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The streamline upwind Petrov-Galerkin (SUPG) finite element method was used in this study to investigate the thermal and
surface roughness effects on an inclined slider bearing with an unsteady fluid film. One-dimensional transverse and
longitudinal surface roughness models were considered with the supposition that roughness is stochastic and has a Gaussian
random distribution. For simplicity of numerical computation, the irregularity caused by the texture of the surface is
transformed into a regular domain. The bearing performance of the combined effect is lower than the thermal and surface
roughness effects of the one-dimensional longitudinal surface roughness for all modified Reynolds numbers of nonparallel
slider bearings; this means that for nonparallel (w = 0 4) between the surface roughness effect and the combined effect
condition, there is a decrease of 13% in load-carrying capacity performance and a minimal change in friction force,
respectively. However, in the case of nonparallel one-dimensional transverse type slider bearings, the bearing performance of
the thermal effect is lower than the combined and surface roughness effects for all modified Reynolds numbers, where between
the combined effect and the thermal effect condition, there is a reduction of 19% in load-carrying capacity performance and
2% in friction force practically for all changed Reynolds values, respectively. Furthermore, the combined effects at various
temperatures have been investigated. As a result, in both longitudinal and transverse models, in the case of the pad
temperature being lower than the slider, the load-carrying capacity performance is higher than in other cases for nonparallel
slider bearings, whereas when the slider temperature is lower than the pad temperature, the drag frictional force is the leading
one in both models. In general, considering surface texture and inertial effects will increase the performance of a slider. The
results obtained are displayed using figures and tables.

1. Introduction

Slider bearings are a type of bearing in which one surface can
move over another. They are frequently employed in indus-
trial, agricultural, and automotive applications. Slider bear-
ings can operate at extremely high speeds and can support
heavy weights. They are a great option for applications that
demand long-term dependability because of their resistance
to wear and tear. The geometry of a rough slider bearing is
important in many applications, from engineering to the
automotive industry. Additionally, the geometry affects the

load capacity of the bearing as well as its wear characteristics.
Thus, properly understanding the geometry of the bearing is
critical for any successful application.

Various bearing types with surface roughness effects
have been examined by numerous researchers. Hydrostatic
bearings were examined by Lin [1], journal bearings by
Guha [2], and slider bearings by Christensen and Tonder
[3]. For a nonisothermal flow with temperature-dependent
density and viscosity in a high-speed slider bearing model,
Kumar [4] examined a segregated FEM of the Petrov-
Galerkin framework with appropriately SUPG weight
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functions. Rathish Kumar and Srinivasa Rao [5] examined
the use of the SUPG-FEM in the numerical modelling of
slider bearings to determine load-carrying support.

Andharia et al. [6] examined how surface roughness
affected hydrodynamic slider bearing performance. The
bearing surface topography is assumed to be characterized
by a stochastic random variable with nonzero mean, vari-
ance, and skewness, which is a generalized version of surface
roughness. Film shapes such as secant, flat, exponential, and
hyperbolic sliders are studied. Alyaqout and Elsharkawy [7]
enhance the slider bearing geometry using a thermohydro-
dynamic bearing model. Thakkar et al. [8] used a stochastic
model to account for the impact of surface roughness while
examining the behavior of transversely rough narrow-width
tapered pad bearings.

A theoretical model was created by Chawla and Bhard-
waj [9] to study how couple stress on fluid-lubricated sur-
faces is affected by surface roughness. Rahman [10] reports
that an external transverse magnetic field has been obtained
and numerically studied to investigate the effects of unsteady
flow and heat transfer in an incompressible laminar, electri-
cally conducting, and non-Newtonian fluid over a noni-
sothermal stretching sheet with variation in viscosity and
thermal conductivity in a porous medium. The unsteady
flow of a non-Newtonian fluid over an oscillating vertical
porous plate in the presence of a uniform magnetic field
has been studied by Ali et al. [11]. Using an accurate com-
puter model of the complete set of the Navier-Stokes equa-
tions for incompressible flows, the influence of inertial
forces in stable and unsteady lubrication films was investi-
gated Sestieri and Piva [12].

The numerical analysis of the time-dependent magne-
tized micropolar fluid flow over a curved surface was exam-
ined by Abbas et al. [13]. The impacts of thermal jumped
and velocity slip are taken into consideration on the curved
surface.

Many scholars have investigated inertial effects, such as
Syed and Sarangi [14] on hydrodynamic lubrication with
deterministic micro textures, taking the fluid inertia effect
into account. Although the Reynolds equation is widely used
in thin film lubrication, its application to textured surfaces is
not entirely convincing, particularly at moderate to high
Reynolds numbers. They have obtained that fluid inertia,
which is generally neglected in the Reynolds equation but
becomes significant. A perturbation analysis was performed
by Ota et al. [15] on a modified Reynolds equation to study
the effect of inertia on film rupture in hydrodynamic lubri-
cation. Malvano and Vatta [16] studied the influence of fluid
inertia flow on steady laminar lubrication. Prasad et al. [17]
examined a theoretical aspect of the hydrodynamic lubrica-
tion of two symmetric rollers by power-law fluids.

The thermohydrodynamic analysis of plane slider bear-
ing with roughness was analyzed by Sinha and Adamu [18]
using the finite difference method, where surface roughness
is assumed to be stochastic and Gaussian randomly distrib-
uted. Adamu and Sinha [19] also considered heat conduc-
tion through both the pad and slider by taking into
account two models of one-dimensional longitudinal and
transverse roughness. Singh et al. [20] reported a numerical

study of the hydrodynamic lubrication of slider bearings
with textured surfaces. Extreme industrial conditions neces-
sitate the use of a bearing that can withstand high-speed
operations, heavy loads, and high stiffness, among other
things. Alexander Raymand and Jayakaran Amalraj [21]
considered the combined effects of fluid inertia forces and
non-Newtonian characteristics with the Herschel-Bulkley
fluid as a lubricant in an externally pressurized converging
thrust bearing.

Recently, Desu Tessema et al. [22] and Tessema et al.
[23] using the streamline upwind Petrov-Galerkin (SUPG)
finite element method (FEM) examined the performance of
slider bearings with the effects of thermal and surface
roughness on one-dimensional longitudinal and transverse
roughness types under laminar and turbulent conditions.
Naduvinamani and Angadi [24] examined the static and
dynamic properties of a few stress fluid-lubricated rough,
porous Rayleigh step bearings. Naduvinamani and Angadi
[25] analyzed the effects of micropolar fluid and roughness
on inclined porous slider bearings’ dynamic characteristics.
Theoretical and numerical analyses were used to investigate
the static properties of aerostatic porous journal bearings by
Gu et al. [26]. Fang et al. [27] discussed transient elastohy-
drodynamic lubrication under line contact stiffness and
damping behaviors. Jamshed et al. [28] used a single-phase
optimized entropy analysis to illustrate the thermal effi-
ciency improvement of solar aircraft employing unsteady
hybrid nanofluids. Raees et al. [29] examined the transfer
of energy in the power-law nanofluid driven to flow along
a horizontal wall by magnetization. Overall, our examination
of the literature and our knowledge gaps show that SUPG-
FEM has not been used to address the performance of slider
bearings when surface roughness and coupled heat effects
are present along with an unsteady fluid film that takes into
account various inertial effects.

