive model. We utilize the next-generation matrix approach
[32] to determine the basic reproduction number of system
(3). Readers may refer to [33–35] for more examples on
the implementation of this method in the calculation of
the reproduction number. The transition matrix V and
transmission matrix F of system (3) are given by

V =
−δ − γa − μh 0 0

δ −γi − μh 0
0 0 −μv

,

F =

0 0 qβhM
N

0 0 1 − q βhM
N

p βv p βv 0

5

Hence, the basic reproduction number is taken from the
spectral radius of the next-generation matrix of system (3)
which is given by

R0 =
pβvβhM
μvN

q
δ + γa + μh

+ δ q
δ + γa + μh γi + μh

+ 1 − q
γi + μh

6

To further interpret R0, equation (6) can be rewritten as
follows:

R2
0 =

pβv

μv

Production of infectedmosquito

βh
M
N

q
δ + γa + μh

+ δ q
δ + γa + μh γi + μh

+ 1 − q
γi + μh

Production of infected human

7

It is clearly observed thatR0 is a result of the multiplica-
tion of the number of newly infected mosquitoes and newly
infected humans. Note that the production of infected
human depends on the ration between mosquito and
human. A larger ratio (larger population of mosquito) will
increase the production of infected human.

Furthermore, it is not difficult to show that system (3)
satisfies the five conditions in Theorem 3 [36]. Hence, using
the result in [36], we have the following theorem.

Theorem 1. The malaria-free equilibrium of system (3)
(MFE) is always locally asymptotically stable if R0 < 1 and
unstable if R0 > 1.
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3.2. Malaria-Endemic Equilibrium. The malaria endemic
equilibrium (MEE) point of system (3) is given by

MEE = x∗1 , x∗2 , x∗3 , 8

where

while x∗2 is taken from the positive root of the following two-
degree polynomial

F x2 = p2x2
2 + p1x2 + p0 = 0, 10

with

p2 = qN γi + μh δ + γa + μh 1 − q γa + qγ2 + δ + μh
2

p − 1 μv p − 1 + pβv ,

p1 = q 1 − q γa + 1 − q μh + δ 1 − q γa + qγi + δ + μh
Mpβv 1 − q γ1 + qγi + δ + μh βh +N γi + μh
γa + δ + μh pβv + 2μv p − 1 ,

p0 = 1 −R2
0 γi + μh δ + γa + μh μvNq δ + γa + μh 1 − q

11

From this, we can see if R0 > 1, then p0 < 0. Hence, we
have exactly one positive root of polynom 5 which indicates
the existence of a unique endemic equilibrium for R0 > 1.
On the other hand, if R0 < 1, then p0 > 0. Hence, the multi-
plication of the root of system (10) will be positive, while the
addition of the root will be negative since p1 is always posi-
tive. Therefore, no endemic equilibrium if R0 < 1. These
results are stated in the following theorem.

Theorem 2. System (3) has a unique endemic equilibrium
MEE if R0 > 1 and no endemic equilibrium otherwise.

3.3. Bifurcation Analysis. In this section, we continue our
analysis on the stability of the malaria endemic equilib-
rium from the previous section. From Theorem 2, we
know that the endemic equilibrium is unique, and only
appears when R0 > 1. To analyze the local stability of
the malaria endemic equilibrium around R0 = 1, we will
use the bifurcation theorem introduced by Castillo-
Chavez and Song in [37]. First, we assumed βh as the
bifurcation parameter such that the critical value of βh
makes R0 = 1. With this, we have

β∗
h =

δ + γa + μh γi + μh μvN
pβvM 1 − q γa + qγi + δ + μh

12

Linearized system (3) around the malaria-free equilib-
rium and βh = β∗

h gives

A =

−δ − γa − μh 0 q γi + μh δ + γa + μh μv
pβv 1 − q γa + qγi + δ + μh

δ −γi − μh
1 − q γi + μh δ + γa + μh μv
pβv 1 − q γa + qγi + δ + μh

pβv pβv −μv
13

It is easy to calculate the above matrix has a simple
zero eigenvalue, while the other two are negative. Next,
we calculated the right and left eigenvectors of the zero
eigenvalues of A denoted by w = w1,w2,w3

