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Using the standard colors provided in the instructions, PackTest products can approximate and quickly estimate the chemical
characteristics of liquid samples. *e combination of PackTest products and deep learning was examined for its accuracy and
precision in quantifying chemical oxygen demand, ammonium ion, and phosphate ion using a pseudocolor imagingmethod. Each
PackTest product underwent reactions with standard solutions. *e generated color was scanner-read. From the color image, ten
grayscale images representing the intensity values of red, green, blue, cyan, magenta, yellow, key black, and L∗, and the values of a∗

and b∗ were generated. Using the grayscale images representing the red, green, and blue intensity values, 73 other grayscale images
were generated. *e grayscale intensity values were used to prepare datasets for the ten and 83 (�10 + 73) images. For both
datasets, chemical oxygen demand quantification was successful, resulting in values of normalizedmean absolute error of less than
0.4% and coefficients of determination that were greater than 0.9996. However, the quantification of ammonium and phosphate
ions commonly provided false positive results for the standard solution that contained no ammonium ion/phosphate ion. For
ammonium ion, multiple regression markedly improved the accuracy using the pseudocolor method. Phosphate ion quanti-
fication was also improved by avoiding the use of an estimated value for the reference solution that contained no phosphate ion.
Real details of the measurements and the perspectives were discussed.

1. Introduction

PackTest products, like test strips, qualitatively indicate
chemical characteristics of liquid samples. PackTest products
are cost-effective, convenient, quick, easy to use, safe, and
have minimal waste and thus are highly feasible to use.*ere
are some ten PackTest products (http://kyoritsu-lab.co.jp/
english/). Each product contains dry reagents in a handy,
flexible, and elastic semitransparent plastic pack. By pressing
the pack to purge the air inside and submerging the pack
edge in a liquid sample, the plastic pack takes in the sample
liquid from a small hole at the edge of the pack.*e reagents
react with the chemical to be detected. *e reaction gen-
erates visible coloration of the entire reaction system in the
plastic pack [1]. *us, the user can visually observe if there is
a particular chemical in the liquid sample.*e products were

originally designed for quick and approximate detection of
chemicals, and thus, they are considered to be qualitative or
semiquantitative analytical tools. For qualitative or semi-
quantitative detection, users refer to a series of standard
colors that show the approximate concentration of the
chemical in question, which generates a color after the
chemical reaction. Because of the feasibility, PackTest
products may be widely used in various places including
secondary schools [2] and field sites with environmental
issues [3].

By referring to standard colors, PackTest users find the
closest value that is represented by a standard color. For this
reason, PackTest was originally a tool with discrete measures
for the chemical characteristics. However, recent studies
indicated the possibility that the PackTest products can be
tools for accurately and quantitatively determining the
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chemical characteristics of liquid samples [4]. *ese tools
can be used with continuous measures provided by com-
putation such as regression. *e continuous measures can
solve the difficulty in determining the closest value when a
sample color nears the midpoint between two standard
colors [5]. Another reason that continuous measures are
preferred is that accurate quantitative determination of
chemical characteristics is more advantageous than quali-
tative detection. An example is the critical effects of blood
biochemical characteristics at low levels [6]. Improving the
accuracy of PackTest products is expected to enable de-
tection of subtle but significant signals [7]. Previous studies
aimed to enhance the accuracy of the feasible tools such as
test strips by determining the regression models that de-
scribe the chemical characteristics [8]. In addition to the
regression techniques, deep learning tools are now com-
monly available.

Deep learning is especially advantageous for analyzing
images. Deep learning was used to explore relationships
between health and information that was derived from
medical images [9]. Besides its application to image analyses,
deep learning was expected to extract the patterns of color
changes in the PackTest reaction mixture as responses to
changes in the level of the chemical characteristics in
question. Deep learning evolved from artificial neural net-
work that was well established and used for quantitative
determination of chemical characteristics [10]. Deep
learning is relatively more tolerant to some limitations, such
as overtraining, which more significantly affect artificial
neural networks. Recently, freeware for deep learning was
launched. To the best of my knowledge, few studies have
involved deep learning for quantification of chemical
characteristics.

Based on the above background, this study was con-
ducted to apply deep learning to quantify chemical char-
acteristics of liquid samples. *ese characteristics were
chemical oxygen demand, ammonium ion concentration,
and phosphate ion concentration. Standard solutions with
multiple levels of the chemical characteristics were prepared.
Coloration was generated by introducing the standard so-
lutions to the PackTest products. *e colored pack was
optically scanned. *e color image was used as the starting
material for 83 grayscale images to enhance the information
[4]. *e grayscale intensity values for selected pixels that
indicate the chemical characteristics were read and used for
deep learning. Validating the training results revealed that
some chemical characteristics were very accurately quanti-
fied. However, for some chemical characteristics, the
training was found to have problems. *ese problems were,
however, avoided when complementally techniques were
used.

2. Materials and Methods

2.1. PackTest Products. PackTest products for determining
chemical oxygen demand, ammonium (NH4

+) ion, and
phosphate (PO4

3−) ion (Kyoritsu Chemical-Check Lab,
Corp., Tokyo, Japan) were purchased. PackTest is a series of
products for determining the chemical characteristics of

liquids (http://kyoritsu-lab.co.jp/english/). *e product is a
handy and flexible plastic pack that has a hole at the edge.
*e plastic pack contains a set of reagents that react with the
chemical (characteristic) to be measured colorimetrically.
After purging the air inside the pack using the hole, the pack
edge is submerged in the sample liquid and the sample enters
the pack through the hole. *en, the chemical characteristic
is approximately determined by referring to standard colors
in the instructions that come with the pack. Chemical ox-
ygen demand is detected by applying the principle of alkaline
oxidation with potassium permanganate [11]. NH4

+ and
PO4

3− are detected using an indophenol reaction [12] and a
molybdenum blue reaction [13], respectively.

