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Gradient ion chromatography was used for the separation of eight sugars: arabitol, cellobiose, fructose, fucose, lactulose, melibiose,
N-acetyl-D-glucosamine, and raffinose. The separation method was optimized using a combination of simplex or genetic algorithm
with the isocratic-to-gradient retention modeling. Both the simplex and genetic algorithms provided well separated chromatograms
in a similar analysis time. However, the simplex methodology showed severe drawbacks when dealing with local minima. Thus the
genetic algorithm methodology proved as a method of choice for gradient optimization in this case. All the calculated/predicted

chromatograms were compared with the real sample data, showing more than a satisfactory agreement.

1. Introduction

Isocratic elution exhibits some advantages over the gradient
one, such as greater simplicity, lower cost, simpler instrumen-
tation, and no need of column reequilibration between con-
secutive injections [1]. However, gradient elution is becoming
almost unavoidable in conventional liquid chromatography,
including ion chromatography (IC). In gradient mode the
elution strength usually increases during analysis, thus pro-
viding much narrower chromatographic peaks and signifi-
cantly shorter analysis time. Such characteristics are favored
in cases with multicomponent samples which span a wide
retention range [2].

The implementation of gradient elution implies finding
the suitable gradient program. The major criterion for opti-
mal elution is a good resolution between analytes accompa-
nied with an acceptable analysis time. Existence of a good
model to predict the column output is a crucial item in
optimization of chromatographic elution. IC development in
the last several decades was accompanied with the increasing
number of models, either theoretical or empirical, which can
be used to predict or to explain experimental chromatograms

[3-18]. Among numerous approaches, the retention isocratic-
to-gradient (iso-to-grad) model [12, 16] appears to be par-
ticularly interesting. This model is primarily developed for
systems with a single-competing eluent; it is based on the
transfer of retention information from isocratic to gradient
elution mode.

The linear solvent strength model is the first and prac-
tically the most important model that describes the rela-
tion between component retention and concentration of
competing ion for isocratic elution. This theoretical model,
developed by Snyder et al. in 1979 [3], in its origin considers
only electrostatic effects leading to ion exchange retention.
Therefore, the presence of other mechanisms or occurrence of
factors influencing the retention will result in deviations from
the linear model. To overcome this problem some authors
include an additional factor as a correction for nonlinearity
[12, 19, 20] in IC and other LC techniques. Such empirically
obtained polynomial models were shown to fit isocratic
experimental data significantly better than the linear one.
The selection of polynomial instead of linear model does
not have significant influence on the calculation time with
contemporary computers. Therefore the authors decided to



describe the isocratic behavior with the better fitting model,
that is, the polynomial dependence between the logarithm of
retention coeflicient, k, and concentration of competing ion
in eluent, c:

logk = a, + a, logc + a,log’c. @

In principle only three isocratic experiments are sufficient
for the determination of regression coeflicients, a,_,, of the

model described by (1).
The retention coefficient is calculated as

k = M) (2)
tm
where t is a component retention time and ¢, is the column’s
holdup time. For the ion chromatography case the column’s
hold-up time is equal to the retention time of unretained
compounds, that is, column void time t, [21].
On the other hand, gradient elution can be described
generally by the integral elution equation

tR_tO dt
fo = L ke @] ®)

The integral from (3) can be approximated with a sum of
integrals over small time intervals. Inside those intervals the
coeflicient k can be assumed constant and can be calculated
as an average of k values at the interval boundaries, obtained
according to (1). In this way, isocratic retention information
is transferred into gradient environment.