T and v =
v1, v2, v3 , respectively, which is given by

w1 =w1,

w2 =
1 − q γa 1 − q μh + δ w1

γi + μh q
,

w3 =
w1 pβv 1 − q γa + qγi + δ + μh

qμv γi + μh
,

v1 =
δ + γi + μh v2
δ + γa + μh

,

v2 = v2,

v3 =
v2 γi + μh

pβv

14

To use the Castillo-Chavez and Song theorem, we
need to calculate the values of A and B. The coefficient
A is given as follows:

A = 〠
3

k,i,j=1
vkwiwj

∂2gk

∂yi∂yj
0, 0 = v1w1w1

∂2g1
∂x1x1

0, 0

+ v1w1w2
∂2g1
∂x1x2

0, 0 +⋯+v3w3w3
∂2g3
∂x3x3

0, 0

= −a1 − a2
a3

,

15

x∗1 =
qx∗2 γi + μh

1 − q γa + 1 − q μh + δ
,

x∗3 =
pβvx

∗
2 1 − q γa + qγi + δ + μh

1 − q γa + qγi + δ + μh μv p − 1 + pβv x∗2 + μv 1 − q γa + 1 − q μh + δ
,

9

4 Journal of Applied Mathematics



with

a1 = 2 p3βv
2M 1 − q γa + qγi + δ + μh

3βh,

a2 = 2 pβvN
2 γi + μh δ + γa + μh

1 − q γa + qγ2 + δ + μh
2 pβv + p − 1 μv ,

a3 = δ + γa + μh γi + μh
2q2μvNpβv

16

On the other hand, we have B as follows:

B = 〠
3

k,i=1
vkwi

∂2gk
∂yi∂βh

0, 0

= v1w3
∂2g1
∂x3βh

0, 0 + v2w3
∂2g2
∂x3βh

0, 0

= βvp 1 − q γa + qγ2 + δ + μh
2M

δ + γa + μh μv γi + μh Nq

17

Since all parameters are positive, then we have A < 0
and B > 0. According to these results, the following the-
orem is obtained.

Theorem 3. System (3) always exhibits a transcritical bifur-
cation at R0 = 1.

With this theorem, we understand that the MEE is locally
asymptotically stable when R0 > 1 but close to one. Further-
more, no backward bifurcation appears from system (3) at
R0 = 1. Next, we show the global stability of the MEE.

3.4. Global Stability of the Endemic Equilibrium. We will
apply the Dulac-Bendixson criterion [38] to show the global
stability of the endemic equilibrium. Please see [39–43] for
another example of this approach. Let X = x1, x2, x3 be
the open first octant. Now, we apply the Dulac-Bendixson
criterion with D = 1 gives us

∂f1
∂x1

+ ∂f2
∂x2

+ ∂f3
∂x3

= −
qβhx3M

1 − x1 − x2 + p x1 + x2 N

−
qβh 1 − x1 − x2 x3M p − 1
1 − x1 − x2 + p x1 + x2

2N

− δ − γ1 − 2μh −
1 − q βhx3M

1 − x1 − x2 + p x1 + x2 N

−
1 − q βh 1 − x1 − x2 x3M p − 1

1 − x1 − x2 + p x1 + x2
2N

− γi −
pβv x1 + x2

1 − x1 − x2 + p x1 + x2
− μv

18

Hence, we have ∂f1/∂x1 + ∂f2/∂x2 + ∂f3/∂x3 < 0. It
means we have the system strictly negative almost every-
where on Z. Thus, the system has no periodic orbits or
graphics in the open first quadrant. Hence, by Poincare-
Bendixson trichotomy Theorem 5.7 page 195 in [44], the
endemic equilibrium MEE is global asymptotically stable.