Nonetheless, our noteworthy input to this study consists
of developing the governing Reynolds equation (found in
equations (12) and (15)) for surface roughness (for one-
dimensional longitudinal and transverse) with thermal
impact for slider bearing. The combined effect of tempera-
ture and surface roughness on tilted pad slider bearings with
the unsteady fluid flow by SUPG-FEM has received little
attention. Thus, the combined effect of temperature and sur-
face roughness on a slider bearing with an unsteady fluid
film, considering the inertial effect, will be numerically ana-
lyzed in this study using SUPG-FEM.

2. Governing Equations

Figure 1 hereunder illustrates the geometry of a rough slider
bearing. Comparing the length of the bearing in the direc-
tion orthogonal to the xy-plane to the height of the fluid film
thickness h, a fairly long length is assumed.

The simplified equations for the flow of lubricants in
slider bearings are derived from the governing equations of
fluid flow. These equations took into account the viscosity
and density of the lubricant and the speed of the bearing,
as well as other variables such as the bearing geometry, the
applied load, and the temperature of the lubricant.
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The modified Reynolds lubrication equation was devel-
oped using the averaged inertia method as given in Hooke
[30]. This is the most common method for obtaining the
extended form of the Reynolds equation, which includes
fluid inertia effects. The initial system of equations is
replaced with an approximate system of equations obtained
by averaging the inertial terms across the fluid film thick-
ness. To derive the governing equation, the following
assumptions are considered: the fluid is Newtonian lubri-
cant; the fluid film thickness is significantly less than other
bearing dimensions; in fluid flow, the inertial effect is con-
sidered; body force is negligible; the flow is laminar; and
there is no slip at the bearing surfaces.

Following the above assumptions, the following equa-
tions are obtained:

Momentum equation:

∂ ρu
∂t

+ u
∂ ρu
∂x

+ v
∂ ρu
∂y

= −
dp
dx

+
∂
∂y

μ
∂u
∂y

1

Continuity equation:

∂
∂x

ρu +
∂
∂y

ρv = 0 2

Eqs. (1) and (2) are combined to generate the general
Reynolds equation for unsteady fluid flow lubricant by
applying the boundary conditions u =U and v = 0 on the
moveable slider, u = v = 0 on the stationary pad, and
substituting ρ by ρav and μ by μav, respectively.

The generalized equation of Reynolds has a form of

∂
∂x

ρavH
3
t

μav

dp
dx

= 6U
∂
∂x

ρavHt +
ρavH

2
t

μav

U
∂2 ρavHt

∂x∂t
+U

∂2 ρavHtUm

∂x2

−
∂2 ρavHtUm

∂x∂t
−
∂2 ρavHtU

2
m

∂x2
,

3

where

Um =
1
h

h

0
udy 4

is the mean velocity and Ht is the lubricant film thickness.
Along with the lubricating presumption mentioned above,
the following were taken into account for the equation of
energy:

(1) Conduction terms other than those across the fluid
film are negligible

(2) Constant-specific heat and thermal conductivity are
assumed

The equation of energy becomes as follows:

ρc u
∂T
∂x

+ v
∂T
∂y

= k
∂2T
∂y2

+ μ
∂u
∂y

2
+ u

∂p
∂x

5

The following equations indicate temperature-dependent
density and viscosity:

ρ = ρ0 1 − λ T − Ta ,

ρav = ρa 1 − λ Tav − Ta ,
6

where λ is thermal expansion coefficient and ρ and ρa are the
density at temperature T and ambient temperature Ta corre-
spondingly.

μ = μ0 exp −β T − Ta ,

μav = μa exp −β Tav − Ta ,
7

where μa and μ are the viscosities at temperature Ta and T,
respectively, at ambient pressure and β is the temperature-
viscosity coefficient.

An isothermal HD lubrication of rough surface bearings
of stochastic theory with rapidly varying quantity developed
by Christensen and Tonder [31] and Christensen [32], a
Reynolds type equation in the average pressure to rough
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h
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Figure 1: Geometry of one-dimensional transverse roughness of slider bearing.
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surface bearings was formulated by taking the film thickness
as a stochastic process.

The thickness of the lubricant film considered in this
work on the slider bearing has a geometry of two parts:

Ht x, z, ϵ = h0 x + δ x, z, ϵ , 8

where h0 is the nominal (smooth) part, which measures
the large-scale part of the film geometry, including any
long wavelength disturbances, and δ is a randomly varying
quantity with a zero mean, which arises due to the surface
roughness measured from the nominal level. In order to
deal with a one-dimensional rough surface, this paper uses
the following two additional assumptions introduced by
Christensen and Tonder [31] and Christensen [32] in
order to establish a foundation for the use of stochastic
theory:

(i) The variance of the pressure gradient of unsteady
fluid flow film in the roughness direction is
negligible

(ii) The variance of unit flow of unsteady fluid flow
film is negligible in the direction perpendicular to
the roughness. In this analysis, the assumptions
of Christensen and Tonder [31] and Christensen
[32] will be extended to the HD lubrication of rough
surface bearings with temperature-dependent ρ and
μ by imposing the following extra assumption for
velocity and temperature variables due to Sinha and
Adamu [18]. Temperature, velocity, and Um magni-
tudes associated with roughness are negligible in com-
parison to the corresponding general magnitudes in
the bearing. As a result, the variances of ρ, μ, temper-
ature gradients ∂T/∂y, and velocity gradients ∂u/∂y in
the direction of roughness are negligible

According to assumption (ii), the magnitude of the
average temperature Tav and Um associated with roughness
is negligible. As a result, the magnitudes of ρav and μav asso-
ciated with roughness are small. The theory is applied to
longitudinal and transverse roughness patterns. In the lon-
gitudinal roughness model, roughness is assumed to take
the form of long, narrow furrows and ridges in the sliding
surface (x-direction). As a result, the film thickness can be
described as a function of the form.

Ht x, z, ϵ = h x + δ z, ϵ 9

Similarly, the roughness in the transverse roughness
model is assumed to take the form of long, narrow
ridges and furrows running perpendicular to the sliding
direction.

Hence, the film thickness becomes part of the form:

Ht x, z, ϵ = h x + δ x, ϵ 10

Taking the expected values on both sides of the Reynolds
equation for unsteady fluid flow film given in Eq. (3), E hs
is the expectancy operator defined by

E hs =
∞

−∞
hs f hs dhs, 11

and f hs is the probability density distribution for the sto-
chastic variable hs.

