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Introduction

Automatic detection of measurement errors is extremely
important in automatic analysis of large analytical
sample sequences. Error detection usually involves sam-
ples from known, control solutions which are regularly
introduced into a sequence of unknown samples. The
control can then be performed using proven graphical
methods [1] based on the sequence of the measured
control values during a longer period (day or shift).
Numerical methods of detection are becoming increas-
ingly important in microcomputer-based laboratory
monitoring systems.

This paper discusses one component of the measurement
error: the so-called ’autocorrelation-type’ error. This
error component appears when the measured values of
subsequent samples influence each other; it is a frequent
error in analytical measurements. Its main sources are
either sorption phenomena or inertia effects in the
measurement or registration devices.

The main purpose of this paper is to propose an efficient
numerical method for the detection of autocorrelation-
type measurement error components.

First, several models of the measurement error in
automatic analysis are investigated. Based on this, the
numerical method proposed is decribed. Finally, the
results of the validation of the proposed method and its
comparison with the graphical LAG-1 method is presen-
ted for control sample sequences.

Materials and experimental methods

The sample sequences investigated were control samples
with 0.5, 1.0 and 3.0 g/1 Merck quality ethylalcohol
concentrations. They were analysed with a Perkin-Elmer
F42 gas chromatograph, which was equipped with an
automatic headspace sampler. The sample sequences
contained control samples introduced in a random
manner in order to produce the autocorrelation-type
error component. Flushing was used to remove the
remaining part of the sample from the sampling capillary
and LAB pipettes were used for sampling. The internal
standard method was used for evaluation and a solution

of 0.5 g/1 l-propanol was added to each sample for this
purpose. To avoid systematic error due to sampling, the
internal standard was added tt) the sample with the same
pipette and pipette-tip in all cases.

The sample sequences were repeatedly measured under
different conditions. The parameters varied were sam-

pling with the same or different pipettes and tips, and the
duration of the flush.

Measurements were performed under the following
conditions:

(1) Sequence: sampling with the same pipette (the first
source of autocorrelation-type error) and
with the same tip (the second source of
autocorrelation-type error), 0 s flush (no
flush) (the third source of autocorrelation
type error);

(2) Sequence: sampling with the same pipette but three
different tips, 0 s flush;

(3) Sequence: sampling with the same pipette and tip,
15 s flush (a weak source of autocorrela-
tion-type error);

(4) Sequence: sampling, with three different pipettes
and three different tips, 15 s flush.

The evaluation of the chromatograms was performed by
two separate methods: based on the ratios ofpeak areas or
that of peak heights of ethylalcohol and the internal
standard.

The model of the measurement error sequence: the
autocorrelation.type component

The sequence of the measured values can be denoted by:

t, t= 1,2,...N (1)
and the true values of the sample sequence by

Xt, 1,2,..., N (2)
for an automatically analysed measurement-sequence.

Their difference-sequence:
xt=t-Xt, t= 1,2,...U (3)

can be called the ’measurement error sequence’. It is
usually divided into a number of components (drift,
random measurement error etc.), which have different
physical and mathematical properties.

23



K. M. Hangos et al. Automatic detection of measurement errors

Several papers have been published recently on model-
ling measurement error processes in continuous-flow
systems and in discrete samples. Wijtoliet [2] has
thoroughly investigated measurement errors in gas chro-
matography, and several attempts have also been made
to construct a generally valid measurement error process
model [3 and 4].

The measured value sequence, as well as the measure-
ment error sequence, can be modelled using discrete time
stochastic processes (stochastic sequences). It can be
shown that under relatively weak assumptions (assuming
no discontinuity in the trajectories of the investigated
processes with probability and the Markov-property),
the continuous time measurement error and measured
value processes (in the case ofcontinuously-flow samples)
can be described by Ito-processes [5]. The discrete time
model, i.e. the measurement error and measured value
sequences can be derived from this model by applying
equidistant sampling [6]. This discrete time model takes
the form:

t m(t.l,t) + f3 (t, /)*Et (4)
where

lt,
t= 1,2,...,N

a given deterministic function
{m (t_l,t,l) (t,t) + t-1 and [,
(t,t) the conditional mean function of
the sequence t, 1,..., N};
a given deterministic function (condi-
tional standard deviation function of
the sequence t, 1,..., N); and

normally distributed white noise
sequence with 0 mean and variance.