2.2. Standard Solutions and Reaction. Glucose solutions, the
standard solutions for chemical oxygen demand, were prepared
by dissolving glucose in distilled water. *e concentrations
were 1.46, 2.93, 5.86, 11.7, 23.4, 46.6, and 93.8mg·glucose·L−1.
*ese glucose concentrations are 1.56, 3.13, 6.25, 12.5, 25, 50,
and 100mg·chemical·oxygen·demand·L−1. Ammonium stan-
dard solutions were prepared by dissolving ammonium
chloride in distilled water.*e concentrations were 35, 69, 139,
278, and 556µM. Phosphate ion standard solutions were
prepared by dissolving sodium dihydrogen phosphate dihy-
drate in distilled water at 0, 13, 26, 53, and 105µM.

*e edge of a pack for chemical oxygen demand was
submerged in the standard glucose solution. *e standard
solution was introduced into the pack from a small hole at
the edge of the pack until it contained solution to a depth of
3.5 cm. *en, the standard solution in the pack was gently
stirred by turning the pack, according to the manufacturer’s
instructions. *e reaction took 5minutes at room temper-
ature (approximately 23°C). Five pack replications were used
for each glucose concentration.

Similarly, the phosphate ion (PO4
3−) standard solution

was introduced into the pack for phosphate ion detection.
*e phosphate ion kit contained a small plastic container to
accurately take in 1.5mL of liquid sample into the pack. *e
reaction took 1minute at room temperature. *e ammo-
nium chloride standard solution was introduced into the
pack for the ammonium ion (NH4

+) detection at
1.5mL·pack−1 in a similar manner. *e reaction took
5minutes at room temperature.*ree pack replications were
used for each NH4

+ or PO4
3− concentration.

2.3. Image Acquisition and Processing. *e coloration was
read using an Epson GT-S 650 optical scanner (Seiko Epson
Corp., Suwa, Japan) at 300 dots per inch in the professional
mode. *e other settings of the scanner were set at the
default. *e scanner was placed vertically, and the colored
pack was attached at approximately the center of the
scanner’s bed glass using scotch tape to prevent the solution
from leaking out.*e scanner lid, with a white plastic pad on
the inside, was loosely closed. An image of the colored pack
was acquired in the dark. *e image was saved as a JPG file
and then converted to a tag image file format file in the red-
green-blue (RGB) mode with the sRGB color space.
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Details of the image processing methods are described
elsewhere [4, 14]. With Adobe Photoshop CS2 software
(Adobe Systems Inc., California, USA), the tag image file
format image generated ten grayscale tag image file format
images that indicated the grayscale intensity values for the
color components of RGB, cyan-magenta-yellow-key black
(CMYK), and the International Commission and Illumi-
nation’s L∗a∗b∗ color models (Figure 1). CMYK images
were generated using the International Color Consortium
profile of USWeb Coated (SWOP) v2 for digital output such
as color printing. Hereafter, these ten grayscale images will
be called the original ten grayscale images (Figure 1). An
RGB yellow hybrid grayscale image was prepared by
merging the R and G grayscale images at the same weights
[15]. Similarly, RGB cyan and RGB magenta hybrid gray-
scale images were prepared bymerging the G and B grayscale
images and the R and B grayscale images, respectively.

To prepare a pseudocolor RGB image, the entire area of a B
grayscale image in an RGB color image was substituted by the
RGB yellow grayscale image. Hereafter, this image is called the
RGyB image (Figure 1). A pseudocolor RG-yB image was
prepared by substituting the B grayscale image of the RGB color
image with the black-white inverted RGB yellow grayscale
image. Similarly, an RmGBpseudocolor imagewas prepared by
placing the RGB magenta grayscale image onto the entire area
of a G grayscale image of an RGB image. R-mGB, cRGB, and
-cRGB pseudocolor images were also prepared and saved.

Pseudocolor images carrying two or three of the RGB
cyan, RGB magenta, and RGB yellow hybrid grayscale images
were also prepared (Figure 1). For example, the G and B
grayscale images of an RGB image were substituted with the
RGB magenta and yellow hybrid grayscale images, re-
spectively. Hereafter, this image is called the RmGyB pseu-
docolor image. Similarly, cRGyB and cRmGB pseudocolor
images were prepared. By substituting the R, G, and B
grayscale images of the RGB color image with the RGB cyan,
magenta, and yellow hybrid grayscale images, respectively, a
cRmGyB pseudocolor image was also prepared.

*e ten pseudocolor images were saved as tag image
file format files. Each of the pseudocolor images was
converted to CMYK and L∗a∗b∗ color images. Next,
grayscale images that showed the intensity values of C, M,
Y, K, and L∗ and the values of a∗ and b∗ were prepared
from each pseudocolor image (Figure 1). Hereafter, the C,
M, Y, K, L∗, a∗, and b∗ images are referred to as the RGyB
C grayscale image and so on. *us, 70 grayscale images
were added to the original ten grayscale images and the
three hybrid grayscale images of RGB yellow, RGB ma-
genta, and RGB cyan. A total of 83 grayscale images were
obtained for each chemical characteristic.

*e grayscale intensity values for pixels representing
the colors for the standard solutions were read by running
MultiSpec version 3.4 for Windows (Purdue Research
Foundation, Indiana, USA). *e intensity values were
digital numbers between 0 (complete black) and 255
(complete white). Within a single pack image, ten repli-
cation pixels and five other pixels were selected as training
and validation pixels, respectively. *e pixels were selected
in an image area with the least diffuse reflection. *e

grayscale intensity values for the selected pixels were read
for the 83 grayscale images. Grayscale datasets based on the
original ten (RGB, CMYK, and L∗a∗b∗) and all 83 images
were prepared and compared in terms of accuracy of
quantification of the chemical characteristics.