3.5. Bifurcation Diagram and Autonomous Simulation. To
illustrate the results of the bifurcation diagram, please refer
to Figure 2. From Figure 2, it is evident that the endemic
equilibrium x2 exhibits a monotonically decreasing trend
as βh increases until it reaches the bifurcation point (BP)
at R0 = 1 or βh = 0 012. From the bifurcation diagram, we
can see that there is a change in the stability of malaria-
free equilibrium at BP, i.e., when R0 = 1, from stable to
unstable. On the other hand, we have a new endemic equi-
librium start to arise when the malaria-free equilibrium
changes its stability. For five sample points of βh when
βh < 0 012, the malaria-free equilibrium is stable, which
is shown by the trajectories of the solution all tend to
the malaria-free equilibrium (see Figure 2(b)). On the
other hand, when we take five sample points when βh >
0 012, then all the solutions tend to their own stable
malaria-endemic equilibrium. See Figure 2(c) for the illus-
tration. Larger βh, then the size of x2 at the equilibrium
will become larger.

4. Optimal Control Problem

4.1. Optimal Control Model and Its Characterization. Here in
this section, we introduce two different control variables to
control the spread of malaria. Let u1 t and u2 t represent
the use of mosquito repellent and hospitalization, respec-
tively. Using ξ as the efficacy of mosquito repellent, then
the reduction of effective contact rate βh and βv is given by
1 − u1ξ. Hence, the total of new infections in human and
mosquito populations is given by 1 − u1 t ξ βhSV/S + p
A + I and 1 − u1 t ξ pβvU A + I /S + p A + I , respec-
tively. Next, we assume that only proportion u2 of
symptomatic individuals following treatment in the hos-
pital. Hence, their recovery rate γt will be larger than
symptomatic individuals who are not treated in the hos-
pital γi . Hence, the total of recovered individual from
the symptomatic class is given by γtu2 t I + γi 1 − u2 t I.
Please note that γt > γa > γi. With this assumption, system
(1) now reads as follows:

dS
dt

=Λh −
1 − u1 t ξ βhSV
S + p A + I

− μhS + γaA

+ γtu2 t + 1 − u2 t γi I,
dA
dt

= q
1 − u1 t ξ βhSV
S + p A + I

− γaA − μhA − δA,

dI
dt

= 1 − q
1 − u1 t ξ βhSV
S + p A + I

+ δA − γtu2 t + 1 − u2 t γi I − μhI,

dU
dt

=Λv −
1 − u1 t ξ pβvU A + I

S + p A + I
− μvU ,

dV
dt

= 1 − u1 t ξ pβvU A + I
S + p A + I

− μvV

19

With the same approach as in the previous section, assum-
ing S =N − A − I, U =M −V , x1 = A/N, x2 = I/N, and x3 =
V/M, we have
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Figure 2: (a) Bifurcation diagram of x2 respect to βh. Solid red, blue, and cyan curves represent a stable endemic equilibrium, stable malaria-
free equilibrium, and the reproduction number depending on the value of βh. BP represent the bifurcation point atR0 = 1. (b) The dynamic
of x1, x2, and x3 tends to stable malaria-free equilibrium for all sample points such that R0 < 1. (c) The dynamic of x1, x2,and x3 tends to
stable malaria-endemic equilibrium for all sample points such that R0 > 1.
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dx1
dt

= q 1 − u1 t ξ βh 1 − x1 − x2 x3M
1 − x1 − x2 + p x1 + x2 N

− δ + γa + μh x1,
dx2
dt

= 1 − q 1 − u1 t ξ βh 1 − x1 − x2 x3M
1 − x1 − x2 + p x1 + x2 N

+ δ x1 − γtu2 t + 1 − u2 t γi x2 − μhx2,
dx3
dt

= p 1 − u1 t ξ βv 1 − x3 x1 + x2
1 − x1 − x2 + p x1 + x2

− μvx3

20

Assuming u1 t = u1 and u2 t = u2, then the control
reproduction number of system (20) is given by

Rc = 1 − u1ξ
pβvβhM
μvN

q
δ + γa + μh

+ δ q
δ + γa + μh γi + μh

+ 1 − q
γi + μh

,

21

where γi = γtu2 + 1 − u2 γi . From this expression, we can
see that Rc u1 = 0, u2 = 0 =R0. Furthermore, we find that
Rc ≤R0 for u1 ∈ 0, 1 and u2 ∈ 0, 1 . Hence, we confidently
can say that intervention with mosquito repellent and hospital-
ization have a good potential to reduce the spread of malaria.

Our aim is to minimize the proportion of infected
individuals x1 and x2 with as minimum as possible cost
of u1 t and u2 t . This task is read as minimizing the fol-
lowing cost function.