The iso-to-grad approach allows for the prediction of
retention time for practically any gradient using only sev-
eral isocratic experiments. Nevertheless, the optimization
of gradient elution remains a severe and complex problem,
especially knowing that the number of different gradient
programs in any gradient domain is practically unlimited.
The problem can be simplified by setting different constraints
on the domain (i.e., defining the sets of finite intervals in
which the gradient curve may change, finite sets of gradient
curve shapes, or finite sets of allowed gradient slopes [22-
25]). Unfortunately, the usage of any constraint involves the
possibility of missing the true optimum. An increase of
the number of allowable options inside each finite set will
produce a finer description of the real experimental domain.
However, it will at the same time increase significantly the
number of possible gradient profiles. This leads to another
problem, a domain of profiles that is too large substantially
increases both the experimental effort and required modeling
time, which may even exceed the performance of modern
computers.

A mathematical model that is able to describe the opti-
mization surface for gradient IC is generally a nonlinear and
very complex function. Therefore it is not feasible to solve it
(to find optimum) analytically. The fact that there are often
multiple solutions (local extremes) complicates the situation
even more. There are several classes of approaches available
for solving this kind of problems among which are sequential
searching procedures and evolutionary algorithms [26].

One of the best known sequential methods is the Nelder-
Mead simplex method [27]. The schematic block diagram of
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simplex methodology is presented in Figure 1(a). The user
defines a very restricted number of simplex points, that is,
vertexes, usually one more than the number of factors to
be varied, Np. The function to be optimized is evaluated at
the simplex vertexes, either experimentally or by calculation,
using a previously constructed model. Then a decision is
made about the worst vertex, which is replaced by a vertex
that is reflected through the Np-dimensional surface (the
reflection being defined by the rest Ny vertexes). According to
the situation, the reflected vertex can be further expanded or
contracted. Thus the next N+ 1 simplex is created. Valuation
and new simplex creation processes repeat until a predefined
criterion is fulfilled.

Evolutionary algorithms mimic different biological pro-
cesses in an attempt to optimize highly complex functions
[28]. Genetic algorithms [29, 30] (Figure1(b)), as a rep-
resentative of the evolutionary algorithms, are based on
genetic inheritance and Darwinian strive to survival [31].
In other words, they simulate the biological evolution. They
allow a population composed of many individuals to evolve
under specified selection rules to a state that optimizes the
predefined objective function value [28].

This work is focused on the application of simplex meth-
odology and genetic algorithm in the optimization of gra-
dient elution in IC. The conventional application of these
two methodologies in gradient IC implies the search for
the optimum in the real experiment domain. A limited set
of experiments is performed initially and, subsequently, the
experiments with the worst output are replaced by new, better
ones. This might take a long time and a lot of experimental
effort. In the particular approach described by this paper, the
number of experiments was practically minimized; the novel
“experiments” to replace the old ones are not performed in
the real domain, but by applying the initially constructed iso-
to-grad model, that is, on a computer.

2. Materials and Methods

2.1. Instrumentation. The experiments were performed on
a Dionex ICS-5000 (Thermo Fisher Scientific) ion chro-
matographic system, equipped with a dual pump (DP-5),
eluent generator module (EG-5) with EGCIII KOH cartridge,
degas unit on eluent generator, continuously regenerated
anion trap column (CR-ATC), thermostatically controlled
detection module (DC-5), and an autosampler (AS-AP).
For performing the separation, the system was equipped
with a Dionex strong anion exchange column CarboPac
PA20 (3 x 150mm) and a respective guard column (3 x
30 mm). The detection mode was pulse amperometry, with
reference electrode Ag/AgCl and working gold electrode. The
separation was performed at constant temperature of 30°C,
while the detection temperature was 20°C. The eluent flow
rate was 0.5mL/min, the sample loop volume was 10 uL,
and the data collection rate was 1 Hz. The whole system was
computer controlled by the Chromeleon 7 software.

The simplex and genetic algorithm modeling required
using a computer. We wrote the codes for both algorithms in
the Matlab 2010b environment.
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FIGURE 1: Block diagrams of (a) simplex and (b) genetic algorithm methodology. CF represents criterion function and CP is the centroid

point of the hyperspace excluding the worst vertex.