In order to get simpler formulae functions m(.,.,.) and
o(.,.) in equation (4) are expanded in powers of t, and the
terms of first order (for o) and that ofsecond order for m)
are neglected. Thus the following equation is obtained
from equation (4):

t A(t-l,t) + M*t + S*et + Xt (5)
where

A(.,.) is a given deterministic function { depending
on m(.,.,.) };and

M and S are constants.

There are three different terms on the right-hand side of
equation (5) with different mathematical properties. The
second and third terms do not depend on the previous
samples, nor on the previous time; the first term depends
on both the tth and on the previous sample. Thus the first
term can be regarded as a general model of the
autocorrelation-type error components. The second term

is a fully deterministic linear function of time, so it can

express a very simple linear drift. At the same time the
third term is a fully stochastic, 0 mean white noise (with
independent elements) sequence, which can be regarded
as a random measurement error component.

The most simple linearized model of the measured value
sequence can be obtained from equation (5) assuming the
most simple linear form of the autocorrelation-type error

component:
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A(t.l,,t) ao + a*(t-t-1). (6)
Substituting equation (6) into equation (5) gives:

t a0 - a* (t-t-1) -- M*t + S*et + xt. (7)
Applying the definition of the measurement error
sequence results in the following equation:

xt a0 + M’t.+ a(t-_) + S*et. (8)
Note that in almost all practical cases, the standard
deviation of the random measurement error component
(S) and the mean of the measurement error (a0 + M’t)
depend on the true value Xt:

S S(Xt) and a0 + M*t A0 (Xt). (9)

Detection of the autocorrelation-type error com-
ponent

Detection requires testing the hypothesis on the presence
of the autocorrelation-type measurement error com-

ponent based on the mathematical model (equation (5)).
The absence of the autocorrelation-type component is
mathematically equivalent with the equality a 0.

It can also be seen from equation (8) that the conditional
probability distribution of the measurement error xt,

conditioned on the difference (- t-), is Gaussian with a

mean (M*t + a0) and with a variance S2. So the following
simple hypothesis can be investigated in practical cases
instead of a 0.

Hypothesis 1: the conditional mean and the conditional
variance of the measurement error sequence conditioned
on the difference (t t-1) are independent of the
condition.

In order to test this hypothesis, the domain ofthe possible
values in the difference (- t_) must be divided by the
points: , < 2 <... < /. (10)

With the help of these points, hypothesis 1, can be
approximated by a set of other hypotheses as follows:

Hypothesis 2:

E[xtlo (- t-1) < )i + 1] E[xt]

1,2,..., K-1

) (11)

It is important.to note that the set of hypothesis 2 is only
an approximation of hypothesis 1, but it has a great
practical ’advantage in this form’. As it can be seen from
equation (11), the hypothesis can be easily tested with
known statistical tests (F-test and t-test) and the neces-

sary values in the condition can be easily computed from
the measured value sequence, t, itself. The only problem
from the computational viewpoint is how the values ofthe
measurement error xt can be computed.

For this purpose, the control samples can be used because
their true values, x, are assumed to be known. In this case

it is assumed that the error of the control liquid sample
preparation is negligible compared to the effects of the
other measurement error components.
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In the case of automatic analysis of large analytical
sample sequences, control samples occur rarely in the
sample sequences compared to the unknown samples.
Thus the points in equation (10) must be chosen very
carefully in order to have enough sample for testing each
hypothesis in set 2 (equation (11)) for a good approxima-
tion of hypothesis 1.

In order to verify the numerical method, sample
sequences containing only control samples were used in
the authors experiments. This results in an increased
number ofsuitable samples in the measurement error and
in an obvious choice of the points in equation (10). The
control samples with 0.5, 1.0, and 3.0 g/1 ethylalcohol
concentrations can produce differences (t- t-a) only in
the region of the following values:

0.0, 0.5, -0.5, 2.0, -2.0, 2.5, -2.5

thus the values can be chosen as:

91 -3.0; 92 -2.25; 93 1.5; D4 -0.25;
95 0.25; 96 1.5; 07 2.25; 98 3.0.

The proposed method and its application to control
sample sequences

In order to show how tests for the set ofhypotheses given
in equation (11) can be performed easily, the computed
quantities needed for the numerical method have been
collected and arranged in tables 1-4, according to the four
sample sequences described previously. The quantities in
tables 1-4 have been computed from the measured values
as follows.