Using the aforementioned assumptions (i) and (ii), as
well as some of the details given in Sinha and Adamu [18],
the modified Reynolds equation for unsteady fluid flow film
of longitudinal roughness is as follows:

∂
∂x

ρav h3 + 3hσ2

μav

dp
dx

= 6U
∂
∂x

ρavh +
ρav h2 + σ2

μav

U
∂2 ρavh
∂x∂t

+U
∂2 ρavhUm

∂x2

−
∂2 ρavhUm

∂x∂t
−
∂2 ρavhU

2
m

∂x2

12

Following assumption (ii), approximations of u and
∂ ρu /∂x, v and ∂ ρu /∂y, μ and ∂u/∂y, ρ and u, and ρ and
v are independent random variables, and taking expected
values in both sides of Eq. (1) and Eq. (2), we can get

∂ ρu
∂t

+ u
∂ ρu
∂x

+ v
∂ ρu
∂y

= −
dp
dx

+
∂
∂y

μ
∂u
∂y

,

∂
∂x

ρu +
∂
∂y

ρv = 0
13

Taking assumptions (i) and (iii) into account, the trans-
formed energy equation will be

ρc u
∂T
∂x

+ v
∂T
∂y

= k
∂2T
∂y2

+ μ
∂u
∂y

2
+ u

∂p
∂x

14

The transverse roughness modified Reynolds equation for
unsteady fluid flow film becomes

∂
∂x

ρav h3 − 6hσ2

μav

dp
dx

= 6U
∂
∂x

ρavh 1 −
3σ2

h2

+
ρav h2 + σ2

μav
U
∂2 ρavh
∂x∂t

+U
∂2 ρavUmh

∂x2

−
∂2 ρavUmh

∂x∂t
−
∂2 ρavU

2
mh

∂x2

15

Transverse surface roughness, momentum, and continuity
equations will take the same form as one-dimensional longitu-
dinal surface roughness equations of unsteady fluid flow film.
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The following nondimensional variable was used for this
study:

u⊛ =
u
U
,U⊛

m =
Um

U
, v⊛ =

vB
Uhi

, x⊛ =
x
B
, y⊛ =

y
hi
,

t⊛ = Ut
B

, T⊛ = T
Ta

, T⊛
av =

Tav
Ta

, μ⊛ = μ

μa
, μ⊛av =

μav
μa

,

ρ⊛av =
ρav
ρa

, ρ⊛ = ρ

ρa
, p⊛ = ph2i

μaUB
, Pe =

ρaUch2i
kB

,

σ⊛ =
σ

hi
, p⊛i =

pih
2
i

μaUB
, h⊛ =

h
hi
, β⊛ = βTa,

λ⊛ = λTa, PrEc =
μaU

2

kTa
, δ⊛ =

δ

hi

16

Equations (12), (13), (14), and (15) can be rewritten,
respectively, as follows applying the above nondimensional
variables:

∂
∂x⊛

ρ⊛av h⊛3 + 3h⊛σ⊛2

μ⊛av

dp⊛

dx⊛

= 6
∂
∂x⊛

ρ⊛avh
⊛ + Re⊛

ρ⊛av h⊛2 + σ⊛2

μ⊛av

∂2 ρ⊛avh
⊛

∂x⊛∂t⊛
+
∂2 ρ⊛avh

⊛U⊛
m

∂x⊛2
−
∂2 ρ⊛avh

⊛U⊛
m

∂x⊛∂t⊛
−
∂2 ρ⊛avh

⊛U⊛2
m

∂x⊛2
,

17

∂
∂x⊛

ρ⊛av h⊛3 − 6h⊛σ⊛2

μ⊛av

dp⊛

dx⊛

= 6
∂
∂x⊛

ρ⊛avh
⊛ 1 −

3σ⊛2

h⊛2
+ Re⊛

ρ⊛av h⊛2 + σ⊛2

μ⊛av

∂2 ρ⊛avh
⊛

∂x⊛∂t⊛
+
∂2 ρ⊛avU

⊛
mh

⊛

∂x⊛2
−
∂2 ρ⊛avU

⊛
mh

⊛

∂x⊛∂t⊛
−
∂2 ρ⊛avU

⊛2
m h⊛

∂x⊛2
,

18

Re⊛
∂ ρ⊛u⊛

∂t⊛
+ u⊛

∂ ρ⊛u⊛

∂x⊛
+ v⊛

∂ ρ⊛u⊛

∂y⊛
= −

dp⊛

dx⊛
+

∂
∂y⊛

μ⊛
∂u⊛

∂y⊛
,

19

∂
∂x⊛

ρ⊛u⊛ +
∂
∂y⊛

ρ⊛v⊛ = 0, 20

ρ⊛ u⊛
∂T⊛

∂x⊛
+ v⊛

∂T⊛

∂y⊛
=

1
Pe

∂2T⊛

∂y⊛2
+
PrEc

Pe
μ⊛

∂u⊛

∂y⊛
2
+
PrEc

Pe
u⊛

dp⊛

dx⊛
,

21

where

Re⊛ =
ρaUhi
μa

hi
B

22

is the modified Reynolds number

ρ⊛ = 1 − λ⊛ T⊛ − 1 0 , μ⊛ = exp −β⊛ T⊛ − 1 0 ,
ρ⊛av = 1 − λ⊛ T⊛

av − 1 0 , ρ⊛av = 1 − λ⊛ T⊛
av − 1 0 ,

μ⊛av = exp −β⊛ T⊛
av − 1 0 , h⊛ = 1 − x⊛ 1 −w ,w =

h0
hi

≤ 1

23

Boundary conditions are as follows: p⊛ = 0 at x⊛ = 0 and
p⊛ = 0 at x⊛ = 1, u⊛ = 1, and v⊛ = 0, on the moveable slider,
and u⊛ = v⊛ = 0 on the stationary pad of the bearing.

The following boundary conditions for the temperature
of unsteady fluid flow are used for the energy equation:
T⊛ = Ts on the moveable slider, T⊛ = Tp on the stationary
pad, and T⊛ = Ti at the inlet of slider x⊛ = 0 , where

Tp = Ti = Ts,

Ti < Ts < Tp,

Ti < Tp < Ts

24

For computation purposes, the irregular domain of the
slider bearing for unsteady fluid flow lubricant is trans-
formed into a regular geometric domain, according to Sinha
and Adamu [18]. Assuming the roughness on the pad and
runner to be identical random distributions δ1 = δ2 , the
following linear transformation was chosen:

y⊛ = y†h⊛ x† + δ⊛1 ,

0 ≤ y† ≤ 1
25

The decoupled main governing equations of unsteady
lubricant of (17), (18), (19), (20), and (21) become