2.2. Reagents and Solutions. Standard solutions of 8 sug-
ars: arabitol (150 ppm), cellobiose (600 ppm), fructose (1000
ppm), fucose (100 ppm), N-acetyl-D-glucosamine (500 ppm),
lactulose (3000 ppm), melibiose (600 ppm), and raffinose
(1000 ppm) were prepared by diluting appropriate amounts
of solid compounds in deionized water (the first six sugars
were from Sigma-Aldrich, USA, and the last two from Dr.
Ehrenstorfer, Germany). The solid compounds were 97% or
higher purity. Working mix solutions were prepared from
standard solutions in concentrations 100 times lower than the
standard ones. All solutions were preserved at 4°C. Working
eluent solutions were hydroxide solutions prepared online in
the eluent generator module by pumping water through the
eluent generator chamber.

In all cases, 18 MQcm ™! water (Millipore, USA) was used.

3. Modeling

3.1. Retention Modeling and Calculation of Resolution. In
order to determine parameters of isocratic retention model
(1) for each sugar, a set of 5 isocratic experiments was
performed; the experiments were equidistantly distributed
within the range from 2 to 98 mM KOH. Peak maximum
retention was modeled as common; however, isocratic mod-
els were also defined for the 50% peak height point at the
fronting side as well as for the 50% peak height point at the
tailing side. These three retention times associated with each
peak were used to predict the resolution between the analyzed
sugars according to [32, 33]

tre) — tra)

Ry =118 ,
Wo.5(1) T Wo.502)

(4)

where tp ;) and £y, are retention times of two adjacent sugars
and wy 5(;) and wy 5,) are corresponding peak widths at half
peak heights.

The void time needed for prediction of component reten-
tion under gradient elution was the same as in the isocratic
case.

3.2. Criterion Function. Simplex vertexes or units from the
genetic population were valued by the criterion function, CF:

CF = (ZLRS)OC " 5)

Two optimization goals were implemented into the criterion:
the maximal sum of resolutions between eluted components
Y Ry [brackets in (5)] and the shortest analysis time ¢ ,. The
desired balance between the goals was adjusted by the proper
choice of criterion function weights « and f. A possible
misbalance would produce an elution that is too long at one
extreme or a peak overlapping at another. Therefore it was
necessary to select the appropriate weight values. For the
selection purpose both weights were varied from 1 to 5 using
the step of 1.

3.3. Gradient Domain Scanning. The same gradient domain
was searched for the optimal separation conditions with both
the simplex and genetic algorithms. The eluent concentration
was ranging from 5 to 95mM KOH; only the gradients
producing elution times shorter than 30 min were taken as
the acceptable ones.

In the case of simplex approach, the acceptable time
range of 30 min was split into N equidistant intervals (with



varying Nrp). This provided N + 1 simplex factors (time
points) in which the change of eluent concentration was
possible. In the genetic algorithm case the equivalents to the
simplex factors were termed genes. In the applied genetic
algorithm, the 30-minute time range was split into 3 min
intervals which provided 11 genes in which the concentration
change was possible.

A linear gradient inside each of the intervals was pre-
sumed. The gradients were defined by eluent concentrations
(the values of factors or genes) at start and end of each
interval. For both applied approaches, the elution continued
isocratically after the first 30 minutes, taking the last factor or
gene value.

The optimization procedure implied searching for the
optimal eluent concentration for each factor or gene. There-
fore, an appropriate design in creation of initial matrix of
points or units was needed.