To train deep learning of relationships between color-
ation and chemical oxygen demand levels, the grayscale
intensity values for the ten replication pixels× five
packs× eight chemical oxygen demand levels, 400 pixels
were used. Similarly, to estimate NH4

+ and PO4
3− con-

centrations, the grayscale intensity values for the ten rep-
lication pixels× three packs× six (NH4

+) or five (PO4
3−)

levels thus 180 (NH4
+) or 150 (PO4

3−) training pixels were
used. Besides the training pixels, validation pixels were
selected. *e numbers of pixels used for the validation were
200 (chemical oxygen demand), 90 (NH4

+), and 75 (PO4
3−).

2.4. Deep Learning and Related Techniques. Using a SONY
neural network console 1.20 (SONY Corp., Tokyo, Japan),
deep learning was performed. From the basic series of ar-
chitecture, 10_deep_mlp.sdcproj was selected. *e archi-
tecture consisted of five layers (Figure 2). In Figure 2, Affine
is a networking structure and Tanh is a process in which
hyperbolic tangent-converts a value generated by the up-
stream processes to provide a converted value between −1
and 1. Sigmoid converts a value generated by the upstream
processes to provide a sigmoid-converted value between 0
and 1. *e last process of this architecture was Bina-
ryCrossEntropy for binarization of the input data. However,
in this study, it was substituted by SquaredError to minimize
errors in the estimation of values. Eighty-three and the other
values on the right side along the architecture diagram
(Figure 2) are the number of values inputted and processed
in the layer. When values derived from the ten grayscale
images were inputted, the first input number was ten instead
of 83. *e raw grayscale intensity values were divided by 255
before the values were processed by the architecture, as
recommended by the manufacture’s manual. For training
and validation, ten and five grayscale intensity values were
used for each plastic pack, respectively. *e default settings
were used in the training and validation except that the
number of epochs was 3000. By confirming the discrepancy
between changes in training and validation errors, over-
training was monitored.

To complement the quantification using the grayscale
intensity datasets and deep learning, the author used the
statistical software IBM SPSS Statistics V.24.0 (IBM Corp.,
New York, USA).*e multiple regression model that most
significantly describes changes in the chemical charac-
teristic was identified using the stepwise method at the
default criteria (p � 0.05 for inclusion and 0.10 for re-
moval). *is may generate multiple regression models.
However, those that consist of any coefficient with a
variance inflation factor of ten or greater were eliminated
because the coefficient was unreliable [16].

*rough the above processes, the normalized mean
absolute error [17] and coefficient of determination (R2)
were obtained as indicators of accuracy and precision,
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respectively. *e normalized mean absolute error was
determined as follows:

normalizedmean absolute error(%)

� 100 ×
|estimated value− actual value|( 

(number of used pixels/range of value)
.

(1)

*e values of these statistics were compared among the
best regression models for the datasets for the ten and 83
images to investigate the effects of pseudocolor imaging on
the precision and accuracy of determining the chemical
characteristics.

Another error statistic was used to confirm the re-
producibility of the scanner-read color intensity values. *e
statistic called the coefficient of variation was determined as
follows:

coefficient of variation(%) � 100 ×
standard deviation

mean
.

(2)

*e reproducibility was evaluated by reading the color
intensity values for 30 selected Microsoft Office standard
colors (Figure 1) that were printed on white paper. Using the

EpsonGT-S 650 scanner, the colors were read eight times, and
thus, eight RGB color images were obtained. Coefficients of
variation for the intensity values of redness, greenness, and
blueness were determined for the 30 standard colors.

To observe the performance of the 83 grayscale images
that were used in this study, a color gamut [14] and the
standard colors in Figure 1 were used. *e color gamut and
standard colors were provided by Microsoft Office 2016.*e
tag image file format image of the gamut and standard colors
was used to obtain the colors’ profiles by reading the
grayscale intensity values for the 83 grayscale images. *ere
were 144 standard colors. In the gamut, 187 pixels were
randomly selected. *e grayscale intensity values were read
for the 331 pixels in the 83 grayscale images. *e intensity
values for the 331 pixels× 83 images were used for principal
component analysis using the IBM SPSS software.

3. Results and Discussion

Figure 3 shows color development in the plastic packs.
When visually observed, the colors were comparable to
those in the instructions provided by the manufacturer, but
the images obtained by the scanner were less colorful than
those in the instructions. *e semitransparency of the

RG-yB C RG-yB M RG-yB Y RG-yB K RG-yB L∗ RG-yB a∗ RG-yB b∗

RGyB C RGyB M RGyB Y RGyB K RGyB L∗

R G B L∗C M Y K a∗ b∗

RmGB R-mGB cRGB -cRGB From each pseudocolor image,
C, M, Y, K, L∗, a∗, and b∗

grayscale images as the above

Seventy grayscale images from 10 pseudocolor images

RGB yellow, magenta, 
and cyan grayscale images

(three hybrid grayscale images)

Original 10 grayscale images

Total 83 grayscale images

RGB yellow RGB magenta

RGyB a∗ RGyB b∗RGyB

RG-yB 

Ten pseudocolor
images

RG color

RGB true color

Grayscale intensity
values for the 
selected pixels

RmGyB cRGyB cRmGB

cRmGyB

Single grayscale image substituted

Two 
grayscale 
images 

substituted

Three 
grayscale 
images 

substituted

Deep learning
(training→validation)

Multiple regression
analysis (option)

RGB cyan

Figure 1: Pseudocolor imaging and data-processing procedures employed in this study. Details of the RGB true-color image are shown in
Figure 3. *e hexagon and the rectangle at the bottom of the image are Microsoft standard colors and gamut, respectively.
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plastic material may be at least partially responsible for the
relative darkness. Based on the grayscale intensity values
derived from the scanner-acquired colors, the chemical
oxygen demand was accurately quanti�ed (Figure 4).
Training and validation curves overlapped well, and thus,
there was no overtraining. �e normalized mean absolute
errors were 0.384% and 0.347% for the original ten and 83

images’ datasets, respectively. �e normalized mean ab-
solute error was approximately comparable to the corre-
sponding coe�cient of variation [4]. From this viewpoint,
the normalized mean absolute error was very small com-
pared with those regarded as acceptable values of 10% in
areas of analytical chemistry [18] or 5 to 10% in food
chemistry [19].
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Figure 2: Deep learning architecture used in this study. A�ne is a networking structure. Tanh is a process of hyperbolic tangent-conversion
of the input. Sigmoid converts a value generated by the upstream processes. Sigmoid results in a sigmoid-converted value between 0 and 1.
Squared Error is a process for minimizing errors in the estimation of the value.

