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A facile, green, and high-output hydrothermal synthesis was proposed for the fabrication of highly fluorescent nitrogen-doped
carbon quantum dots (N-doped CDs). .e nitrogen content in N-doped CDs reached 19.2% and demonstrated strong blue
fluorescence emission was obtained with fluorescence quantum yield (QY) of up to 32.9%, which exhibit high fluorescence
quantum yield, high photostability, and excellent biocompatibility. .e N-doped CDs possess high photostability, low toxicity,
and excellent biocompatibility, based on which the N-doped CDs were successfully applied as a fluorescence probe for cell
imaging. Moreover, it was then successfully demonstrated for sensitive and selective detection of Fe3+ in serum.

1. Introduction

During the past few years, fluorescent CDs have attracted
tremendous attention due to their unique optical and
electronic properties [1–6]. Compared to conventional
semiconductor quantum dots and organic fluorescent dyes,
CDs possess several superior features including function-
alization, low toxicity, excellent water dispersibility, tunable
fluorescence emission, excellent photostability, upconver-
sion, and biocompatibility, thus demonstrating potential
application in the fields of bioimaging, in vivo theranostics,
drug delivery, light-emitting diodes, photocatalysis solar
cells, and heavy metal ion detection [7–11]. In addition,
doping CDs with other nonmetallic components, such as N,
S, and P, can inject electrons into carbon-based materials
and change the electronic transport properties and PL
properties [12, 13]. However, in most cases, the QY of the as-
synthesized CD was less than 10%, and the QY is a key
parameter to evaluate the quality of CDs, which limit the
sensitivity and selectivity. So, synthesis of high-fluorescence
carbon quantum dots is the direction of development.

.e use of N-containing precursors has proved to be an
effective route for obtaining N-doped CDs. Chen et al. [14]
used 2-azidoimidazole as precursor in a hydrothermal

process at 70°C overnight to obtain nitrogen-rich CDs. Lv
et al. [15] using ethanediamine and citric acid as precursors
obtained N-doped CDs and achieved good results in iron
detection.Wang and Zhou. [16] used milk to prepare N-CDs
hydrothermally at 180°C for 2 h. In another study, Hsu and
Chang [17] found that compounds containing both amino
and carboxyl groups are beneficial for synthesizing CDs with
high PL quantum yield. Based on the benefits of N-doping in
carbon nanostructures, it can be extrapolated that the in-
troduction of N to carbon dots would further enhance their
versatile properties. However, most N-doped CDs are un-
satisfactory due to harsh synthetic conditions and long
reaction times. .us, a time-saving and eco-friendly syn-
thesis of N-doped CDs is of interest.

Herein, a facile, green, and high-output thermal strategy
is proposed for the fabrication of highly fluorescent N-doped
CDs. We used L-citrulline as the precursor for a facile and
eco-friendly one-step hydrothermal method without the
assistance of any chemicals (except pure water) to obtain
highly fluorescent N-doped CDs. .e as-prepared N-doped
CDs exhibit good water solubility, good biocompatibility,
and high fluorescence quantum yield (32.9%). Owing to the
unique properties of the N-doped CD nanoprobe with good
membrane permeability and excellent biocompatibility, it
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was used for imaging of HeLa cells with high discrimination.
Moreover, it was further applicated for detection of Fe3+ ions
in serum, and the fluorescence intensity exhibited a good
linear relationship in the Fe3+ concentration range from 0 to
50 µM with a detection limit of about 37 nM.

2. Experimental

2.1.Materials. L-citrulline (98%) and quinine sulphate (98%)
were purchased from J&K Scientific Inc. (Beijing, China). 3-
(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide
(MTT, 98%) was obtained from Sangon Biotechnology Inc.
(Shanghai, China). Dimethyl sulphoxide (DMSO) was obtained
from Xilong Reagents Company (Guangdong, China). Penicillin-
streptomycin, Dulbecco’s modified Eagle’s medium (DMEM),
and foetal bovine serum (FBS) were purchased from Solarbio
(Beijing, China). NaCl, KCl, MgCl2, AlCl3, CaCl2, Cr(NO3)3,
FeCl2, FeCl3, Co(NO3)2, CuSO4, ZnCl2, Cd(NO3)2, SrCl2, and
Hg(NO3)2 were purchased from Aladdin (Shanghai, China).
HeLa cell lines were obtained from Cellcook. Human serum
samples were provided by Xing Ying People’s Hospital Blood
Center (Xingyi, China). Ultrapure water (18.2MΩ, Millipore
Co., USA)was used in all experiments. Other chemical reagents
(analytical grade) were purchased from Beijing Chemical
Company (Beijing, China).