3.4. Simplex Optimization. In the simplex optimization ap-
proach, the initial matrix of points was created using the
Doehlert design [34, 35], which provides the mesh of lattice
points uniformly and equidistantly distributed in the space
around some central point [36]. If there are multiple optima
in the searched domain, local optima (instead of the global
optimum) will probably be reached using different initial
matrices. To test this, we varied the parameters of the
Doehlert design. These were (1) the number of simplex fac-
tors, (2) characteristic distance (concentration interval), and
(3) central point position (central concentration). The num-
ber of simplex factors was varied from 1 to 5, using step 1. The
concentration intervals were selected equidistantly within the
predefined gradient domain range of 90 mM KOH to take
values of 5, 10, 15, 30, 45, and 90 mM KOH. Central point was
selected as an isocratic elution at a midpoint concentration
within the selected concentration interval. For the three
characteristic Nelder-Mead parameters, that is, coefficient of
reflection, expansion, and contraction, standard values of 1,
2, and 0.5 were taken, respectively [37-39].

The optimization was set to terminate when the sum of
absolute differences between the factor values of two consec-
utive iterations became lower than the predefined objective
value of 107"°.

3.5. Genetic Algorithm Optimization. In the genetic algo-
rithm approach, the first 30 minutes of elution were divided
into 10 equally sized time intervals providing the set of 11
genes. The set of all genes is commonly termed the chromo-
some; it completely describes a unit with its peculiar elution
characteristics.

The genetic populations were encoded by integer values.
The initial population of 100 units was created by randomly
assigning the concentration values from the predefined gra-
dient domain range to all genes in the population. A rather
low degree of elitism within the population units was set.
This means that every unit from the population was valued
according to (5); afterwards the worst 70% were removed. The
rest of units were used as parents for the crossover procedure.
The crossover was performed according to the rule: two
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parents-two descendants. We applied the uniform crossover
procedure [28]; the genes forwarded from the first parent to
the offspring were chosen randomly, and the rest of the genes
came from the other parent. The new-born population was
joined with the parents; afterwards such a created population
was valued again. The worst 50% of units was removed and
the rest became the new parent population.

The mutation of genes is reality in every living population.
Crossover without mutations restricts the characteristics of
the new-born population from the characteristics of their
parents; mutations bring new characteristics to the popula-
tion. The percentage of mutations in new-born population
may be considered an adjustable parameter. The number of
mutations in new-born population was varied from 5 to 110
(using step 5) of overall 330 genes. The CF value (5) of the
best unit was recorded after each crossover + mutation cycle.
The optimization stopped after a predefined number of 200
cycles.

Since the random setting of initial population and appli-
cation of mutations generally produces diverse results (differ-
ent optima), a set of 10 consecutive runs was performed in all
cases of genetic algorithm calculations.

3.6. Peak Shape Description. The generalized logistic distri-
bution function was used for the description of peak shape of
individual components in calculated chromatograms:

C e(A—f)/B

f)= (6)

B (14 ean/B)St

The median of distribution is associated with parameter
A, parameter B characterizes the distribution width, and
parameter C bears information about the distribution skew-
ness [40, 41]. Peak description according to generalized
logistic distribution function requires only four experimental
(or calculated) data. These are the retention time of peak
maximum, retention times of peak half-heights at fronting
and tailing peak sides and the stretching factor, Sg:

h(t)=Sp- £ (2). ?)

The stretching factor in fact equals the real chromatographic
peak area [16].

4. Results and Discussion

Simplex and genetic algorithms were applied for the opti-
mization of IC separation of the solution of 8 sugars. The
conventional approach of simplex and genetic algorithms was
improved by incorporating the iso-to-grad model [15]. Thus
the simplex and genetic algorithms were allowed to search for
the optimum in the virtual experiment domain, instead of
the real experimental space, which produced the significant
reduction of time and costs.

4.1. Isocratic Model Parameters. In principle, only three iso-
cratic runs are needed to obtain coefficients of the quadratic
dependence described by (1). Nevertheless, the higher num-
ber of isocratic experiments generally provides a more



Journal of Analytical Methods in Chemistry 5
TABLE 1: Parameters of isocratic retention models described by (1). The eluent concentration is expressed as mM.