A row in a table belongs to a given control sample
concentration and to a given evaluation method (for
example 0.5 g/1 ethylalcohol concentration and ethyl-
alcohol/internal standard peak area ratio evaluation).

The test of the hypothesis 2 set for each row is done in
three steps:

(1) The number, the empirical mean and the
empirical variance of the samples with the given
concentration is computed and placed in the fourth
column. After this, these samples are divided into three
groups according to the previous sample concentra-
tion. The above characteristics (number, empirical
mean and empirical variance) of each group is
computed and put into columns one to three respec-
tively.

(2) F-tests [7] can be used for testing hypothesis 2
(equation (11) for the variances. It is sufficient,
however, to perform the test for the ratio ofthe columns
with maximal and minimal variances. The computed
F-value, together with the result of the hypothesis test,
is put to the fifth column. The result of a test is positive
(’+’ sign) if the hypothesis has been proved true on the
given significance level.

(3) If the result of the F-test is positive, the two sample
t-tests can be applied to discover whether hypothesis 2
(equation [11]) holds for the mean values. In this case,
it is also sufficient to perform the test for the columns
with minimal and maximal means, applying the
empirical variance of the fourth column as a common
variance. The computed t-value and the result of the
test can be found in the last column.

Table 1. Data from measurement sequence 1.

Sample
concentration

(g/l) Xt_ 0.5 Xt_ 1"0
Uncondi- F

Xt. 3"0 tioned i/n i/n

0.5

1.0

3.0

Sx

Sx

Sx

Peak height ratio ofethylalcohol/1-propanol
0"5166 0’5219 0"5190 0’5194

1’ 1184E-4 1’2330E-3 4’0815E-4 5"9980E-4
12 15 14 41

1"0157 1.0185 1"0008 1.0137
1"9843E-3 2"9988E-3 3"5366E-3 2’5432E-3

18 14 8 40

3’0931 3" 1218 3’ 1742 3’ 1236
6.8099E-2 3.9616E-2 5.0129E-2 5.0220E-2

11 11 7 29

11"03

’87

1"72

0’7074

0"6772

0"5

1"0

3"0

Sx
n

Sx

Sx

0’5764
4"4996E-5

12

1"1369
9"7885E-4

18

3"4202
4"2738E-3

11

Peak area ratio ofethylalcohol/1-propanol
0"5737 0"5791 0"5763

4"4863E-5 3"4438E-5 4"4660E-5
15 14 41

1’ 1340 1’ 1405 1’ 1366
1"6715E-4 9"0286E-4 6’4960E-4

14 8 40

3"4089 3’ 3993 3"4109
8.8749E-4 2.2308E-3 2.3893E-3

11 7 29

1"31

5"86

4"82

2"302

0"8595
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Table 2. Data from measurement sequence 2.

Sample
concentration

(g/l) Xt. 0,5 Xt. 1"0 Yt-1 3"0 Unconditioned i/n i/n

0"5

1.0

3.0

Peak height ratio ofethylalcohol/1-propanol
0’5069 0"5161 0"5054 0’5095 5.44

s,? 3"6267E-4 1.9730E-3 5" 1038E-4 9’5145E-4
n 14 17 19 50

1"036 1’0290 1’0 43 1’0279 17" 18

s,? 1"2067E-3 3.0079E-4 5’ 1722E-3 1’8892E-3
n 19 18 13 50

3"0605 3.0879 3.0443 3"0632 165.33

Sx 2’ 1116E-2 1.2772E-4 1.2759E-2 1" 1839E-2
n 18 15 17 50

0"5

1"0

3"0

Peak area ratio ofethylalcohol/1-propanol
0"5766 0"5972 0"5733 0"5823

Sx 5"2546E-4 3.5678E-3 2"0410E-4 1"4971E-3
n 14 17 19 50

1.1738 1.1541 1.1814 1.1687

sx 1.9391E-3 5.0186E-4 2"1103E-3 1.5333E-3
n 19 18 13 50

3.4997 3.4887 3.4507 3.4797
1.3274E-2 8.3348E-3 8.5298E-3 1.0238E-2

18 15 17 50

17.48

4"20

1.65 1.383

Table 3. Data from measurement sequence 3.

