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Technical note

A nonparametric outlier rejection scheme

j. s. o. Odonde
P.O. Box 151, 4530 AD Terneuzen, The Netherlands

Experimental data always contains measurement errors (or noise,
in signal processing). This paper is concerned with the removal of
outliersfrom a data set consisting ofonly a handful ofpoints. The
data set has a unimodalprobability distributionfunction, the mode
is thus a reliable estimate of the central tendency. The approach is
nonparametric; for the data set (xi, Yi) only the ordinates (Yi) are
used. The abscissa (xi) are reparametrized to the variable 1, N.

The data is bounded using a calculate.d mode and a new measure:
the mean absolute deviation from the mode. This does not seem to
have been reported before. The mean is removed and lowfrequency
filtering is performed in thefrequency domain, after which the mean
is reintroduced.

Introduction

Consider an experiment where measurements are logged
for further calculations. The intention is to use the data
points that are most reliable; that is, when the experiment
and the measurement device has settled. Two main
causes of invalid data (i.e. outliers) are:

(1) The influence of previous experiments.

(2) The effect of the environment (for example mains
flicker).

A common and simple practice is to ensure a long
experimental run to produce enough valid data. If the run
length is very large and the measurement errors causing
bad data are independent, and normally distributed with
a constant standard deviation, the ubiquitous least-
squares fit is a maximum likelihood estimator of the line
parameters. The weighted least-squares (or chi-squared)
fit relaxes the assumption of a fixed standard deviation.

It is often assumed that a random variable is normally
distributed. The central limit theorem (see standard text on
mathematical statistics and also the references) justifies
approximate normality for large sets of data, but it may
be difficult to construct a normal distribution from
experimental data (Press et al. [1] provides good treat-
ment of this problem). Various outlier rejection schemes
are based on this normality (for example see Matlab Users’
Guide [2], Section 5.3).

The data have a central tendency towards the true value.
Now, the central tendency is characterized by a scalar
which is a function of the moments of the dataset.

The mean is the most commonly used measure of the
central tendency. The variance is then used to measure the
spread about the central tendency.

The average deviation or mean absolution deviation for the data
setxi, i- 1, Nis

Ixj_: (1)

where

is the mean.

The mean absolute deviation is recognized as a more
robust estimate of the width around the central tendency
if the second moment can not be realized (i.e. if it is
infinite) [1].
The mean in a small dataset is not representative of the
central tendency; the distribution has broad tails. In this
case, the median (for a probability distribution function
p[x], the median Xmed is the value for which larger and
smaller values are equally probable) and the mode (for a
probability distribution function p[x], the mode Xmode is
the value at which p[x] is a maximum) are alternative
estimations of the true value.

Mean absolute deviation from the mode

If the median is not representative of the set (which is the
case when the area in the tails of the distribution is large;
the mean fails if the first moment of the tails is large).
Then the mode of the distribution must be evaluated.
Subsequent statistics of the set should by necessity,
therefore, not involve the mean and the median.

The ’width’ about the central tendency can be taken as
the mean absolute deviation from the mode:

Xj Xmode (2)

the outlier rejection algorithm is then as follows.

Outliers in a small dataset Outlier rejection algorithm

This paper discusses small datasets with a maximum of
members per set. The data is grouped around the true

value; the outliers are readings from previous and
subsequent experiments. The distribution therefore
peaks around the true value.

(1) Get Xmodeo

(2) Bounding
if
[xi-Xmodel > A

then X Xmode for 1, N.
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(3) Get mean : of bounded data set.

(4) Detrend data
Si Xi_

(5) Take Fast Fourier Transform of set si.

(6) Low pass filter (multiply by a smooth window
function).

(7) Inverse Fast Fourier Transform to give set ri.

(8) Restore mean
Vi ri- :
to give the set vi which has no

outliers.

In step 2 above, the criterion A is evaluated as

A=o’p ()

Table 1. Data set 1.

Outlier
Data point Raw data rejected data

3" 18 O’O86
2 O’25 O’O87
3 0" 11 0"086
4 0" 10 0"087
5 0’08 0’O86
6 0"08 0"087
7 O’06 0"O87
8 0"07 0"087
9 0’O5 0’O87
10 10’86 0’087
11 10’86 0"088

where
o’ is the mean absolute deviation from the

mode, and,
p is the (maximum) proportion ofoutlier points.

In the examples below, p 0"3.

A bounded datapoint is set to X Xmode. In general,
Xi bounded Xi nt- Ei

where a possible
E (X "l- Xmode 0

and
0 is the porportional contribution of the point xi

to the broad tail of the distribution.

Steps 5 to 7 are executed admirably by the routine
SMOOFT in Press[ ]. The sequel to the routine suggests
that, for distributions with broad tails, a moving window
median on all ordinates should be performed. The outlier

Table 2. Data set 2.

Outlier
Data point Raw data rejected data

76"97 43.39
2 77"48 43"39
3 47"45 43"39
4 46.66 43"39
5 44.47 43"39
6 44’25 43’39
7 43"59 43.39
8 43.06 43"39
9 42"89 43"39
10 42"91 43.39

Statistics

Raw
Outlier
rejected

Standard
Mean p deviation Median p’
2"34 3"25 4"31 0"10 2’27

Mode

0"07

0"09 0"03 0"06 0"07 0"03 0"07

Statistics

Raw
Outlier
rejected

Standard
Mean p deviation Median p’
50"97 10.50 13"92 44’36 7"91

Mode

43.24

43"41 0.41 0"54 43"24 0"35 43"24
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Figure 1. Data set 1.
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Figure 2. Data set 2.

rejection scheme
bounding.

presented above solves this by

The method of removing the linear trend in SMOOFT
has hidden dangers. The straight line is constructed
through the first and last data points. In the examples
below, the first point is always from the previous
experiment while the last may be from the following one.
When restoring the linear trend after the frequency
domain calculations, these points reintroduce unwanted
characteristics.

Examples

Two sets of experimental data are presented to illustrate
the performance of the outlier rejection algorithm. The
aim is to find the true or steady-state reading. The results
are self-evident in the plots (see figures and 2).

Conclusions

A simple but effective outlier rejection routine has been
presented. The routine is based on bounding data points
to within the mean absolute deviation from the mode.
This statistic does not seem to have been reported
previously.
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