2.2. Instrumentation and Characterization. .e morphol-
ogies and sizes of N-doped CDs were characterized by high-
resolution transmission electron microscopy (HRTEM,
Hitachi-F20) at an accelerating voltage of 200 kV and atomic
force microscopy (AMF, Bruker Multimode 8) in the tapping
mode. Fourier transform infrared (FT-IR) spectra were ob-
tained on a Nicolet 6700 FT-IR spectrometer using KBr pellets.
X-ray photoelectron spectroscopy (XPS) was performed using
an ESCALAB 250Xi (.ermo Scientific). X-ray diffraction
(XRD) was carried out using a Rigaku diffractometer in the 2θ
range 10–80° with step width of 0.02°. UV-Vis absorption
spectra were recorded on a DU 800 UV-Vis spectrophotom-
eter. .e PL decay curves were obtained on a Leica SP5 FLIM
system using a 405nm laser excitation source. Fluorescence
spectroscopy and stability were measured on a PerkinElmer LS
55 with 5/5 nm slit width and equipped with a 1 cm quartz cell.
A TGL-20LM-B high-speed refrigerated centrifuge (Hunan
Xingke Instrument Co., Ltd., China) was used to purify the
N-doped CDs. Cell imaging was carried out using a Leica SP8
confocal laser scanning microscope (Leica, Germany).

2.3. Synthesis of N-Doped CDs. N-doped CDs were synthe-
sized by a facile hydrothermal method. Briefly, 0.50 g·L-
citrulline was dissolved in 25mL ultrapure water and
subjected to ultrasonic oscillation for 20min. .e solution
was transferred to a Teflon-equipped stainless steel autoclave
and reacted at 220°C for 12 h. After the reaction liquid was
cooled to room temperature, the reaction liquid was centri-
fuged at 17,000 rpm for 40min to separate aggregated parti-
cles. .e supernatant fluid was removed by filtration with
a 0.22μm filter membrane. .e as-prepared N-doped CD
solution was stored at 4°C for further use.

2.4. MTT Assay and Intracellular Fluorescence Imaging.
Cytotoxicity of the N-doped CDs was investigated with the
cancer cell line HeLa by an MTT assay. HeLa cells were
seeded in a 96-well plate at a density of 4×103 cells per well
for 24 h in an incubator (37°C, 5% CO2). .e culture me-
dium was replaced with 100 μL fresh DMEM containing the
N-doped CDs at concentrations of 0, 25, 50,100, 250, and
500 μg/mL and incubated in an incubator (37°C, 5% CO2).
After 24 or 48 h, 20 µL MTT (5mg/mL) solution was added
to each cell well, which was incubated for 4 h. Subsequently,
the culture medium with MTT was removed and 100 µL
DMSO was added, followed by shaking for 10min. .e
optical density (OD) of each well at 490 nmwasmeasured on
the enzyme-linked immunosorbent detector.

HeLa cells (1× 105 cells/dish) were seeded in a confocal
dish with 100 μL fresh DMEM containing 10% FBS and
incubated in an incubator (37°C, 5% CO2). After 24 h, the
N-doped CDs with concentrations of 50, 200, 400, and
600 µg/mL were added to the confocal dish and incubated at
37°C in 5% CO2 for another 4 h. Subsequently, the adherent
cells were carefully washed three times with PBS (0.01M,
pH 7.4). Finally, the laser confocal microscopy imaging of
HeLa cells was performed at excitations of 405 and 488 nm.
Bright-field images were captured to ensure the locations of
fluorescent tag signals.