50% peak height at fronting side Peak maximum 50% peak height at tailing side

a, a a, R? a a, a, R’ a, a a, R’
Arabitol -0.201 -0.009 -0.031 0.9580 -0.188 -0.007 -0.030 0.9723 -0.153 -0.020 -0.027 0.9689
Cellobiose 1.808 0.127 -0.286 0.9999 1.814 0125 -0.285 0.9999 1.820 0126 -0.285 0.9999
Fructose 1224 0128 -0.261 0.9999 1230 0128 -0.261 0.9999 1237 0124 -0.259 1.0000
Fucose 0.353 0.282  0.234 1.0000 0363 0.278 -0.231 10000 0.374 0.274 -0.228 1.0000
Lactulose 1.552 0.152 -0.291 1.0000 1.558 0.152  -0.291 10000 1566  0.149 -0.289 1.0000
Melibiose 1298  0.205 -0.288 1.0000 1.304  0.204 -0.288 1.0000 1.311 0.201  -0.286 1.0000
N-Acetyl-D-glucosamine 1168  0.036 -0.243 0.9998 L1177  0.028 -0.239 0.9998 1185  0.028 -0.238 0.9998
Raffinose 1.327 0346 -0.262 0.9989 1335 0345 -0.261 0.9989 1343 0.341 -0.260 0.9989

reliable isocratic model. In addition, it cannot be known
a priori how the competing anion in eluent would affect
the peak area and this is the feature essential for the peak
shape prediction. Therefore we decided to perform 5 isocratic
experiments. Where overlapping of the components was
observed, working solutions of pure analytes were eluted as
well. Thus a set of isocratic retention data was obtained to
allow for the calculation of model parameters of (1). The
calculated parameters are presented in Table 1.

Apparently, the chosen polynomial model fits the reten-
tion behavior well for 7 of the 8 investigated sugars (R* >
0.9989). In the case of arabitol there are some discrepancies.
The observed error may be explained by comparing the
retention times of all the 8 sugars at the lowest eluent
concentration (2 mM KOH). The elution order observed was
arabitol 1.53 min, fucose 3.85, N-acetyl-D-glucosamine 15.83,
fructose 18.87, melibiose 23.98, raffinose 27.92, lactulose 40.12,
and cellobiose 61.28 and void time was 0.93. In comparison to
other sugars, the difference between arabitol elution time and
void time is particularly small, only 0.60 min. It is important
to recur that the data collection rate of the detector was
only 1 Hz. Such a small rate could probably incorporate some
error in the retention prediction, which would be especially
noticeable for extremely fast eluting components like arabitol.

4.2. Investigated Gradient Domain. Some constrains were set
on the investigated gradient domain in both applied opti-
mization approaches. In the case of simplex optimization we
had to limit the number of factors as well as the concentration
interval investigated. These in turn determined the size of
the simplex. Constrains of the genetic algorithm were posed
by the number of genes (11) in population units as well as
by the allowed concentration values for each gene (integer
encoding of the population). Although the acceptable time
of IC analysis was set to 30 min for both approaches, it
should be pointed out that the procedure was allowed to
predict the optimal separation with elution longer than
30 min. However, such events were then simply excluded
from further considerations. As for the eluent concentration
range, concentrations higher than 95mM produced poor
separation of the several least retained sugars; concentrations
below 5mM led to very long and economically unjustified
elutions.

Although the negative gradients are quite uncommon in
IC, since they deteriorate the baseline behavior, the authors
did not exclude them from the simulation. In some cases,
after reaching the satisfactory separation of a few first eluting
components the negative gradient may, in principle, slow
down the elution of the remaining components that would
otherwise lead to overlapping of their peaks.