J =
T

0
ω1x1 + ω2x2 +

ω3
2 u21 +

ω4
2 u22 dt, 22

where ω1 and ω2 are the weights of the objective func-
tional for x1 and x2, respectively, while ω3 and ω4 for con-
trol variables u1 and u2, respectively. Next, by applying
Pontryagin’s maximum principle [45], we develop the

Hamiltonian function as follows:

H = ω1x1 + ω2x2 +
ω3
2 u21 +

ω4
2 u22

+ λ1
q 1 − u1 t ξ βh 1 − x1 − x2 x3M

1 − x1 − x2 + p x1 + x2 N
− δ + γa + μh x1

+ λ2
1 − q 1 − u1 t ξ βh 1 − x1 − x2 x3M

1 − x1 − x2 + p x1 + x2 N

+ δ x1 − γtu2 t + 1 − u2 t γi x2 − μhx2

+ λ3
p 1 − u1 t ξ βv 1 − x3 x1 + x2

1 − x1 − x2 + p x1 + x2
− μvx3

23

Thus, taking the partial derivatives of H with respect
to each of the state variables yields the adjoint system
given below:

dλ1
dt

= −
∂H
∂x1

= −ω1 + λ1 − λ2
βh 1 − ξ u1 x3MpqN

1 − x1 − x2 + p x1 + x2
2N

+ δ

+ λ1 γa + μh + λ2
βh 1 − ξ u1 x3Mp

1 − x1 − x2 + p x1 + x2
2N

+ λ3
pβv 1 − ξ u1 1 − x3

1 − x1 − x2 + p x1 + x2
2 ,

24

dλ2
dt

= −
∂H
∂x2

= −ω1 + λ1 − λ2
βh 1 − ξ u1 x3MpqN

1 − x1 − x2 + p x1 + x2
2N

+ λ2 u2γt + 1 − u2 γi + μh + λ3
pβv 1 − ξ u1 1 − x3

1 − x1 − x2 + p x1 + x2
2 ,

25
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Figure 3: Dynamic of x1, x2, and x3 tends to its malaria-endemic equilibrium for Rc > 1.

7Journal of Applied Mathematics



0 50 100 150 200 250 300 350 400 450 500
Days

0

0.005

0.01

0.015

A
sy

m
pt

om
at

ic
 h

um
an

 (x
1)

Without control
With control

(a)

0 50 100 150 200 250 300 350 400 450 500
Days

0

0.05

0.1

Sy
m

pt
om

at
ic

 h
um

an
 (x

2)

Without control
With control

(b)

0 50 100 150 200 250 300 350 400 450 500
Days

0

0.05

0.1

In
fe

ct
ed

 h
um

an
 (x

1 +
 x

2)

Without control
With control

(c)

0 50 100 150 200 250 300 350 400 450 500
Days

0

0.1

0.2

0.3

In
fe

ct
ed

 m
os

qu
ito

es
 (x

3)

Without control
With control

(d)

0 50 100 150 200 250 300 350 400 450 500
Days

0

0.2
0.1

0.4
0.3

Co
nt

ro
l p

ro
fil

e

u1
u2 = 0

(e)

Figure 4: Scenario 1: use of repellent and hospitalization.
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Figure 5: Scenario 2: use of repellent only.
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dλ3
dt

= −
∂H
∂x3

= λ2 − λ1
qβh −ξ u1 + 1 −x1 − x2 + 1 M

1 − x1 − x2 + p x1 + x2 N

− λ2
βh −ξ u1 + 1 −x1 − x2 + 1 M
1 − x1 − x2 + p x1 + x2 N

+ λ3
pβv −ξ u1 + 1 x1 + x2
1 − x1 − x2 + p x1 + x2

+ μv ,

26

completed with the transversality condition λi t = T = 0
for i = 1, 2, 3. Further, the optimal controls u∗1 , u∗2 are
given by

u∗1 = min max 0, u†1, 1 , 27a

u∗2 = min max 0, λ2 γt − γi x2
ω4

, 1 , 27b

with

4.2. Optimal Control Simulation. This section shows the
optimal scenario. We use the following parameter values to
run the simulations, except it is stated differently:

M = 10000,
N = 10000,
p = 2,
q = 0 5,
βh = 0 025,
βv = 0 1,

γt =
1
7 ,

γa =
1
14 ,

γi =
1
21 ,

δ = 1
7 ,

μh =
1

65 × 265 ,

μv =
1
21

29

With these chosen parameter values, we have R0 u1 =
0, u2 = 0 = 2 08, indicating the stability of the endemic equi-
librium point. Hence, without any intervention of controls,
the population will tend to an endemic situation where the
proportion of asymptomatic individuals reaches 1.4%, the
proportion of symptomatic individuals reaches 10.6%, and
the proportion of infected mosquitoes reaches 31.2%. The

dynamics of system (20), which tend towards the endemic
equilibrium point, are shown in Figure 3.

We solve the model in (20) with and without control
numerically by applying the backward and forward sweep
as described in [45]. Readers who are interested to see fur-
ther examples on the implementation of this algorithm
may refer to [33, 46–48]. In the beginning, we give an initial
guess for u1 t and u2 t constant for all time t. With this
initial guess, we solve system (20) forward in time. This solu-
tion is then used to solve the adjoint system in (24) back-
ward in time. Hence, we can update the optimal value of
u1 t and u2 t using the formula in (27a). We repeat these
steps until we reach the convergence criteria or its maximum
iteration K , i.e., JIteration− k+1 − J Iteration− k < ε, where ε is
the tolerated error. We use ω1 = 0 3, ω2 = 0 3, ω3 = 0 01,
and ω4 = 0 1 to run all of our optimal control simulation,
except it is stated differently.

4.2.1. Different Combination of Interventions. In this section,
we give three different scenarios of implementation for
malaria eradication. The first scenario is when mosquito
repellent and hospitalization are combined u1 ≠ 0, u2 ≠ 0 ,
the second scenario is when we use hospitalization only
u1 = 0, u2 ≠ 0 , and the third scenario is when we use mos-
quito repellent only u1 ≠ 0, u2 = 0 . The results are given
as follows.

(1) Scenario 1: use of repellent and hospitalization

As shown in Figure 4, the dynamic of asymptomatic
humans, symptomatic humans, and infected mosquitoes
decreases more rapidly when controls are used compared
to the case without controls (see Figures 4(a)–4(d)). The
control profiles in Figure 4(e) show that malaria can be con-
trolled when we initially use u2 maximally (47%) and then

Table 1: The average cost-effectiveness ratio (ACER) of scenarios
1–3. Note: TAI = total averted infection; TCI = total costs for
intervention.

Scenarios Optimal control TAI TCI ACER

1 u1, u2 0.0555 4 7 × 10−6 8 4 × 10−5

2 u1 0.101 1 2 × 10−5 1 2 × 10−4

3 u2 0.107 0.069 0.65

u†1 =
λ1 − λ2 qβhξ −x1 − x2 + 1 x3M/ 1 − x1 − x2 + p x1 + x2 N + λ2 βhξ −x1 − x2 + 1 x3M/ 1 − x1 − x2 + p x1 + x2 N + λ3 βvpξ 1 − x3 x1 + x2 / 1 − x1 − x2 + p x1 + x2

ω3

28
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Figure 6: Scenario 3: use of hospitalization only.
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rapidly decreased due to the reduction of infected individ-
uals. On the other hand, we need to maintain u1 at a nearly
constant level throughout the simulation time (22%-33%),
except at the beginning and at the end of the simulation
time. This high intensity of mosquito repellent is imple-
mented to prevent an increase in the proportion of infected
individuals.

(2) Scenario 2: use of repellent only

Scenario 2 shows the strategy of using only repellent (u1
). As shown in Figures 5(a)–5(d), the proportions of asymp-
tomatic humans, symptomatic humans, and infected mos-
quitoes significantly decrease compared to scenario 1.
However, a high intensity of mosquito repellent, 48% for
the majority of the simulation period, is required (please
see Figure 5(e)). This implies that almost half of the popula-
tion must consistently use mosquito repellent. This interven-
tion comes with a higher cost of implementation. Please
refer to Table 1 for detailed cost information.