Chemical oxygen demand (mg·L–1)
0 1.56 3.13 6.25 12.5 25 50 100
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0 35 69 139 278 556
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Figure 3: Color development of the PackTest products with standard solutions of chemical oxygen demand, ammonium chloride, or
sodium dihydrogen phosphate at di�erent concentrations and incubated at room temperature (approximately 23°C). For each pack, 2400
pixels were copied from the original JPG �le obtained using the optical scanner.
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�e chemical oxygen demand has been determined using
various methods. Some researchers developed sophisticated
methods such as a �ow chemiluminescence method [11]. Less
complicated methods are colorimetry [20] and titration [21],
which are more complicated and time-consuming than the
current method. �us, the PackTest product for chemical
oxygen demand could be an advantageous alternative for
quantitative determination of the chemical oxygen demand.

However, based on the coloration, it should have been di�cult
to use this tool to its fullest because changes in color are
complicated. Figure 5 demonstrates this complexity. When the
intensity values for the pixels in the original ten grayscale
images were investigated, no monotonic increase/decrease in
chemical oxygen demand was recognized. �ese complex
patterns of color change as responses to changes in chemical
oxygen demand of samples disabled the simple empirical
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Figure 4: Estimation of chemical oxygen demand by using deep learning based on the 10 and 83 grayscale images derived from the
coloration image (Figure 3). �e oblique red lines indicate perfect matching between actual and estimated values.
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Figure 5: Nonlinear and nonmonotonic relationships between chemical oxygen demand and the grayscale intensity values for the selected
training pixels in the original 10 grayscale images (red, green, blue, cyan, magenta, yellow, key black, L∗, a∗, and b∗ images) derived from the
color images acquired by the optical scanner.
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description of chemical oxygen demand using a single color
component of RGB, CMTK, and L∗a∗b∗ color models.

Another difficulty was suggested.*e intensity values for
each color component at a single chemical oxygen demand
level showed errors (Figure 5). For example, the grayscale
intensity values for the pixels in the B grayscale image ranged
from less than 90 to 120. *e scanner was investigated for its
role in this difficulty. *e minimum grayscale intensity
values for the selected 30 Microsoft standard colors were 47
(redness), 32 (greenness), and 28 (blueness). *e maximum
values were 253 (redness), 243 (greenness), and 244
(blueness). *e coefficient of variation (N � 8 scanning
trials) ranged between 0.2% and 9.1% (redness), 0.3% and
9.0% (greenness), and 0.4% and 15.1% (blueness). *e mean
coefficient of variation (N � 30 colors) was 3.0% (redness),
3.9% (greenness), and 3.3% (blueness).

*erefore, the scanner was demonstrated to have good
reproducibility. A more likely source of the errors was an in-
consistency in attaching the pack onto the scanner’s glass bed.

*e pack was attached each time as consistently as possible.
However, in the interface between the glass bed and the pack’s
surface, slight differences should have occurred.*e differences
among the replication color readings were thought to be re-
sponsible for the errors indicated by the raw grayscale intensity
values in Figure 5. However, the deep learning architecture
completely eliminated the errors in the training processes.
According to Figures 3 and 4, a chemical oxygen demand value
of 4mg·L−1 or lower is detectable by combining the PackTest
product and deep learning. A chemical oxygen demand of
4mg·L−1 or lower is favorable for a fresh water trout subspecies
ofOncorhynchus masou [22], which is an important fish species
ecologically and as a foodstuff. *e current combination of
PackTest and deep learning enabled the accurate detection of
low levels of chemical oxygen demand for water samples that
were polluted at levels that weremarginally critical forO.masou.

Quantification of NH4
+ that relied on deep learning was

less successful than that of chemical oxygen demand
(Figure 6) although no signals of overtraining were observed.
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Figure 6: Estimation of ammonium ion (NH4
+) concentration by using deep learning andmultiple regression based on the 10 and 83 grayscale

images derived from the coloration image (Figure 3). *e oblique red lines indicate perfect matching between actual and estimated values.
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For both the ten and 83 images’ datasets, the normalized
mean absolute error and R2 were around 3% and 0.99, re-
spectively. Regression coefficients were 0.953 (10 images)
and 0.954 (83 images).*ese values deviated from 1.0, which
was considered to be a perfect match, shown as red oblique
lines in Figure 6. *e most critical part was that the pack
containing noNH4

+ was shown to contain 35 µMNH4
+.*is

indicates the possibility of a false positive result if users rely
on deep learning and the other techniques that were applied
in this study. Here, multiple regression markedly improved
the precision, resulting in a smaller normalized mean ab-
solute error of 2.34%. Overall, the regression was very ac-
curate, with a coefficient of 1.001 and a constant of 0.000.*e
multiple regression model was as follows:

NH4
+ concentration(µM) � 0.195 × -cRGB a

∗

+ 0.0798 × -cRGBC + 0.0569

× -cRGBY− 30.9,

(3)

where -cRGB a∗ and the other names of the grayscale images
indicated the grayscale intensity values for the selected
training pixels in the grayscale images.*e variance inflation
factor was 2.50 (-cRGB a∗) or less, indicating good reliability
for the three coefficients. *e grayscale intensity for the
-cRGB a∗ images had a more significant linear correlation
with the NH4

+ concentration (R2 � 0.916) compared with the
others for which the R2 values were smaller than 0.460
(Figure 7). Although the R2 value of 0.916 for the -cRGB a∗

grayscale intensity may seem to be large, it was much smaller
than the 0.992 result for the multiple regression model
(Figure 6). *is indicates that the multiple regression model
was achieved using the combination of less linear variables as
previously described [4].