4.3. Criterion Function Weights. As mentioned before, we had
to assign the appropriate weights to the two contributions
incorporated in the criterion function CF (5) that were
selected for the valuation of simplex vertexes or genetic units.
An appropriate balance between the weights should diminish
the possibility of obtaining elution times that are too long
or elutions with overlapped peaks. In addition, the simplex
methodology always produces the same output for the same
starting conditions, which is not the case in genetic approach
due to mutations. Therefore, the selection of CF weights
was performed according to the results obtained by simplex
calculations; 25 simplex runs with different weight values
were performed. The number of simplex factors was held
constant at the value of 5 and the concentration interval was
15 mM KOH. The calculated optimal elutions were compared
according to the existence of peak overlapping or analysis
time that is too long. The peak overlapping threshold was
set to Rg < 3, which is somewhat higher than the common
values 1.5 or 2 [42]. We decided to set a more rigorous
overlapping criterion since we were dealing with the retention
models associated with possible errors. The obtained results,
as shown in Figure 2, indicate that contribution of analysis
time must be favored over the contribution of overlapping
for the acceptable separation; that is, B must be higher
than «. The unacceptable weight combinations are marked
with hollow circles in Figure 2. We decided to select the
combination of weight factors « = 1 and 8 = 2 for further
calculations.

4.4. Simplex Optimization. The size of simplex was var-
ied in the simplex optimization; 6 different concentration
intervals and 5 different factor numbers were used. The
characteristic results are shown in Figure 3. For the 2- and 3-
factor cases the optimizations eventually reached the isocratic
chromatograms, regardless of the size of the concentration
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FIGURE 2: Selection of CF-function weights. Dark circles represent elutions with well separated peaks (all Rg > 3) in acceptable analysis time
(maximal 30 min) and the white ones are those with at least one overlapped peak pair (Ry < 3) or with exceeded analysis time.

interval applied (an example is presented in Figure 3(a)).
In the case of 4-factor optimization, four different chro-
matograms were obtained depending on the starting point
(Figures 3(a)-3(d)). The acceptable separation was obtained
for the 5mM concentration interval case, although the last
sugar eluted at the edge of the tolerated period of 30 minutes
(Figure 3(b)). With further increase of the concentration
interval the analysis time decreased; at the same time the
peak overlapping was observed (Figures 3(a), 3(c), and 3(d)).
The results for the 5-factor optimization eventually produced
five different chromatograms (Figures 3(a) and 3(e)-3(h)).
The analysis time again decreased with the increase of the
concentration interval. The smallest concentration interval
provided the peak overlapping and analysis that is too long at
the same time (Figure 3(e)). Good separations were predicted
for the 10 and 15mM concentration intervals (Figures 3(f)
and 3(g)) with a distinction of significantly shorter analysis
time for the 15 mM case. Further increase of the concentration
interval produced peak overlapping (Figures 3(a) and 3(h)).
Therefore, the best optimization result occurred when gradi-
ent domain was scanned by the algorithm characterized with
5 simplex factors and the concentration interval of 15mM
KOH as the starting point. It is important to notice that some
different starting conditions produced significantly different
“optimal” separations. This indicates that the applied simplex
algorithm did not reach the global optimum in every case;
that is, it had serious problems when dealing with local
minima.

It can be noticed that gradients shown in Figure 3 con-
tinue even after the last component eluted from the column.
Therefore it is necessary to clarify such observation to avoid
any possible misunderstanding. The concentration and time
domains were defined prior to the search for optimal sep-
aration conditions. Therefore, even for those cases where
components eluted very fast, the remaining part of eluent
concentration profile must exist (regardless of the fact that
it has no influence on separation), but only as an artifact
of the applied calculation procedure. The specific eluent
concentration profiles shown in Figure 3 after the last eluted
component are simply the first ones that the algorithm found.
The selection of any other concentration profile continuing

the last eluted component will have no effect on separation
since it is already achieved.

4.5. Genetic Optimization. In the case of genetic algorithm,
we were dealing with the percentage of mutations in new-
born population and the number of crossover cycles as the
important issues. Figure 4 represents the results obtained for
different number of mutations.