ρ⊛av D1
d2p⊛

dx†2
+ −λ⊛

∂T⊛
av

∂x†
D1 + ρ⊛av β⊛ ∂T

⊛
av

∂x†
D1 +D2

dh⊛

dx†
dp⊛

dx†

= 6μ⊛av ρ⊛av
dh⊛

dx⊛
− λ⊛h⊛

∂T⊛
av

∂x†
+ BD3 Re⊛ρ⊛av,

26

−λ⊛
∂T⊛

av
∂x†

D4
dp⊛

dx†
+ ρ⊛av

dp⊛

dx†
β⊛ ∂T

⊛
av

∂x†
D4 +D5

dh⊛

dx†

+D4ρ
⊛
av
d2p⊛

dx †2 = 6μ⊛av ρ⊛avD6
dh⊛

dx†
− λ⊛D7

∂Tav
∂x†

+ BD3Re⊛ρ⊛av,

27
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1
h⊛2

μ⊛ −β⊛ ∂T⊛

∂y†
∂u⊛
∂y†

+
∂2u⊛

∂y†2
=
dp⊛

dx†
+ Re⊛

−λu⊛
∂T⊛

∂t†
+ ρ⊛

∂u⊛

∂t†
− λ⊛u⊛2

∂T⊛

∂x†
+ ρ⊛u⊛

∂u⊛

∂x†

+
λ⊛u⊛2

h⊛
y†

dh⊛

dx†
∂T⊛

∂y†
−
ρ⊛u⊛

h⊛
y†

dh∗

dx†
∂u⊛

∂y†

−
λ⊛v⊛u⊛

h⊛
∂T⊛

∂y†
+
ρ⊛v⊛

h⊛
∂u⊛

∂y†

28

−λ⊛u⊛
∂T⊛

∂x†
+ ρ⊛

∂u⊛

∂x†
+
λ⊛

h⊛
y†

dh⊛

dx†
u⊛

∂T⊛

∂y†
−
ρ⊛

h⊛
y†

dh∗

dx†
∂u⊛

∂y†

−
λ⊛

h⊛
v⊛

∂T⊛

∂y†
+
ρ⊛

h⊛
∂v⊛

∂y†
= 0,

29

ρ⊛ u⊛
∂T⊛

∂x†
−

1
h⊛

y†
dh⊛

dx†
∂T⊛

∂y†
+

1
h⊛

v⊛
∂T⊛

∂y†

=
1

peh
⊛2
∂2T⊛

∂y†2
+
prEcμ

⊛

peh
⊛2

∂u⊛

∂y†
2
+
prEcu

⊛

pe

dp⊛

dx†

30

where
D1 = h⊛3 + 3h⊛σ⊛2,D2 = 3h⊛2 + 3σ⊛2,D3 = h⊛2 + σ⊛2, D4 =

h⊛3 − 6h⊛σ⊛2,D5 = 3h⊛2 − 6σ⊛2,D6 = 1 + 3 σ⊛2/h⊛2 ,
D7 = h⊛ − 3 σ⊛2/h⊛ ,

B = −λ⊛
∂h⊛

∂x†
∂T⊛

av

∂t†
− λ⊛h⊛

∂2T⊛
av

∂x†∂t†
− 2λ⊛U⊛

m
∂h⊛

∂x†
∂T⊛

av

∂x†

− λ⊛h⊛U⊛
m
∂2T⊛

av

∂x†2
− λ⊛h⊛

∂U⊛
m

∂x†
∂T⊛

av

∂x†
+ λ⊛U⊛

m
∂h⊛

∂x†
∂T⊛

av

∂t†

+ λ⊛h⊛
∂U⊛

m

∂x†
∂T⊛

av

∂t†
+ λ⊛h⊛U⊛

m
∂2T⊛

av

∂x†∂t†
+ λ⊛h⊛

∂T⊛
av

∂x†
∂U⊛

m

∂t†

+ 4λ⊛h⊛
∂U⊛

m

∂x†
∂T⊛

av

∂x†
− 2λ⊛U⊛2

m
∂h⊛

∂x†
∂T⊛

av

∂x†
+ ρ⊛av

∂h⊛

∂x†
∂U⊛

m

∂x†

+ h⊛ρ⊛av
∂2U⊛

m

∂x†2
− ρ⊛av

∂h⊛

∂x†
∂U⊛

m

∂t†
− ρ⊛avh

⊛ ∂2U⊛
m

∂x†∂t†

− 4ρ⊛av
∂h⊛

∂x†
∂U⊛

m

∂x†
− 2h⊛ρ⊛av

∂2U⊛
m

∂x†2
− h⊛U⊛2

m
∂2T⊛

av

∂x†2

The transformed dimensionless temperature-dependent
viscosity and density equations are as follows:

ρ⊛ = 1 0 − λ⊛ T⊛ − 1 0 μ⊛ = exp −β⊛ T⊛ − 1 0 ,

ρ⊛av = 1 0 − λ⊛ T⊛
av − 1 0 μ⊛av = exp −β⊛ T⊛

av − 1 0 ,
31

where T⊛
av =

1
0T

⊛dy†.
The following initial essential boundary conditions are

tokens for this article:

u⊛ = 1 − y†, v⊛ = 0 at x† = 0,U⊛ x, y, 0
=U⊛ x, y , T⊛ x, y, 0 = T⊛ x, y

32

The dimensionless load-carrying capacity performance
W⊛ and the drag force F⊛ are obtained from the following
equations, respectively:

W⊛ =
Wh2i
μaUB2 =

1

0
p⊛ dx†,

F⊛ =
Fhi

μaUB
=

1

0
μ⊛

∂u⊛

h⊛∂y† y†=0
dx†

33

3. Finite Element Formulation

In order to obtain the weak form of the aforementioned
equations for finite element formulation, we first form the
weighted integral equations for (26), (27), (29), and (30)
and apply integration by parts to the terms with second
derivatives. Bilinear rectangular elements are used for
governing.

Let the geometry of the domain Ω be divided into Ne
bilinear rectangular elements, and Ω =Ω ∪ Γ.

∪Ne
e=1Ωe =Ω,

∩ Ne
e=1Ωe =∅,

34

where Ne discretized number of rectangular elements, Ωe
denotes the interior domain of an element, and Γe is the
boundary of rectangular element Ωe.

The elemental weak form of the governing Eqs. (26),
(27), (29), (30), and (31) is as follows:

Ωe
−ρ⊛av D1

dNi

dx†
dp⊛

dx†
+Ni −λ⊛

∂T⊛
av

∂x
D1

+ ρ⊛av β⊛ ∂T
⊛
av

∂x†
D1 +D2

dh⊛

dx†
dp⊛

dx†
dΩ

=
Ωe

6Niμ
⊛
av ρ⊛av

dh⊛

dx†
− λ⊛h⊛

∂T⊛
av

∂x†
+ BD3Ni Re⊛ρ⊛av dΩ,

35

Ωe
−ρ⊛av D4

dNi

dx†
dp⊛

dx†
+Ni −λ∗

∂T⊛
av

∂x†
D4

+ ρ⊛av β⊛ ∂T⊛
av

∂x†
D4 +D5

dh⊛

dx†
dp⊛

dx†
− BD3 Re⊛Niρ

⊛
av dΩ

=
Ωe

6Niμ
⊛
av ρ⊛avD6

dh⊛

dx†
− λ⊛D7

∂T⊛
av

∂x†
dΩ,

36

Ωe
−
μ⊛

h⊛2
∂Ni

∂y†
∂u⊛

∂y†
+ βNi

∂T⊛

∂y†
∂u⊛

∂y†

−Ni
dp⊛

dx†
+Ni Re⊛ λu⊛

∂T⊛

∂t†
− ρ⊛

∂u⊛

∂t†
+ λ⊛u⊛2

∂T⊛

∂x†

− ρ⊛u⊛
∂u⊛

∂x†
−
λ⊛u⊛2

h⊛
y†

dh⊛

dx†
∂T⊛

∂y†
+
ρ⊛u⊛

h⊛
y†

dh∗

dx†
∂u⊛

∂y†

+
λ⊛v⊛u⊛

h⊛
∂T⊛

∂y†
−
ρ⊛v⊛

h⊛
∂u⊛

∂y†
dΩ = 0,

37
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Ωe
Ni −λ⊛u⊛

∂T⊛

∂x†
+ ρ⊛

∂u⊛

∂x†
+
λ⊛

h⊛
y†

dh⊛

dx†
u⊛

∂T⊛

∂y†

−
ρ⊛

h⊛
y†

dh∗

dx†
∂u⊛

∂y†
− λ⊛v⊛

∂T⊛

∂y†
+ ρ⊛

∂v⊛

∂y†
dΩ = 0,

38

Ωe
ρ⊛Ni u⊛

∂T⊛

∂x†
−

y†

h⊛
dh⊛

dx†
∂T⊛

∂y†
+
v⊛

h⊛
∂T⊛

∂y†

−
1

peh
⊛2
∂Ni

∂y†
∂T⊛

∂y†
−
PrEcμ

⊛

Peh
⊛2 Ni

∂u⊛

∂y†
2
dΩ

−
Ωe

PrEcu
⊛

Pe
Ni

dp⊛

dx†
dΩ = 0,

39

where Ni is the weight (or test) for one- and two-
dimensional functions. To generalize the finite element for-
mulation, it is assumed that the same order of polynomials
is used to approximate velocity, temperature, average tem-
perature, and U⊛