In quantification of PO4
3−, no signals of overtraining

were recognized. However, the quantification had a similar
problem to that of NH4

+. *e pack containing no PO4
3− was

indicated as containing a small but detectable amount of
PO4

3− (Figure 8). *e normalized mean absolute error and
R2 were comparable to those for the NH4

+ determination
(Figure 6). A regression coefficient of 0.922 for deep learning
with the original ten images’ dataset was worse than that of
0.953 for NH4

+ determination by deep learning with the
original ten images’ dataset (Figure 6). Unfortunately,
multiple regression did not provide reliable results to im-
prove the poor performance. However, these poor results
could be circumvented by limiting the range of PO4

3−

concentration to be determined. *e deep learning-
estimated values for 0 µM PO4

3− were eliminated (Fig-
ure 8). Although the range of PO4

3− concentration that the
method can determine became 13.1 to 105 µM PO4

3−, the
error statistics were significantly improved.

*e 83 images’ dataset improved the accuracy of the
NH4

+ and PO4
3− determination (Figures 6 and 8). Principal

component analysis of color profiles based on the 331
pixels in the Microsoft standard colors and gamut is
provided in Table 1. *e table shows a data structure based
on the grayscale intensity values for the 331 pixels in the
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Figure 7: Relationships between ammonium ion concentration and the grayscale intensity values for the selected pixels in the significant
grayscale images that provided the best regression model for determination of ammonium ion concentration.
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Figure 8: Estimation of phosphate ion (PO4
3−) concentration by using deep learning based on the 10 and 83 grayscale images derived from

the coloration image (Figure 3). �e oblique red lines indicate perfect matching between actual and estimated values.

Table 1: Loadings on principal components (eigenvalue> 1) for the grayscale images to show the structure of the grayscale intensity data for
the 331 pixels representing the Microsoft O�ce standard colors and gamut in the 83 grayscale images.

(Pseudo)color image as the
source of grayscale images Grayscale image

Principal components (explaining percentage, eigenvalue)
1 (30%, 25) 2 (28%, 23) 3 (24%, 20) 4 (5%, 4) 5 (3%, 3) 6 (2%, 2) 7 (2%, 2)

RGB true color image

R 0.396 0.856 −0.158 0.179 −0.080 −0.039 0.161
G 0.863 −0.446 0.115 0.072 0.053 −0.131 −0.028
B −0.055 0.051 0.949 0.115 −0.204 −0.051 −0.120
C 0.483 0.761 −0.279 0.276 −0.016 −0.003 −0.061
M 0.761 −0.608 0.084 0.090 −0.005 −0.108 −0.006
Y −0.312 0.162 0.857 0.124 −0.264 −0.080 −0.047
K 0.528 0.301 0.539 −0.341 0.207 0.342 0.035
L∗ 0.968 −0.030 0.165 0.124 0.015 0.077 −0.067
a∗ −0.510 0.831 0.089 0.087 −0.008 0.132 0.081
b∗ 0.600 −0.023 −0.779 −0.016 0.157 0.044 −0.011

RGB cyan 0.504 −0.256 0.774 −0.029 −0.089 0.037 0.222
RGB magenta 0.233 0.706 0.598 0.127 0.221 −0.043 −0.088
RGB yellow 0.876 0.395 −0.071 −0.063 −0.144 0.093 −0.168

RGyB

C 0.675 0.619 −0.123 0.313 −0.044 −0.007 0.133
M 0.783 −0.557 0.122 0.147 0.083 0.007 −0.076
Y 0.574 0.668 −0.105 −0.266 −0.217 −0.218 −0.013
K 0.656 0.356 0.017 −0.485 −0.187 −0.060 −0.241
L∗ 0.983 0.021 0.021 0.079 −0.041 0.041 −0.118
a∗ −0.301 0.913 −0.195 −0.002 −0.127 0.101 0.064
b∗ 0.210 −0.804 0.185 0.388 0.242 −0.088 0.137
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Table 1: Continued.

(Pseudo)color image as the
source of grayscale images Grayscale image

Principal components (explaining percentage, eigenvalue)
1 (30%, 25) 2 (28%, 23) 3 (24%, 20) 4 (5%, 4) 5 (3%, 3) 6 (2%, 2) 7 (2%, 2)

RG-yB

C 0.450 0.834 −0.165 0.160 −0.116 0.053 0.065
M 0.770 −0.569 0.142 0.028 0.065 −0.157 −0.034
Y −0.845 −0.274 0.072 0.139 0.151 −0.056 0.181
K 0.252 −0.110 −0.092 0.585 0.138 0.563 −0.081
L∗ 0.956 −0.112 0.030 0.235 0.015 0.046 −0.059
a∗ −0.605 0.718 −0.181 0.186 −0.032 0.119 0.165
b∗ 0.926 0.284 −0.047 −0.048 −0.120 0.077 −0.165

RmGB

C 0.367 0.811 −0.231 0.266 −0.151 −0.010 0.193
M 0.361 0.811 −0.295 0.223 −0.087 −0.040 0.196
Y 0.210 −0.804 0.185 0.388 0.242 −0.088 0.137
K 0.235 0.616 0.553 −0.120 0.359 −0.147 −0.103
L∗ 0.392 0.883 −0.025 0.197 −0.007 −0.034 0.121
a∗ −0.288 −0.488 0.696 0.028 0.234 0.125 −0.278
b∗ 0.303 0.542 −0.747 0.035 0.041 −0.020 0.212