Although the final number of crossover cycles was set to
200, the improvement of the best unit’s CF value vanished
normally after a much lower number of cycles. We termed
it as the threshold number of cycles and we recorded it when
the CF value dropped below 102, The gray circles in Figure 4
represent the median of the threshold number of cycles for
10 consecutive runs and the bars represent the correspond-
ing span of values. According to the results plotted, the
medians seem to be relatively independent of the number
of mutations. However, considerably more scattering in the
threshold number of cycles was observed when more than 90
genes were allowed to mutate. In conclusion, the crossover
with 60 mutated genes (i.e., 18.2% of mutations) produced
the smallest median of the threshold number of cycles (the
shortest calculation time). At the same time it produced the
minimum scattering of results. Therefore, this percentage
of mutations was taken as the best one. Among the results
calculated with this percentage of mutation, the gradient
elution profile with the shortest elution time (18.89 min) was
selected as the optimal one. It is important to point out that all
220 calculations using the genetic algorithm, regardless of the
number of mutations applied or diverse initial populations
randomly selected, produced extremely similar resolutions of
adjacent components (Rg values, Table 2). The elution order
of the analyzed sugars was always the same and none of
the peaks overlapped. The standard deviation of predicted
resolutions for all sugars and all 220 calculations was not
higher than 1.28. Also, the standard deviation of maximal
elution time was only 0.39.

4.6. Comparison of Calculated Optimal and Experimental
Chromatograms. In order to test the results obtained by
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FIGURE 3: Searching for the appropriate number of simplex factors (Nj) and concentration interval (Ac). The above chromatograms were
obtained for (a) N = 2 and 3 for all Ac, N = 4 and Ac = 30, 45, and 90 mM KOH, N = 5 and Ac = 45 and 90 mM KOH, (b) N = 4 and
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Ac = 10mM KOH, (g) N = 5and Ac = 15mM KOH, and (h) N = 5 and Ac = 30 mM KOH.

the simplex and genetic algorithm optimization, the real IC
analyses were performed under the calculated optimal KOH
gradients (Figure 5). The experimental chromatograms are
compared with the predicted ones. However, for the full

description of predicted chromatogram one has to choose an
appropriate distribution function to model the peak shape.
The generalized logistic function proved a good choice for
the peak shape prediction of inorganic anions in IC [16, 25]
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FIGURE 5: Comparison of experimental and predicted chromatograms obtained with optimal gradient profile: (a) predicted optimal separation
by simplex algorithm, (b) predicted optimal separation by genetic algorithm, (c) real chromatogram corresponding to simplex optimization,
and (d) real chromatogram corresponding to genetic algorithm. Dashed lines indicate the calculated optimal gradients. Analyzed sugars are
marked according to elution order: (1) arabitol, (2) fucose, (3) N-acetyl-D-glucosamine, (4) fructose, (5) melibiose, (6) lactulose, (7) raffinose,

and (8) cellobiose.

due to its simplicity and fair representation of experimental
chromatograms. Therefore, in order to create a better pre-
sentation of the separated sugars, it was applied in this case
as well. All the data needed for calculation of A, B, and C
parameters of the generalized logistic distribution function
are presented in Table1, and the calculation procedure is
described elsewhere [16, 25]. Therefore, only the stretching
factor of the generalized logistic distribution function (7) will
be discussed here. As mentioned before the stretching factor
in this case equals the peak area of a real chromatogram.
As said before, in this research the amperometric detector

was applied. Since this detector is a concentration selective
detector, an influence of competing anion concentration on
the peak area is observed (Figure 6). For all the analyzed
sugars a decrease of peak area with the increase of eluent
concentration is observed. Isocratic experimental data were
used to estimate the stretching factor, that is, peak area.
Since the stretching factor depends on the competing anion
concentration, the appropriate values for every peak were
calculated in the following manner. First, peak retention
time is identified. Second, competing anion concentration
at that retention time is detected from the gradient profile



Journal of Analytical Methods in Chemistry

TaBLE 2: Comparison of the calculated resolutions of 220 calculations using genetic algorithm.