2.5.Metal IonDetection byN-DopedCDs. Sources of various
metal ions such as Na+, Mg2+, Al3+, Ca2+, Cr3+, Fe2+, Fe3+,
Co2+, Cu2+, Zn2+, Cd2+, Sr2+, K+, and Hg2+ were applied for
detection. N-doped CD stock solution (2.0mg/mL, 250 μL)
was mixed with 50 μL of 120 μM solutions of different metal
ions to reach the final concentration of 20 μM, respectively.
Afterward, the mixtures were recorded under excitation at
360 nm. To evaluate the selectivity of this N-doped CD
toward Fe3+, interference assays were performed under
identical conditions using above ions and Fe3+, and the
N-doped CD stock solution was added to different con-
centrations of Fe3+ solution in a similar manner.

3. Results and Discussion

3.1. Characterization of N-Doped CDs. .e size and mor-
phology of N-doped CDs were characterized by HRTEM and
AFM..e TEM image (Figure 1(a)) clearly revealed N-doped
CDs with spherical morphology, average diameter (inset in
Figure 1(a)) of 2.7 nm, and a narrow particle size distribution
of 2.3–3.3 nm. HRTEM images (Figure 1(b)) showed that the
average lattice spacing of the N-doped CDs was 0.32 nm, in
agreement with the (002) diffraction planes of graphite
[18, 19]. .e AFM 3D image and topography image
(Figures 2(a) and 2(b)) indicate that the N-doped CDs had
a spherical shape, which is consistent with the TEM results.
.e average height (Figure 2(c)) of N-doped CDs was
3.16 nm, which is close to the diameter of N-doped CDs
measured by TEM (2.68 nm). Hence, in accordance with
the previous reports, the N-doped CDs were almost
spherical carbon nanoparticles [20, 21]. FT-IR spectros-
copy and XPS analyses were performed to study the
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chemical composition and functional groups of the
N-doped CDs. In the FT-IR spectrum in Figure 3(a), the
peak at 3433 cm−1 is attributed to the stretching vibration
of –NH, the peaks at 1625 cm−1 indicate the existence of
C�C, the peak at 1408 cm−1 was assigned to the bending
vibration of C–NH (indicating the successful adulteration
of nitrogen atoms into the C-dots), and the absorption at

674 cm−1 is ascribed to C–H..ese FT-IR assignments were
further verified by XPS analysis. XPS was used to measure the
surface chemical composition and elemental analysis of
N-doped CDs. .e three main peaks at 284.78, 400.48, and
530.38 eV of the XPS survey spectrum (shown in Figure 3(b))
correspond to C1s, N1s, and O1s, respectively. .e N-doped
CDs contained 54.5 at.% carbon, 19.2 at. % nitrogen, and 26.3
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Figure 1: (a) TEM image of N-doped CDs. Inset shows the size distribution of N-dopedCDs. (b) HRTEM reveals lattice spacing of N-dopedCDs.
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Figure 2: AMF images of N-doped CDs. (a) AMF 3D image, (b) AMF topography image, and (c) height profile along the line in (b).
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at. % oxygen at the corresponding binding energies given in
Figure 3(b). High-resolution XPS spectra of C1s (Figure 3(c))
can be ascribed to four component peaks with binding en-
ergies of about 284.38, 284.48, 285.38, and 287.38 eV. Here,

the anterior peak located at 284.38 eV reflects the bonding
structure of C–C (sp3) bonds, the peak located at 284.48 eV
reflects the bonding structure of the C–N (sp3) bonds, and the
peaks at 285.38 and 287.38 eV are attributed to the C–O (sp2)
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Figure 3: (a) FT-IR spectra of N-doped CDs. (b) XPS survey spectrum of N-doped CDs and high-resolution spectra of C1s (c), N1s (d), and
O1s (e). (f ) XRD pattern of N-doped CDs.
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and C�O (sp2) bonds, respectively [22]. .is indicated that the
as-prepared N-doped CDs were rich in hydrophilic groups on
their surfaces, which was consistent with the corresponding
FT-IR spectrum. As shown in Figure 3(d) (partial XPS
spectrum of N1s), the N1s peak can also be resolved into two
components centred at 399.18 and 400.48 eV; the anterior
peak located at 399.18 eV reflects the bonding structure of
C–N–C bonds, and the second peak located at 400.48 eV
reflects the bonding structure of the N–H bonds [23, 24]. .e
O1s peak had two components at 530.38 and 531.38 eV for
adsorbed oxygen: C�O and C–OH/C–O–C (Figure 3(e)),
respectively [21]. Surface functionality analyses via XPS are in
agreement with FT-IR results. .e above analysis indicated
that the N-doped CDs synthesized might have functional
groups like –COOH, –OH, and –NH. XRD patterns (Figure 3
(f)) showed many narrow 2θ diffraction peaks at about 8.65°,
11.91°, 13.21°, 16.39°, 16.86°, 17.82°, 18.27°, 19.55°, 20.41°,