R-mGB

C 0.323 0.773 −0.250 0.290 0.212 0.150 0.085
M −0.358 −0.862 0.179 −0.187 0.028 0.034 −0.168
Y 0.002 0.292 0.846 0.135 −0.320 −0.106 −0.032
K −0.101 −0.055 0.358 0.422 −0.145 0.488 −0.176
L∗ −0.322 −0.731 0.244 0.196 0.081 0.348 −0.214
a∗ 0.373 0.877 −0.014 0.235 −0.072 −0.023 0.136
b∗ −0.046 −0.295 −0.842 −0.069 0.344 0.195 0.014

cRGB

C 0.638 −0.355 0.629 0.022 −0.077 −0.112 0.056
M 0.837 −0.464 −0.052 0.181 0.095 −0.059 −0.038
Y −0.315 0.197 0.841 0.112 −0.226 −0.035 −0.187
K 0.424 −0.150 0.685 −0.272 −0.091 0.034 0.377
L∗ 0.763 −0.386 0.487 0.043 −0.017 −0.019 0.132
a∗ −0.619 0.331 0.640 −0.108 −0.169 0.135 0.147
b∗ 0.656 −0.359 −0.601 −0.073 0.188 −0.022 0.153

-cRGB

C −0.145 0.066 −0.721 0.349 0.125 −0.060 −0.466
M 0.847 −0.444 0.145 0.007 0.052 −0.126 0.047
Y −0.297 0.196 0.875 0.014 −0.223 −0.014 −0.066
K 0.200 −0.182 0.440 0.331 −0.070 0.309 −0.004
L∗ 0.809 −0.432 −0.039 0.281 0.083 −0.082 −0.184
a∗ −0.855 0.436 −0.070 0.083 −0.061 0.140 −0.104
b∗ 0.423 −0.242 −0.837 0.054 0.207 −0.048 −0.068

RmGyB

C 0.405 0.855 0.006 0.309 0.021 0.005 0.052
M 0.095 0.630 0.648 0.058 0.236 −0.184 −0.109
Y 0.826 0.241 −0.394 −0.018 −0.235 0.092 −0.109
K 0.472 0.357 0.420 −0.561 0.261 0.180 −0.008
L∗ 0.349 0.761 0.490 0.107 0.193 0.012 −0.053
a∗ 0.462 0.049 −0.767 0.020 −0.305 0.213 0.152
b∗ −0.599 0.394 0.546 0.217 0.315 −0.143 0.096

cRGyB

C 0.449 −0.427 0.735 0.037 0.005 −0.025 0.217
M 0.888 −0.404 −0.003 0.194 0.003 −0.029 −0.056
Y 0.676 0.452 −0.126 −0.306 −0.303 −0.196 −0.206
K 0.514 0.343 0.397 −0.569 0.201 0.174 −0.023
L∗ 0.856 −0.315 0.394 0.038 0.018 0.018 0.059
a∗ −0.599 0.626 0.352 −0.172 −0.070 0.245 0.051
b∗ −0.023 −0.783 0.505 0.139 0.161 −0.088 0.261

cRmGB

C 0.485 −0.315 0.754 0.063 −0.134 0.142 0.143
M 0.052 0.805 0.433 0.140 0.233 −0.245 −0.078
Y −0.101 −0.103 0.918 0.219 −0.196 −0.025 −0.151
K 0.454 0.391 0.491 −0.472 0.298 0.143 −0.008
L∗ 0.377 0.534 0.723 0.050 0.168 0.069 −0.044
a∗ 0.203 −0.855 0.257 −0.099 −0.285 0.127 0.191
b∗ 0.405 0.307 −0.722 −0.160 0.334 0.116 0.167
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83 grayscale images. Table 1 presents the results regarding
significant principal components with eigenvalues of 1 or
greater [23]. Principal component loading values for the
83 grayscale images are presented. In a previous study,
adding the grayscale images was shown to provide more
opportunities to obtain new patterns of changes in the
grayscale intensity [4]. When a user of test strips relies on
multiple regression, the different patterns revealed by the
principal components were effective in determining the
chemical characteristics by combining the best grayscale
images that carry the best combination of patterns in the
grayscale intensity [4]. In finding differences among color
profiles of image pixels representing agricultural plots
[24] or tropical forest canopies [25], the 14 grayscale
images from the RGyB and RG-yB pseudocolor images
together with the RGB yellow hybrid image (Figure 1)
generated minor but significant principal components. In
this study, among the 15 grayscale images, nine had the
highest loadings on the first principal component (Ta-
ble 1). *us, the additional 58 grayscale images further
diversified the data structure. *e Microsoft standard
colors and gamut are thought to include more colors than
the images of the agricultural plots and the forest cano-
pies. *e greater number of colors is also thought to have
revealed the more diversified data structure.

Additionally, most of the grayscale images from the
RmGB and R-mGB pseudocolor images had the heaviest
loadings on the second or third principal component while
none of them had the greatest loadings on the first principal
component. *is was fortunate because the grayscale images
even more significantly added the unique information to the
original ten and 15 grayscale images examined in previous
studies [24, 25]. *e second and third principal components
were comparable in importance compared with the first
principal component, and many grayscale images derived
from the RmGB and R-mGB pseudocolor images formed
significant regression models in another study [4]. Addi-
tionally, the grayscale images derived from the cRGB and
-cRGB pseudocolor images had the greatest loadings on the
first or third principal component (Table 1). *ese unique
loading patterns indicate greater dimensionality of changes
in pixel color in theMicrosoft standard colors and the gamut
revealed using the pseudocolor imaging method. RGB cyan,
magenta, and yellow hybrid images were likely to broaden
the dimensionality because these hybrid images had
uniquely different loading patterns on the most significant
three principal components (Table 1).