(3) Scenario 3: use of hospitalization only

Scenario 3 shows the strategy of using only hospitaliza-
tion (u2 implemented to reduce malaria spread). Similarly,
we can observe the success of hospitalization intervention
in reducing the number of infected individuals. From
Figures 6(a)–6(d), we can see a more significant reduction
in the number of infected individuals and mosquitoes com-
pared to other scenarios. However, it requires maximal
intensity at the beginning of the simulation period, with
100% of symptomatic individuals being hospitalized. This
high intensity of hospitalization leads to a significant
increase in the implementation cost.

(1) Cost-Effectiveness Analysis. To determine the most cost-
effective strategy from the three strategies, we conducted a
cost-sensitivity analysis using the incremental cost-
effectiveness ratio (ICER) and the most avoid the number
of infected individuals at the cost of intervention the mini-
mum (ACER) [49]. Table 1 shows the proportion of infec-
tions averted and the total cost for each scenario. The total
proportion of averted infections was calculated using the fol-
lowing formula:

AI =
T

0
〠
3

i=1
xi uj ≠ 0 − xi uj = 0 dt, 30

for j = 1, 2. On the other hand, the total cost is given by
equation T

0 ω3u
2
1 + ω4u

2
2 dt. The results for each scenario

are given in Table 1.

Next, we analyze the cost-effectiveness of two methods
as follows:

(1) Average cost-effectiveness ratio (ACER)

The ACER represents the average cost that should be
spent for each infected averted human. Hence, the formula
for ACER is given by

ACERscenario−i =
total cost for intervention with scenario − i

total proportion of infection averted with scenario − i

31

A smaller ACER indicates a better strategy of interven-
tion. The results of the ACER values for each strategy are
shown in Table 1. From Table 1, the best strategy based on
the ACER index is the implementation of repellent and hos-
pitalization (u1 and u2) as a double form intervention (sce-
nario 1), followed with scenarios 2 and 3, respectively.

(2) The incremental cost-effectiveness ratio (ICER)
formula

Based on the numerical simulation, we rank all strategies
in increasing order based on the total number of infections
averted in Table 2.

Note that ICER for scenario 3 is larger than any other
scenario. Hence, we can exclude ICER for scenario 3 from
the next calculation. Next, we compare the ICER between

Table 2: The average cost-effectiveness ratio (ICER) increasing
order based on scenarios 1–3. Note: TAI = total averted infection;
TCI = total costs for intervention.

Scenarios Optimal control TAI TCI ICER

1 u1, u2 0.0555 4 7 × 10−6 8 5 × 10−5

2 u1 0.101 1 2 × 10−5 1 6 × 10−4

3 u2 0.107 0.069 11.5

Table 3: The average cost-effectiveness ratio (ICER) increasing
order based on scenarios 1 and 3. Note: TAI = total averted
infection; TCI = total costs for intervention.

Scenarios Optimal control TAI TCI ICER

1 u1, u2 0.0555 4 7 × 10−6 8 5 × 10−5

2 u1 0.101 1 2 × 10−5 1 6 × 10−4

ICERscenario− i,J = difference of cost between scenario i and scenario j
difference of number of infection averted between scenario i and scenario j 32
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Figure 7: (a) Level set of Rc with respect to u1 and u2. (b, c) Impact of vector bias on the effectiveness of u1 and u2 to reduce Rc.
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Figure 8: Optimal solution of system (20) for p = 1, 2, 3. (a–c) The proportion of infected individual x1, x2, and x1 + x2, respectively. (d) The
dynamic with and without control of the mosquito population. (e, f) The dynamic of u1 and u2 for various value of p, respectively.
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scenarios 1 and 2. The result of calculating ICER using the
same method as before is shown in Table 3.

Table 3 shows that ICER scenario 2 > ICER scenario 1,
which means that scenario 2 (repellent (u1)) is more costly
compared to scenario 1 (combination of repellent u1 and
hospitalization (u2) implemented). Hence, we can conclude
that the use of repellent u1 and hospitalization (u1), as dou-
ble intervention to reduce the spread of malaria, is the most
cost-effective strategy compared to other possible scenarios.