21.79°, 23.02°, 24.73°, 24.97°, 26.93°, 27.97°, 29.62°, 33.76°, and
38.75°, suggesting ordered carbon in N-doped CDs.

3.2. Spectral Properties and Cytotoxicity Assay of N-Doped
CDs. As displayed in Figure 4(a), the excellent optical
properties of the synthesized N-doped CDs were demon-
strated by absorption and PL spectroscopy. .e N-doped
CDs displayed broad UV-Vis absorption, which was at-
tributed to the n-π∗ transition in N-doped CDs. .e
emission wavelength of N-doped C-dots was red-shifted
from 430 to 600 nm with excitation wavelength ranging
from 320 to 600 nm [25]. In addition, the optimal excitation
and emission wavelengths of the N-doped CDs solution
were located at 377 and 438 nm (Figure 4(b)). Separately, the
N-doped CD aqueous solution emitted strong blue light
upon ultraviolet excitation at 365 nm (right inset, Figure 4(b)).
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Figure 4: (a) UV-Vis absorption spectrum (black line), fluorescence excitation (red line, λem � 438 nm), and emission spectra (blue line,
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To further investigate the optical properties of the as-obtained
N-dopedCDs, the PL excitation spectrumof theN-dopedCDs
was observed (Figure 4(b)). .e spectrum displayed typical
excitation wavelength dependence, and the emission wave-
length was red-shifted when excited with longer wavelengths.
.is behaviour of the N-doped CDs has been suggested to be
a result of different sizes or the existence of different emissive
sites on the surfaces [26]. .is excitation-dependent emission
property of carbon dots has also been found in the previous
reports [27–29]. We further investigated the fluorescence
stability of N-doped CDs. Time-correlated single-photon
counting (TCSPC) was applied to measure the fluorescence
lifetime of the N-doped CDs. As presented in Figure 4(c), the
decay lifetime of the N-doped CDs was measured with the
previous reports [30], and the calculated average fluorescence
lifetime for the N-doped CDs was 4.45± 0.05 ns. Moreover,
the photostability (Figure 4(d)) of the N-doped CDs syn-
thesized was tested upon continuous excitation at 360 nm for
5 h; the fluorescence remained intact without any photo-
bleaching, which corroborates to reasonably good photo-
stability of N-doped CDs.

To investigate the applicability of N-doped CDs as
a fluorescence biomarker in a practical biological environ-
ment, the fluorescence stability of N-doped CD aqueous so-
lution was evaluated. As revealed in Figure 5(a), with increase
in pH from 3.0 to 5.0, the fluorescence intensity reached a peak
and decreased with pH ranging from 5.0 to 13.0. .e original
solution pH of the N-doped CDs was approximately 9.0. .e
figure shows that the fluorescence intensity of the N-doped
CDs at pH 7.0–9.0 was stronger than that at 9.0 and the
fluorescence intensity had not clearly declined at 7.0–9.0. A
physiological environment generally has pH of 7.0–8.0, which
is beneficial for bioimaging applications. In addition, fluo-
rescence QY of the N-doped CDs was found using quinine
sulphate as standard (measured at 350nm excitation wave-
length, QY� 54%). .e average QY of N-doped CDs in
aqueous solution at room temperature was 32.9%. .e high
QY is possibly due to the existence of nitrogen-containing

functional groups, which are generally excellent auxochromes
and greatly enhance photoluminescence.

.e biological application of N-doped CDs was also
explored. MTT assays were carried out to evaluate the cy-
totoxicity of the as-prepared N-doped CDs to living cells. As
expected, cell viabilities were estimated to be greater than
90% upon addition of N-doped CDs over a wide concen-
tration range (0–500 µg/mL) and after incubation for 48 h
(Figure 5(b)). High cell viabilities confirmed the low toxicity,
excellent biocompatibility, and great potential of the as-
prepared N-doped CDs for imaging in living cells..ese also
indicate that the as-prepared N-doped CDs can be con-
sidered safe for in vitro and in vivo applications.