m unknowns and different for pressure
unknown weight function, i.e.,

u⊛ x†, y†, t† ≈ 〠
nel

j=1
uj t

† ⋔ j x
†, y† , v⊛ x†, y† ≈ 〠

nel

j=1
vj⋔j x

†, y† ,

P⊛ x† ≈ 〠
nel

j=1
Pj⋔j x

† , T⊛ x†, y† ≈ 〠
nel

j=1
T j⋔ j x

†, y† ,

T⊛
av y†, t† ≈ 〠

nel

j=1
Tav j⋔ j y

† , U⊛
m y†, t† ≈ 〠

nel

j=1
Umj⋔ j y

† ,

40

where U j, V j, Pj, T j, Tav, and Um are nodal unknown values
and ⋔j are shape (basis) functions of space variables only that
are used to construct the approximate solutions. nel is the
pressure, velocity, and temperature number of nodes over an
element, i.e., nel = 2 for P, Tav, and Um and nel = 4 for U , V ,
and T. In consideration of GFEM, the selection of weight
functions is the same as the shape functions Ni = ⋔j .

Due to the node-to-node oscillatory solutions of the
Galerkin finite element method (GFEM), instead, streamline
upwind Petrov-Galerkin (SUPG) was used for U , V , and T .
The weighted residual formulation of the above equation is
obtained by substituting the approximation equation (40)
into (35), (36), (37), (38), and (39). Thus, the weak integral
form of P and the SUPG decoupled governing equations
for U , V , and T are as follows:

〠
nel

j=1 Ωe
−ρ⊛avD1

dNi

dx†
d⋔j

dx†
+Ni −λ⊛

dT⊛
av

dx†
D1

+ ρ⊛av β∗ dT
⊛
av

dx†
D1 +D2

dh⊛

dx†
d⋔j

dx†
dΩ Pj

=
Ωe

6Niμ
⊛
av ρ⊛av

dh⊛

dx†
− λ⊛h⊛

dT⊛
av

dx†
+ BD3 Re⊛Niρ

⊛
av dΩ,

41

〠
nel

j=1 Ωe
−ρ⊛avgD4

dNi

dx†
d⋔ j

dx†
+Ni −λ⊛

dT⊛
av

dx†
D4

+ ρ⊛av β⊛ dT
⊛
av

dx†
D4 +D5

dh⊛

dx†
d⋔j

dx†
dΩ Pj

=
Ωe

6Niμ
⊛
av ρ⊛avD6

dh⊛

dx†
− λ⊛D7

∂T⊛
av

∂x†
+ Re⊛NiB ρ⊛av h⊛2 + σ⊛2 dΩ,

42

〠
nel

j=1 Ωe
−Niρ

⊛ Re⊛⋔ jdΩ
∂U⊛

j

∂t†

+ 〠
nel

j=1 Ωe
−
μ⊛

h⊛2
Niβ

∂⋔j

∂y†
∂⋔j

∂y†
〠
nel

k=1
Tk +

∂Ni

∂y†
∂⋔k

∂y†

+Ni Re⊛ −ρ⊛u⊛o
∂⋔j

∂x†
+
ρ⊛u⊛o
h⊛

y†
dh∗

dx†
∂⋔j

∂y†
−
ρ⊛v⊛o
h⊛

∂⋔ j

∂y†
dΩ U j

=
Ωe

d⋔ j

dx†
〠
nel

k=1
Pk + Re⊛ −λ⊛u⊛o

∂⋔ j

∂t†
〠
nel

k=1
Tk − λ⊛u⊛2o

∂⋔ j

∂x†
〠
nel

k=1
Tk

+
λ⊛u⊛2o
h⊛

y†
dh⊛

dx†
∂⋔ j

∂y†
〠
nel

k=1
Tk −

λ⊛v⊛o u
⊛
o

h⊛
∂⋔j

∂y†
〠
nel

k=1
Tk NidΩ,

43

〠
nel

j=1 Ωe
−
⋔z

h⊛
λ⊛

∂⋔j

∂y†
+
ρ⊛

h⊛
∂⋔ j

∂y†
NidΩ V j

=
Ωe

λ⊛u⊛0
∂⋔ j

∂x†
〠
nel

k=1
Tk − ρ⊛

∂⋔z

∂x†
〠
nel

k=1
Uk +

λ⊛

h⊛
y†

dh⊛

dx†
u⊛0

∂⋔⊛
z

∂y†
〠
nel

k=1
Tk

−
ρ⊛

h⊛
y†

dh∗

dx†
∂⋔⊛

z

∂y†
〠
nel

k=1
Uk NidΩ,

44

X

Y

Figure 2: Regular domain discretization system of grid.
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〠
nel

j=1 Ωe
Niρ

⊛ u⊛0
∂⋔j

∂x†
−

y†

h⊛
dh⊛

dx†
∂⋔j

∂y†
+
v⊛0
h⊛

∂⋔j

∂y†

+
1

Peh
⊛2
∂Ni

∂y†
∂⋔j

∂y†
dΩ T j =

Ωe
Ni

PrEcμ
⊛

Peh
⊛2

∂⋔z

∂y†
〠
nel

k=1
Uk

2

+
PrEc

Pe
u0

∂⋔z

∂x†
〠
nel

k=1
Pk dΩ,

45

where Ni is the SUPG weight (or test) function expressed as

Ni = ⋔i + Si, Si =
kuj⋔i,j

u
46

k is the SUPG upwind parameter calculated using ele-
mental dimensions and elemental unknown to the center
of quadrilateral elements. The most detailed explanation
is given by Brooks and Hughes [33]. Since we are using
a linear shape and weight function, terms of T⊛

av and U⊛
m

in (41) and (42) that have a second-order derivative go
to zero.

3.1. Treatment of the Solution. Figure 2 shows a 25 × 25 grid
discretization mesh for finite element for numerical computa-
tion for temperature and velocity, whereas for pressure, aver-
age temperature, and Um, only the bottom one-dimensional
line of the x-axis is used in this article.