4.2.2. Impact of Vector Bias on the Dynamic of Controls. In
this section, we analyze the impact of vector bias on the
dynamics of control variables. At first, we analyze the depen-
dency of Rc to u1 and u2. By substituting all parameters in
equation (27b), except u1 and u2 into Rc, the level set of
Rc respect to u1 and u2 is given in Figure 7. It can be seen
clearly that increasing proportion of people who use mos-
quito repellent and infected people who undergo treatment
in the hospital can reduce the control reproduction number
Rc significantly (Figure 7(a)). Furthermore, from
Figures 7(b) and 7(c), we can see that increasing of vector-
bias parameter will increase the minimum effort of mosquito
repellent and treatment such that Rc < 1.

To study the impact of vector bias on the dynamics of
malaria control, we computed the solutions of u1 and u2
for p = 1, 2, 3, as shown in Figure 8. Note that the basic
reproduction number for each p is R0 p = 1 = 1 02, R0 p
= 2 = 1 44, and R0 p = 3 = 1 77, indicating that without
intervention (repellent or hospitalization), malaria will per-
sist in the population.

The profiles of the controls appear similar for each value
of p. However, a larger p requires a higher rate of repellent
and hospitalization at all times t, resulting in a higher cost
function value. For comparison, please refer to Table 4. It
is clear that a higher value of vector bias necessitates a higher
intensity of interventions, as indicated by a higher cost of J .
This high intensity of intervention from the early period of
the simulation leads to a greater reduction in the number
of infected individuals. When p = 3, the percentage of
infected individuals is reduced by 97% compared to the total
infected without any control, whereas for p = 2 and p = 1, the
reductions are 87% and 26%, respectively.

5. Conclusion

In this paper, we developed a nonstandard SAIS-UV model
for malaria transmission. Unlike other malaria models

[50–52], here, we consider a vector bias impact on the trans-
mission process. As mentioned by [31], vector bias phenom-
ena cannot be ignored in the malaria transmission process
since it gives a higher preference to mosquitoes to bite
infected humans. Unlike the proposed vector bias model
by the author in [15, 29, 30, 53], here, we consider optimal
control and asymptomatic cases in our analysis. With this
model, infected humans are divided into two compartments,
namely, asymptomatic and symptomatic individuals. With
vector bias, mosquitoes are assumed to be more attracted
to bite-infected humans. Mathematical analysis regarding
its equilibrium points, global stability of the equilibrium
points, and the basic reproduction number have been shown
analytically. We found that malaria will always go extinct if
the basic reproduction number is smaller than one. On the
other hand, we always found a globally stable endemic equi-
librium point if the basic reproduction number is larger than
one. Furthermore, we also found that a larger vector bias of
mosquitoes will increase the basic reproduction number.

For the malaria control strategy, we extend our model by
involving two distinct interventions, namely, mosquito
repellent u1 with an efficacy of 1 − ξ and hospitalization
u2 . In order to minimize the cost of intervention, we treat
u1 and u2 as time-dependent variables. The Pontryagin max-
imum principle has been used to characterize the optimal
control problem. Using cost-effectiveness analysis, we found
that a combination of mosquito repellent and hospitalization
is more cost-effective compared to other single interventions
(hospitalization only or mosquito repellent only). Further-
more, we also found that the more biased vectors attracted
to infected humans, the higher the cost needed to control
the spread of malaria.

Although this model is simple in terms of the number of
compartments involved, it can still provide us with insights
into the importance of understanding the vector-bias phe-
nomenon in malaria. Furthermore, we have not yet included
other important factors such as people’s awareness and
fumigation to control the spread of malaria. Hence, we will
consider these two interventions in future studies. Please
refer to [54–56] for existing mathematical models on people
awareness, media campaigns, and the use of Wolbachia in
some vector-borne disease transmission models.

Data Availability

The data used to support this study is taken from the previ-
ously published papers.

Table 4: Outcome of optimal control solution for different values of p.

Case p = 1 Case p = 2 Case p = 3
R0 1.02 1.44 1.77

Total infected humans without control 0.00246 0.1075 0.2366

Total infected humans with control 0.00182 0.0141 0.0062

Total averted infected 6 4 × 10−4 0.0934 0.2304

Percentage of reduction 26% 87% 97%

J 9 78 × 10−4 0.0056 0.0069
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