Sample
concentration

(g/l) Xt. --0.5 Xt. 1"0 Xt-1 3’0 Unconditioned
F

i/n i/n

0"5

1.0

3.0

Peak height ratio ofethylalcohol/1 -propanol
0’5194 0"5062 0"5194 0"5149

s 1"6558E-4 1"3228E-3 1’0286E-5 5" 1929E-4
n 14 17 19 50

1’0540 1"0552 1.0447 1"0520
s, 1.4988E-3 6"9119E-4 5.3982E-5 8.2303E-4
n 19 18 13 50

3"0809 3" 1046 3’0820 3’0884
s,? 4" 1502E-4 6.0030E-3 1’4024E-3 2"4348E-3
n 18 15 17 50

128"57

27.76

14.46

Peak area ratio ofethylalcohol/1-propanol
0"5 0"6247 0"6234 0"6218 0"6231

s 4.8197E-4 5’7022E-4 4.5042E-4 4.8094E-4
n 14 17 19 50

1"0 1"2551 1.2534 1.2856 1"2624

sx 1.4420E-3 1.4008E-3 1.9363E-3 1.6830E-3
n 19 18 13 50

3"0 3"7425 3.7303 3.7677 3.7474

s 1.2728E-2 1.1374E2 1’5252E-2 1.2883E-2
n 18 15 17 50

1"26 0.3824

+
1.38 2"196

+
1.34 0.9106

+ +

By devoting separate rows to each control sample’s
concentration, the dependence of the measurement error
mean and variance (equation (9)) on the true value ofthe
samples is taken into account.

As the result of the above procedure, there is no

autocorrelation-type measurement error component
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under the given measurement circumstances and evalua-
tion method if all the results of the corresponding F- and
t-tests are positive on the given significance level.

I is important to note that the security ofthe autocorrela-
tion-type measurement error component testing is influ-
enced by the value of the S2(Xt) measurement error
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Table 4. Data from measurement sequence 4.

Sample
concentration

g/1 Xt_ 0.5 Xt_ 1’0 Xt_ 3"0 Unconditioned
F

i/n i/n

0.5
Sx

1.0
Sx

3.0
Sx

Peak height ratio ofethylalcohol/1 -propanol
0"5191 0’5177 0’5204 0’5185

9’9173E-6 1"3014E-5 4’0266E-6 1’0522E-5
14 17 19 50

l’0154 l’0171 1’0221 l’0177
1’9756E-5 2’9915E-5 7’ 7638E-5 4"3323E-5

19 18 12 49

3"0245 3"0287 3"0243 3’0256
1"8883E-4 1"7665E-4 1"8120E-4 1"8385E-4

18 14 19 51

3"23

3"92

1"07 0"9329

+

0.5 0.6087
s, 3.8976E-4
n 14

1"0 1"2155
s,? 2’0396E-3
n 19

3"0 3"6190
Sx 1"0940E-2
n 18

Peak area ratio ofethylalcohol/1-propanol
0"6167 0"6158 0"6141

4’5753E-4 4"0974E-4 4" 1535E-4
17 19 50

1"2097 1"2285 1"2166
2’6465E-3 1’5623E-3 2’1147E-3

18 12 49

3"5948 3’6492 3’6236
1’4232E-2 2"0689E-2 1"5352E-2

14 19 51

1’17 1"073

+
1"69 1’071

/ +
1"89 1"152

+

variance. The smaller that variance, the smaller the effect
that can be detected with a given sample size and with a

given significance level.

Conclusions

By applying this numerical and graphical (LAG-I)
method for detecting autocorrelation-type measurement
errors, it is evident that the results are the same for both
methods.

In the case of the peak height ratio evaluation method,
there were no such measurement circumstances when no
autocorrelation-type measurement error component was
present.

When applying the peak area ratio evaluation method,
sequences three and four have been shown to have no
autocorrelation-type measurement error component
according to the numerical (see tables 3 and 4) and the
graphical methods. This indicates that the circumstances
of the flush have much more influence on the measure-
ment error than do the other measurement circumstances
(pipettes).

From the data ofthe numerical method (tables and 2), it
can also be seen that the empirical variances ofthe ratio of
the peak height is much smaller than that of the peak
areas. This fact is in good agreement with previous
investigations [8]. As a consequence, the use of the peak
height ratio allows the detection of smaller autocorrela-
tion-type measurement error components than would be
possible in the case of the ratio of the peak areas. At the

same time, it can also be found that the empirical
variance of the samples is much more influenced by the
difference of the current and previous measured value,
than the empirical mean of them, i.e. the autocorrelation-
type measurement error component appears much more
sensistive in the empirical variance.

The numerical method proposed here can be used for
automatic validation and quality control of analytical
measurements.
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