Equation (43) includes nodal unknowns and time
derivatives. Therefore, it is not a set of algebraic equations
but instead a set of ODEs. First, SUPG-FEM was devel-
oped using a semidiscrete formulation, and the Crank-
Nicolson schemes were applied to solve the system of
equations for time-dependent equation. Because the
remaining equations (41), (42), (44), and (45) contain
nonlinear terms, the formulated system of algebraic equa-
tions is solved iteratively.

The approximated SUPG-FEM solution obtained for the
above equation is to an accuracy of tolerance Tol , where
the error is calculated as

max
ψnew
j − ψprev

j

ψnew
j

< Tol, 47

and ψj are values of the unknown nodal variables at coordi-
nate points.

Tol = 10−3, 10−4, and 10−5 tolerance were used for iter-
ations performed. However, on approximate solution, there
is no significant difference for all different values of tolerance.
MATLAB software version 2021 is used to obtain the result by
developing MATLAB code. Algorithm 1 shows the general
steps to solve the governing equation to obtain the result.

4. Results and Discussion

The tilted slider plane bearing parameters for time-
dependent fluid flow lubricant in this article appear to be
functions of the dimensionless parameters Pe, Pr , and Ec as
well as γ⊛, η⊛, w, Re⊛, and σ⊛. The following parameter

Step 1. Initialization.
i. Input the constant data value: λ⊛, β⊛, σ⊛, Pr, Ec, Pe, Re⊛
ii. Fix all boundary conditions for u⊛, v⊛, T⊛, P⊛,
iii. Fix fictitious values for u⊛, v⊛, T⊛, P⊛ over the entire grid points

Step 2. Calculate p⊛new using Eq. (41) or (42).
Step 3. Calculate u⊛new using p⊛new , u⊛old, v⊛old and T⊛old and Eq. (43).
Step 4. Calculate v⊛new using u⊛new , v⊛old and T⊛old and Eq. (44).
Step 5. Calculate T⊛new using p⊛new , u⊛new , v⊛new and T⊛old and Eq. (45).
Step 6. Test the convergence rate.
Step 7. Repeat steps 2-6 till convergence is obtained for all spatial variables.
Step 8. Calculate load carrying capacity performance W⊛ and friction force F⊛ using Eq. (33).

Algorithm 1: General steps to solve the governing equation.
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Figure 3: LCCP vs. inclination on different grid system.
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values were selected in accordance with the Lebeck consider-
ation stated in [34].

Some other constants are given in detail in Sinha and
Adamu [18]. The findings on pressure distribution, load-

bearing capacity performance, drag friction force, velocity,
and temperature performance have been investigated.

The results obtained are illustrated using tables and
graphs. To ensure domain discretization grid indepen-
dence, the numerical simulations were run on various grid
systems with 10 by 10, 20 by 20, and 25 by 25 grid points.
The load-carrying capacity performance of various grids is
compared and displayed in Figure 3. This leads to the
conclusion that the grid scheme of 25 by 25 produces a
grid-independent solution. Finally, the bearing perfor-
mance is calculated from equation (33) using the trapezoi-
dal method.
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Figure 4: Pressure distributions at Ti = Tp = Ts = 1 0, w = 0 4 and for different value of Re⊛ (longitudinal roughness).
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Figure 5: Pressure distributions at w = 0 4 and for different values
of Re⊛.

Table 1: Longitudinal roughness W⊛ and F⊛ for condition(C1) at
different values of Re⊛ and w.

w 0.4 0.6 0.8 1

Re⊛ = 0 5
W⊛ 0.7697 0.4114 0.1659 0.0025

F⊛ 1.6959 1.3197 1.1151 1.0000

Re⊛ = 1
W⊛ 0.9475 0.5297 0.2221 0.0037

F⊛ 1.7422 1.3320 1.1147 0.9998

Re⊛ = 1 5
W⊛ 1.0745 0.6421 0.2751 0.0048

F⊛ 1.7868 1.3433 1.1139 0.9994

Re⊛ = 2
W⊛ 1.2792 0.7479 0.3243 0.0057

F⊛ 1.8293 1.3534 1.1128 0.9988
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In this study, our work gives special attention for the fol-
lowing condition:

Condition (C1): surface roughness and thermal com-
bined effect

Condition (C2): thermal effect only
Condition (C3): effect of surface roughness only

4.1. Longitudinal One-Dimensional Surface Roughness.
Figure 4 illustrates the one-dimensional longitudinal distri-
bution of pressure performance caused by the above condi-
tions (C1, C2, and C3) for various modified Reynolds
numbers, considering unsteady fluid flow lubricant. For all
conditions, the load-carrying capacity performance (LCCP)
is in the sequence of conditions (C1) < conditions (C2) < con-
ditions (C3) at time t = 0 01 for each fixed value of x†. One can
deduce from this that the bearing’s LCCP increased as the
inertial term effect Re⊛ increased for t = 0 01 constant time.
Thus, increasing the inertial term effect value obstructs the

Table 2: Longitudinal roughness W⊛ and F⊛ for condition(C2) at
different values of Re⊛ and w.

w 0.4 0.6 0.8 1

Re⊛ = 0 5
W⊛ 0.8122 0.4282 0.1712 0.0025

F⊛ 1.7070 1.3209 1.1150 1.0000

Re⊛ = 1
W⊛ 0.9960 0.5498 0.2288 0.0038

F⊛ 1.7305 1.3335 1.1146 0.9983

Re⊛ = 1 5
W⊛ 1.1719 0.6655 0.2831 0.0049

F⊛ 1.7670 1.3449 1.1138 0.9994

Re⊛ = 2
W⊛ 1.3391 0.7742 0.3334 0.0059

F⊛ 1.8011 1.3552 1.1126 0.9987

Table 3: Longitudinal roughness W⊛ and F⊛ for condition(C3) at
different values of Re⊛ and w.

w 0.4 0.6 0.8 1

Re⊛ = 0 5
W⊛ 0.8901 0.4775 0.1918 0.0000

F⊛ 1.7104 1.3256 1.1147 1.0000

Re⊛ = 1
W⊛ 1.0774 0.6032 0.2250 0.0000

F⊛ 1.7498 1.3383 1.1142 1.0000

Re⊛ = 1 5
W⊛ 1.2586 0.7245 0.3098 0.0000

F⊛ 1.7876 1.3504 1.1138 1.0000

Re⊛ = 2
W⊛ 1.4333 0.8408 0.3648 0.0000

F⊛ 1.8237 1.3615 1.1128 1.0000
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Figure 6: Pressure distributions at Ti = Tp = Ts = 1 0, w = 0 4 and
for different value of Re⊛ (longitudinal roughness).
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fluid flow and increases pressure. Surface roughness, on the
other hand, has a greater effect than the combined and ther-
mal effects. This demonstrates the importance of taking into

account inertial terms and surface roughness effects when cal-
culating the LCCP of plane slider bearings. In addition, the
maximum curve point of the pressure is noticed closer to the
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outlet, and the pattern of the graph of pressure distribution
on the plane slider bearing is in good agreement with Sinha
and Adamu [18], Kumar [4], Rathish Kumar and Srinivasa
Rao [5] Desu Tessema et al. [22], and Naduvinamani and
Angadi [24].