Minimal value

Maximal value Standard deviation

Resolution
Arabitol and fucose 11.98 15.75 0.61
Fucose and N-acetyl-D-glucosamine 18.30 24.93 1.28
N-Acetyl-D-glucosamine and fructose 4.64 5.83 0.25
Fructose and melibiose 4.95 5.81 0.15
Melibiose and lactulose 5.79 11.31 0.81
Lactulose and raffinose 4.71 9.77 0.62
Raffinose and cellobiose 3.00 3.68 0.13
Maximal elution/min 18.98 20.76 0.39
35 - N therefore, the most probable reason of such a long calculated
30 4 A A analysis time.
o) le) o
277 - L .
E 20 | n . o 5. Conclusions
% 15 - - This work describes the application of the two method-
S04 u % x x ologies, that is, simplex and genetic algorithms, combined
5 o o ° A with the iso-to-grad retention model in the optimization
2 2 2 be of gradient IC separation. This combination allowed the
07 - - - - finding of the optimum gradient profile in the virtual domain,
2 26 50 74 98

¢(KOH) (mM)

FIGURE 6: Peak areas for five isocratic experiments. The components
are marked as follows: arabitol (#), cellobiose (A), fructose (O),
fucose (A), lactulose (o), melibiose (x), N-acetyl-D-glucosamine
(»), and raffinose (m).

calculated. Third, peak area is estimated at that competing
anion concentration using the nearby experimental values
from Figure 6 and linear interpolation.

The predicted and real chromatograms are compared in
Figure 5. The predicted chromatograms have much broader
bandwidths in comparison to the experimental ones, offering
slight apparent overlapping of the two last eluted compo-
nents (Figures 5(a) and 5(b)). Such overlapping was not a
consequence of invalid optimization (all the calculated Rg
values were higher than 3) but simply the product of the
chosen peak-shape function, which seems to be less adequate
for sugars than it was for inorganic anions. Despite that,
the chromatograms generally match each other, confirming
the applicability of both methodologies in the optimization
of IC separation. Although the genetic algorithm may be
considered somewhat better with respect to the analysis time
(the predicted retention of the last eluting sugar of 18.98 min
and 19.19 min for genetic and simplex optimization, resp.),
it is obvious that both approaches provide similar analysis
time. In both cases the last two eluted sugars (raffinose and
cellobiose) have very close retention times. Their predicted
resolutions are significantly smaller than for the other adja-
cent sugar pairs and almost equal to the predefined threshold
value of Rg = 3. The required separation of these two sugars is,

thus minimizing the experimental effort and costs. The CF
function weight factors were selected to favor the analysis
time contribution (« = 1 for the resolution and f3 = 2 for the
analysis time). The optimal gradient profile for the simplex
approach was obtained using the 5 simplex factors and
the concentration interval of 15mM KOH in initiating the
search. In the case of genetic algorithm, 18.2% of mutations
in each offspring population were found to be the optimal
percentage in fast and reliable finding of the optimum profile.
The simplex methodology exhibited problems when dealing
with local minima; that is, different starting conditions
resulted in significantly different component elution times.
At the same time, the genetic algorithm did not suffer from
the local minima problem: 220 calculations provided 220
almost identical separations. The real sample experimental
chromatograms obtained by applying the calculated optimal
gradient profiles were compared with the predicted ones
and good agreement was found. Both simplex and genetic
algorithms in combination with iso-to-grad model proved a
potential to be applied in gradient IC optimization. However,
the genetic algorithm was coping better with the local minima
problem. The developed approach offers a significant reduc-
tion of the experimental effort (only 5 isocratic experiments
needed + few more for the overlapping peaks). In addition,
there is no practical limitation on the gradient profile to be
tested. Based on the results of this study, the genetic algorithm
in combination with the iso-to-grad retention modeling may
be recommended as the method of choice for optimization in
gradient ion chromatography.
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