Because of the high feasibility, PackTest products can be
used to quantify the chemical characteristics of various
liquid samples using optical scanners and other digital
imaging devices such as digital cameras and colorimeters
[26] combined with deep learning and pseudocolor imaging.
*e combination is applicable to solid samples and similar
coloration-based tools including test strips. Examples of
possible applications are eliminating difficulties in the
positive or negative judgment of urinary creatinine [27],
improving somewhat inaccurate description of plant bio-
mass growth [28], and confirming the quality of foods [29]
and various other materials. *e application may be ex-
tended to analyses of samples in various places including
laboratories, hospitals [30], schools [31], and homes [7],
where the color reading-based tools can be easily introduced.

4. Conclusions

Accurate and highly feasible quantification of chemical
characteristics of the liquid sample is possible using PackTest
products. *e SONY neural network console, as a free-of-
charge deep learning tool, was the first choice for processing
the grayscale intensity values derived from color readings of
the pack that showed a color as a result of the chemical
reaction. Multiple regression revealed the possibility to be a
substitute for deep learning when deep learning resulted in
unsatisfactory accuracy. Another solution was to limit the
range of levels/concentrations of the chemical characteristics
to be measured. *ese techniques to maximize the quan-
tification accuracy are supported by enhanced information
through pseudocolor imaging processes.

Data Availability

*e grayscale intensity data used to support the findings of
this study are available from the corresponding author upon
request.
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[1] M. Velcárcel, S. Cárdenas, and M. Gallego, “Qualitative
analysis revisited,” Critical Reviews in Analytical Chemistry,
vol. 30, no. 4, pp. 345–361, 2000.

Table 1: Continued.

(Pseudo)color image as the
source of grayscale images Grayscale image

Principal components (explaining percentage, eigenvalue)
1 (30%, 25) 2 (28%, 23) 3 (24%, 20) 4 (5%, 4) 5 (3%, 3) 6 (2%, 2) 7 (2%, 2)

cRmGyB

C 0.534 −0.094 0.802 0.101 −0.029 0.045 0.108
M 0.065 0.783 0.505 0.145 0.241 −0.144 −0.082
Y 0.889 0.133 −0.254 −0.057 −0.267 0.035 −0.124
K 0.468 0.335 0.407 −0.576 0.253 0.200 −0.002
L∗ 0.434 0.548 0.676 0.034 0.170 0.088 −0.041
a∗ 0.400 −0.817 −0.039 −0.160 −0.264 0.165 0.177
b∗ −0.593 0.073 0.718 0.135 0.279 −0.071 0.121

Journal of Analytical Methods in Chemistry 11



[2] A. Kikuchi, L. Hakim, A. Heryansyah, and R. Romaidi,
“Significance of the easy-to-use water quality checker for
participative environmental monitoring and experience based
learning,” Journal of Tropical Life Science, vol. 1, no. 1,
pp. 17–21, 2010.

[3] T. Muneoka, Y. Yamazaki, S. Wakou, M. Kimura, and
O. Tsuji, “Evaluation of nitrate pollution in river water at
agricultural watershed,” International Journal of Environ-
mental and Rural Development, vol. 5, no. 2, pp. 51–56, 2014.

[4] R. Doi, “Synergistic effects of pseudo-color imaging, differ-
entiation, and square and logarithmic conversion on accuracy
of quantification of chemical characteristics using test strips
and similar products,” Analytical Letters, 2019, In Press.

[5] Z. Wang, D. Zhi, Y. Zhao et al., “Lateral flow test strip based
on colloidal selenium immunoassay for rapid detection of
melamine in milk, milk powder, and animal feed,” In-
ternational Journal of Nanomedicine, vol. 9, pp. 1699–1707,
2014.

[6] E. J. Lamb, F. MacKenzie, and P. E. Stevens, “How should
proteinuria be detected and measured?,” Annals of Clinical
Biochemistry, vol. 46, no. 3, pp. 205–217, 2009.

[7] R. Doi, “Precise micromolar-level glucose determination
using a glucose test strip for quick and approximate
millimolar-level estimation,” Analytical Methods, vol. 6,
no. 23, pp. 9509–9513, 2014.

[8] S. M. Z. Hossain, C. Ozimok, C. Sicard et al., “Multiplexed
paper test strip for quantitative bacterial detection,”Analytical
and Bioanalytical Chemistry, vol. 403, no. 6, pp. 1567–1576,
2012.

[9] G. Litjens, T. Kooi, B. E. Bejnordi et al., “A survey on deep
learning in medical image analysis,” Medical Image Analysis,
vol. 42, pp. 60–88, 2017.

[10] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and
L. A. Escaleira, “Response surface methodology (RSM) as a
tool for optimization in analytical chemistry,” Talanta, vol. 76,
no. 5, pp. 965–977, 2008.

[11] K. Fujimori, W. Ma, T. Moriuchi-Kawakami et al., “Chem-
iluminescence method with potassium permanganate for the
determination of organic pollutants in seawater,” Analytical
Sciences, vol. 17, no. 8, pp. 975–978, 2001.

[12] J. Fenton, “A new approach to the estimation of ammonia in
blood,” Proceedings of the Association of Clinical Biochemists,
vol. 1, no. 2, pp. 36-37, 1960.

[13] W. I. M. Holman, “A new technique for the determination of
phosphorus by the molybdenum blue method,” Biochemical
Journal, vol. 37, no. 2, pp. 256–259, 1943.

[14] R. Doi, “Red-and-green-based pseudo-RGB color models for
the comparison of digital images acquired under different
brightness levels,” Journal of Modern Optics, vol. 61, no. 17,
pp. 1373–1380, 2014.

[15] R. Doi, “Simple luminosity normalization of greenness, yel-
lowness and redness/greenness for comparison of leaf spectral
profiles in multi-temporally acquired remote sensing images,”
Journal of Biosciences, vol. 37, no. 4, pp. 723–730, 2012.

[16] V. Bernardo, “*e effect of entry restrictions on price: evi-
dence from the retail gasoline market,” Journal of Regulatory
Economics, vol. 53, no. 1, pp. 75–99, 2018.