Figure 5 depicts the pressure distribution of the longitu-
dinal model type for different modified Reynolds numbers
due to the fluid inertial term effect at w = 0 4, of temperature
Ti = Tp = Ts = 1 0, and condition (C1). From this, one can
observe that as the modified Reynolds number increases,
the LCCP of the plane slider bearing increases. Furthermore,
again from Tables 1–3, as the modified Reynolds number
increases, the corresponding drag force increases. This result
is in good agreement with Malvano and Vatta [16] and
Sestieri and Piva [12].

At an inclination of w = 0 4, Ti = Tp = Ts = 1 0, and for
surface roughness and thermal combined effect, Figure 6 dis-
plays the pressure distribution for an unsteady fluid flow
lubricant of a plane slider bearing for various modified
Reynolds numbers. This suggests that the current study is
superior to earlier work when compared to the steady lami-
nar flow of the pressure distribution, which is carried out in
Sinha and Adamu [18] and Desu Tessema et al. [22]. In
comparison to other methods that are described in the liter-
ature, our method generally has a better LCCP.

The LCCP and drag force of one-dimensional longitudinal
roughness for various inertial term effect values corresponding
to the stated conditions are displayed in Tables 1–3. We see
an almost 5% improvement in load-carrying capacity perfor-
mance between condition (C1) and condition (C2) in all iner-
tial term effect values at w = 0 4. Similarly, Tables 1 and 2

demonstrate that there is a drag force of less than 1% at
w = 0 4.

Furthermore, we observed a 13% decrement in LCCP
and a negligible change in drag force for all Re⊛ values
between condition (C3) and condition (C1) at w = 0 4 in
Tables 1 and 3. This happens because the density and viscos-
ity of the lubricant’s fluid are reduced because of the condi-
tion (C1) effect. As a result, the LCCP is reduced. Even if the
LCCP of a parallel slider bearing at w = 1 is small, a better
LCCP is generated with condition (C1) and condition (C2)
in comparison to condition (C3) due to fluid expansion as
the lubricant temperature rises.

A one-dimensional longitudinal surface roughness
model assumes that the texture has the appearance of fur-
rows, long narrow ridges, and valleys in the sliding direction
(x-axis), allowing for fast lubricant flow and resulting in a
decrease in pressure distribution, implying a reduction in
load-carrying capacity (LCC).

Figures 7 and 8 show the surface plot of temperature for
one-dimensional longitudinal surface roughness in the cases
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Figure 11: Temperature contour plot line for Case 2 at w = 0 4.

Table 4: Effect of surface roughness on LCCP for different values
of σ⊛, at w = 0 4, λ⊛ = 0 4, Re⊛ = 1 0, and β⊛ = 10.

σ⊛ 0.0 0.02 0.04 0.06 0.08 0.10

w⊛ 1.0062 1.0041 0.9979 0.9877 0.9741 0.9205
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Figure 12: U-velocity profile for C1 at w = 0 4 and Re⊛ = 1 0.

Table 5: Effect of U-velocity on bearing performance for C1 at
w = 0 4 and Re⊛ = 1 0.

U 1.0 1.2 1.4 1.6

w⊛ 0.9475 0.9723 0.9925 1.0087

F⊛ 1.7422 1.7489 1.7549 1.7588

Table 6: Performance of bearing for C1 at w = 0 4 and Re⊛ = 1 0 for
different time discretization.

Δt 0.0125 0.0111 0.0100 0.0091

w⊛ 0.9062 0.9278 0.9475 0.9679

F⊛ 1.7315 1.7369 1.7422 1.7425
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of conditions C1 and C2 at Re⊛ = 2. Both surface plots of
temperature graphs show that there is no significant varia-
tion in temperature values.

In parallel plane slider bearings, if the temperature of
surface of the pad bearing is higher than the slider tempera-
ture of surface, a suction action may occur, according to
Zienkiewicz [35]. The study of the surface thermal impact
on the plane slider and pad at a certain temperature of
(Ts < Tp or Ts > Tp) on the LCC and frictional force of a
plane slider bearing is of excessively realistic relevance. In
practice, the fixed surface is typically warmer than the mov-
ing surface, according to Pinkus and Sternlicht [36]. Another
critical scenario in a slider bearing application is that the
inlet lubricant temperature is lower than the slider and pad
temperatures. Based on this, the combined thermal and sur-
face roughness effects (C1) of the following temperature
boundary conditions have been investigated with a modified
Reynolds number Re⊛ = 0 05:

Case 1. Ti = Tp = 1 2 and Ts = 1 3.

Case 2. Ti = Ts = 1 2 and Tp = 1 3.

Case 3. Ti = 1 2, Ts = 1 3, and Tp = 1 4.

Case 4. Ts = 1 4, Ti = 1 2, and Tp = 1 3.

Drag forces and LCCP for one-dimensional longitudinal
and transverse surface roughness are shown in Figure 9 at
Re⊛ = 0 05 of inertial term effect. The inlet temperature is
equal to or less than the temperatures of the slider (movable)
and pad (stationary) of plane slider bearing.

When the temperature of the pad (stationary) and slider
(movable) is different, there is an 18% difference in loading
performance between Case 2 and Case 1 for w = 0 4 as
shown in Figure 9(a). For w = 1, Case 1’s LCCP is slightly
better than Case2’s. In the case of drag force, there is a signif-
icant difference between Case 2 and Case 1 as we observe
from Figure 9(c).

These figures show that if the inlet temperature is lower
than that of the pad and slider of plane slider bearing, Case
4’s drag force of friction and LCCP are lower than Case 3’s
for each inclination parameter. According to these various
factors, if the slider temperature is higher than the pad tem-
perature, the temperature may drop due to the inertial term
effect, increasing the LCCP and drag friction force.

For a better understanding, the temperature surface con-
tour plots of Case 1 and Case 2 for w = 0 4 are shown in
Figures 10 and 11. Case 2’s load-carrying capacity is lower
than Case 1’s because Case 2 has total higher average tem-
perature than Case 1.

The performance of LCCP for different (δ⊛) values is
shown in Table 4 at a modified inertial value of Re⊛ = 1 0.
We can see from this table that as δ⊛ increases, the bearing’s
LCCP decreases. This is because the surface roughness
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Figure 13: Pressure distributions at Ti = Tp = Ts = 1 0 and w = 0 4 for different value of Re⊛ (transversal roughness).
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(asperity) increases, allowing for faster lubricant flow and a
decrease in pressure distribution for the one-dimensional
longitudinal roughness model; however, it is the converse
for the one-dimensional transversal roughness model.

4.2. U-Velocity Profile. Plotting of a one-dimensional longi-
tudinal roughness U-velocity profile with different boundary
condition U values of the slider for condition (C1) at
x = 0 02 is shown in Figure 12. This indicates that the
full U-velocity increases as the slider’s U value increases.

Table 5 displays the influence of U-velocity for condition
(C1). It is evident that raising the U value enhances the abil-
ity to withstand load and drag forces. This is because, in
addition to the effects of inertial forces and surface roughness,
an increasing U value accelerates the fluid in the sliding direc-
tion. The fluid’s viscosity increases with even a small increase
in temperature, which enhances the bearing capacity.

Table 6 shows the bearing performance for the com-
bined effect (C1) at different time discretization. As anyone
can observe from the table, as time discretization increases,
unsteady fluid flow lubricant bearing performance rises also.