3.3. Application of N-Doped CDs

3.3.1. Imaging of HeLa Cells. Based on these fluorescence
properties, experiments were carried out to further demon-
strate the availability of the as-prepared N-doped CDs for
imaging in cells and plants. Figure 6 shows CLSM images
under bright field, 405 nm, 458 nm, and 514nm excitations of
HeLa cells incubated for 4 h at 37°C with 50, 200, 400, and
600 µg·mL−1 N-doped CDs. As shown in the figure, strong
blue and green fluorescence of the HeLa cells can be seen at
405 and 488 nm. More careful observation revealed that the
luminescence spots appeared widely in the membrane and
cytoplasmic areas of the HeLa cells. In addition, with the
increase in the concentration of N-doped CDs, the fluores-
cence enhancement helped identify tumour cells. According
to the previous studies, the cytoplasm-specific property of
N-doped CDs should be related to endocytosis [1, 9, 14, 21].
.e results indicated that N-doped CDs could be used for in
vitro tumour cell labelling via a simple incubation method.

3.3.2. Selectivity and Ratiometric Detection of Fe3+ in Serum.
As shown in Figure 7(a), under the same conditions, in sharp
contrast to Fe3+, other ions including Hg2+, Cr3+, Fe2+, Co2+,
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Figure 5: (a) PL spectra of N-doped CD aqueous solutions at different pH (λex � 365 nm). (b) Cytotoxicity testing results via an MTTassay.
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Cd2+, Sr2+, Al3+, Mg2+, Zn2+, Ca2+, K+, Na+, and Cu2+
showed almost no influence on the spectra of the nanoprobe.
.e fluorescence could be quenched by Fe3+ ion due to the
special coordination interaction between Fe3+ ion and the
hydroxy groups on the surface of CDs, whichmay contribute
to nonradiative electron transfer that involves partial
transfer of an electron in the excited state to the d orbital of
Fe3+. To further investigate the FL quenching mechanism of
N-doped CDs, different concentrations of Fe3+ solution were
added to N-doped CD stock solution. As shown in Figure
7(b), the FL intensity of N-doped CDs gradually decreased
with increasing Fe3+ concentration and the inset shows the
relationship of the relative fluorescence intensity F/F0 with
Fe3+ concentration. Dynamic fluorescence quenching is de-
scribed by the Stern–Volmer equation [31]. .e inset in
Figure 6(b) shows a linear relationship (R2 � 0.998) in the
range of Fe3+ concentration from 0 to 50 μM. .e detection

limit was 37nM (signal-to-noise ratio of 3). .e results
demonstrated that N-doped CDs show promise as a sensitive
and selective probe for the detection of Fe3+. In order to
demonstrate the analytical performance of the proposed
N-doped CDs in complicated biological samples, the capability
of the N-doped CDs was evaluated by quantitative detection of
Fe3+ in human serum, and it was spiked with different con-
centrations of Fe3+ and measured by the proposed method.
Table 1 shows that the recoveries were 95.2–112% with the
relative standard deviation (RSD, n� 5) less than 5.8%, which
indicates that the proposedmethod was sensitive and accurate.

4. Conclusions

We demonstrated a facile and green synthesis method to
prepare novel fluorescent N-doped CDs by hydrother-
mal reaction using amino acid L-citrulline as precursor.
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.eN-doped CD aqueous solution emitted strong blue light
under UV irradiation with a fluorescence quantum yield of
32.9%, and the emission wavelength was red-shifted under
excitation with longer wavelengths. .e fluorescent N-doped
CDs acted as novel fluorescence probes that facilitated si-
multaneous imaging of HeLa cells and sensitivity detection
of Fe3+ ions. .e N-doped CDs showed outstanding overall
performance such as outstanding optical properties, good
chemical and photochemical stability, inertness to interfer-
ence of metal ions and biomolecular species, and excellent
biocompatibility, which make N-doped CDs a desirable
alternative probe for biological imaging, detection, and many
other applications.
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