[17] M. Yoshizawa, H. Takeda, G. Sato, and H. Ohtomo, “Com-
puter diagnosis of nervous system diseases by using manual
tracking system,” IFAC Proceedings Volumes, vol. 14, no. 2,
pp. 3699–3704, 1981.

[18] W. E. Owen and W. L. Roberts, “Comparison of five auto-
mated serum and whole blood folate assays,” American
Journal of Clinical Pathology, vol. 120, no. 1, pp. 121–126, 2003.

[19] D. A. Eisenberg, “Mixer performance, cross-contamination
testing examined,” Feedstuffs, vol. 76, no. 13, pp. 15-16, 2004.

[20] A. Gaudy and M. Ramanathan, “A colorimetric method for
determining chemical oxygen demand,” Journal (Water
Pollution Control Federation), vol. 36, no. 12, pp. 1479–1487,
1964.

[21] R. A. Dobbs and R. T. Williams, “Elimination of chloride
interference in the chemical oxygen demand test,” Analytical
Chemistry, vol. 35, no. 8, pp. 1064–1067, 1963.

[22] K. Amano and T. Mochizuki, “An assessment of the de-
pendency of fish and aquatic invertebrates on water quality
using the national survey for river and riperian environment,”
Advances in River Engineering, vol. 17, pp. 513–518, 2011.

[23] H. F. Kaiser, “*e application of electronic computers to
factor analysis,” Educational and Psychological Measurement,
vol. 20, no. 1, pp. 141–151, 1960.

[24] R. Doi, “Improved discrimination among similar agricultural
plots using red-and-green-based pseudo-colour imaging,”
International Agrophysics, vol. 30, no. 2, pp. 151–163, 2016.

[25] R. Doi, “Enhancing multispectral discrimination among
vegetation types with a new pseudo-color imaging method,”
Silva Lusitana, vol. 24, no. 1-2, pp. 7–27, 2016.

[26] A. Schiavone, M. Cullere, M. De Marco et al., “Partial or total
replacement of soybean oil by black soldier fly larvae (Her-
metia illucens L.) fat in broiler diets: effect on growth per-
formances, feed-choice, blood traits, carcass characteristics
and meat quality,” Italian Journal of Animal Science, vol. 16,
no. 1, pp. 93–100, 2017.

[27] N. Hayashi, R. Hayashida, A. Takehira, A. Sasaki, and
J. Matsumoto, “An examination of false reaction factors on
creatinine test strips,” Japanese Journal of Medical Technology,
vol. 66, no. 3, pp. 203–211, 2017.

[28] M. Srisutham, R. Doi, A. Polthanee, and M. Mizoguchi,
“Detection of cassava leaves in multi-temporally acquired
digital images of a cassava field under different brightness
levels by simultaneous binarization of the images based on
indices of redness/greenness,”Modern Applied Science, vol. 8,
no. 5, pp. 87–96, 2014.

[29] P. Minz, C. Singh, and I. Sawhney, “Machine vision tech-
nology in food processing industry: principles and
applications—a review,” in Engineering Interventions in Ag-
ricultural Processing, pp. 1–29, pp. 1-RC Press, Boca Raton,
FL, USA, 2017.

[30] J. R. Delanghe, J. Himpe, N. De Cock et al., “Sensitive al-
buminuria analysis using dye-binding based test strips,”
Clinica Chimica Acta, vol. 471, pp. 107–112, 2017.

[31] K. Uno, N. Tozawa, G. Tsujimoto, and T. Kakinoki, “Proposal
of a water quality measurement method by spectrophotom-
eter,” in Proceedings of the Twenty-fourth International Ocean
and Polar Engineering Conference, Busan, Korea, June 2014.

12 Journal of Analytical Methods in Chemistry



Tribology
Advances in

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

 International Journal ofInternational Journal ofPhotoenergy

Hindawi
www.hindawi.com Volume 2018

Journal of

Chemistry

Hindawi
www.hindawi.com Volume 2018

Advances in
Physical Chemistry

Hindawi
www.hindawi.com

 Analytical Methods  
in Chemistry

Journal of

Volume 2018

Bioinorganic Chemistry 
and Applications
Hindawi
www.hindawi.com Volume 2018

Spectroscopy
International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific 
World Journal

Volume 2018

Medicinal Chemistry
International Journal of

Hindawi
www.hindawi.com Volume 2018

Nanotechnology
Hindawi
www.hindawi.com Volume 2018

Journal of

Applied Chemistry
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Biochemistry 
Research International

Hindawi
www.hindawi.com Volume 2018

Enzyme 
Research

Hindawi
www.hindawi.com Volume 2018

Journal of

SpectroscopyAnalytical Chemistry
International Journal of

Hindawi
www.hindawi.com Volume 2018

Materials
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

BioMed 
Research International Electrochemistry

International Journal of

Hindawi
www.hindawi.com Volume 2018

N
a

no
m

a
te

ri
a

ls

Hindawi
www.hindawi.com Volume 2018

Journal ofNanomaterials

Submit your manuscripts at
www.hindawi.com

https://www.hindawi.com/journals/at/
https://www.hindawi.com/journals/ijp/
https://www.hindawi.com/journals/jchem/
https://www.hindawi.com/journals/apc/
https://www.hindawi.com/journals/jamc/
https://www.hindawi.com/journals/bca/
https://www.hindawi.com/journals/ijs/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ijmc/
https://www.hindawi.com/journals/jnt/
https://www.hindawi.com/journals/jac/
https://www.hindawi.com/journals/bri/
https://www.hindawi.com/journals/er/
https://www.hindawi.com/journals/jspec/
https://www.hindawi.com/journals/ijac/
https://www.hindawi.com/journals/jma/
https://www.hindawi.com/journals/bmri/
https://www.hindawi.com/journals/ijelc/
https://www.hindawi.com/journals/jnm/
https://www.hindawi.com/
https://www.hindawi.com/