4.3. One-Dimensional Transverse Roughness. With unsteady
fluid flow taken into consideration, Figure 13 shows a one-
dimensional unsteady fluid flow lubricant transverse rough-
ness distribution of pressure performance produced by the
aforementioned conditions (C1, C2, and C3) for different
inertial values. At a time discretization of t = 0 01, the LCCP
is in the sequence of conditions (C2) < conditions (C1) <
conditions (C3) for each fixed value of x†. This indicates that
the LCCP of the bearing grew at t = 0 01 constant time as the
fluid inertial term’s influence increased. Consequently,
increasing the inertial fluid effect causes pressure to rise
and obstructs fluid movement. Moreover, under all circum-
stances, surface roughness has a bigger impact than both
combined and thermal impacts.

Regarding the time-dependent pressure equation’s slider
and pad at different temperatures. For a fixed modified
Reynolds number value of Re⊛ = 0 5, the distribution of
pressure in Figure 9(b) has a slightly higher LCCP than the
one-dimensional longitudinal distribution but otherwise fol-
lows the same pecking order. The drag force results for one-
dimensional longitudinal roughness in Cases 1–4 are almost
the same as those for one-dimensional transverse roughness,

as shown in Figure 9(d). With that exception, Cases 4 and 3
are reversed.

The LCCP and drag force for unsteady fluid flow lubricant
of one-dimensional transverse roughness for different fluid
inertial terms corresponding to the aforementioned conditions
are shown in Tables 7–9. At an inclination of w = 0 4, there is
a nearly 19% difference in LCCP between condition (C1) and
condition (C2). Similarly, at w = 0 4, there is a 2% difference
in drag force for all modified Reynolds numbers at Re⊛.

Moreover, for all Re⊛ values between condition (C3) and
condition (C1) at w = 0 4, we observed a nearly 13% differ-
ence in LCCP and a 2% difference in drag force, as shown
in Tables 7 and 9. Because of the combined effect, the den-
sity and viscosity of the lubricant’s fluid are reduced. The
LCCP is reduced as a result. Tables 8 and 9 demonstrate that
for w = 0 4, there is a significant difference in LCCP between
condition (C3) and condition (C2). There is also a 26% dif-
ference in value for transverse frictional force over all mod-
ified Reynolds number values between condition (C3) and
condition (C2). Even if a parallel slider bearing’s LCCP is
small at w = 1, there is an LCCP generated in condition
(C1) and condition (C2) in comparison to condition (C3)
due to fluid expansion as the lubricant temperature rises.

Due to the plane slider bearing nature of our consider-
ation, when there is transverse roughness for unsteady fluid
flow lubricant, the fluid typically only travels in the x-direc-
tion and must pass through a series of constrictions at the flow

Table 9: Transversal roughness W⊛ and F⊛ for condition(C3) at
various value of Re⊛ and w.

w 0.4 0.6 0.8 1

Re⊛ = 0 5
W⊛ 1.2133 0.5705 0.2193 0.0000

F⊛ 1.7703 1.3349 1.1143 1.0000

Re⊛ = 1
W⊛ 1.4483 0.7154 0.2865 0.0000

F⊛ 1.8192 1.3496 1.1140 1.0000

Re⊛ = 1 5
W⊛ 1.6784 0.8561 0.3512 0.0000

F⊛ 1.8665 1.3635 1.1133 1.0000

Re⊛ = 2
W⊛ 1.9027 0.9917 0.4128 0.0000

F⊛ 1.9119 1.3764 1.1124 1.0000

Table 7: Transversal roughness W⊛ and F⊛ for condition(C1) at
various value of Re⊛ and w.

w 0.4 0.6 0.8 1

Re⊛ = 0 5
W⊛ 1.0507 0.4916 0.1897 0.0027

F⊛ 1.7722 1.3278 1.1150 1.0000

Re⊛ = 1
W⊛ 1.2746 0.6283 0.2525 0.0040

F⊛ 1.7858 1.3420 1.1145 0.9997

Re⊛ = 1 5
W⊛ 1.4917 0.7592 0.3120 0.0052

F⊛ 1.8309 1.3551 1.1136 0.9993

Re⊛ = 2
W⊛ 1.7009 0.8832 0.3672 0.0062

F⊛ 1.8735 1.3669 1.1123 0.9986

Table 8: Transversal roughness W⊛ and F⊛ for condition(C2) at
various value of Re⊛ and w.

w 0.4 0.6 0.8 1

Re⊛ = 0 5
W⊛ 0.8460 0.4282 0.1707 0.0025

F⊛ 1.7071 1.3224 1.1151 1.0000

Re⊛ = 1
W⊛ 1.0356 0.5580 0.2281 0.0038

F⊛ 1.7486 1.3353 1.1147 0.9988

Re⊛ = 1 5
W⊛ 1.2184 0.6665 0.2824 0.0049

F⊛ 1.7883 1.3473 1.1140 0.9994

Re⊛ = 2
W⊛ 1.3937 0.7765 0.3328 0.0058

F⊛ 1.8258 1.3581 1.1129 0.9987
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gap, or fluid film domain area. In addition to the inertial term
effect, this will impede the flow. The widening due to valleys of
surface asperities, on the other hand, will ease the flow.

5. Conclusion

In this work, time-dependent fluid flow pressure and
momentum equation in slider bearings were evaluated via
FEM to analyze the bearing characteristics (LCCP and drag
force) of the one-dimensional longitudinal and transverse
models. In both types of models for nonparallel slider
bearings, the achievement of the bearing characteristics
improves. However, for w = 1 (parallel), the performance
of the bearing is negligible. Furthermore, in the case of con-
dition (C1) taking the thermal of the slanted pad slider as
higher than the thermal of the pad, in both models, LCCP
rises for nonparallel bearing, whereas it goes to zero for par-
allel w = 1 . The opposite is true for drag force in both
model types. As the modified Reynolds number increases,
the inertial terms become increasingly important, and the
geometrical configuration of the film differs significantly
from that obtained using the elementary lubrication theory.
This is due to fluid inertial term effects from unsteady fluid
flow in addition to the surface roughness effect. This demon-
strates the significance of taking surface texture and inertial
effects into account due to unsteady fluid flow lubricant.
One-dimensional transversal models typically have a pressure
distribution that is larger than that of one-dimensional longi-
tudinal slider bearings in the situation of unsteady fluid flow
lubrication.

A superscript “⊛” indicates the nondimensional quantity.

Symbols

δ: Random distribution of roughness
μ: Viscosity of the lubricant
μav: Average viscosity across the film
ρ: Density of the lubricant
ρav: Average density across the film
σ2: Variation of roughness
B: Bearing width
E: Expected value operator
Ec: Eckert number
h: Nominal film thickness
h0: Nominal film thickness at outlet
hi: Nominal film thickness at inlet
Ht : Height of rough surface
k: Thermal conductivity of lubricant
P: Lubricant pressure
pe: Peclet number
pi: Inlet pressure
pr : Prandtl number
T : Lubricant temperature
Tav: Average temperature across the film
U : Velocity of the moving surface
v: Velocity in the direction of the y-coordinate
w: h0/hi
W⊛: Load-carrying capacity of the bearing
x†, y†: Transformed coordinate system.
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