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A new efficient and practical fluorescent probe 6-(benzo[d]thiazol-2-yl)naphthalen-2-yl-thiophene-2-carboxylate (probe 1) was
synthesized to detect hydrogen sulfide (H2S). -e addition of H2S caused the solution of probe 1 to change from colorless to
yellow, and the solution of probe 1 changes to different colors with respect to different concentrations of H2S. Importantly, probe 1
could help detect H2S efficiently by a distinct color response as a visible detection agent. Probe 1 reacted with various con-
centrations of H2S (0–200 μM), and the detection limit for H2S was 0.10 μM. Particularly, probe 1 can be applied as a sensor to
detect H2S accurately in wine samples.

1. Introduction

Hydrogen sulfide (H2S) has unpleasant rotten egg smell
[1, 2]. H2S is a significant compound in wine, and a
detection threshold value is measured from 1.1 to 1.6 μg/
L [3]. Alcoholic fermentation is mainly a way to generate
H2S because of enzymatic catabolism of S-amino acid
and yeast from elemental sulfite pesticide residues,
sulfate, or sulfur [4]. Due to abiotic storage of wine, the
level of hydrogen sulfide keeps an increasing trend. Other
sources of H2S are investigated all the time [5, 6]. H2S
affects the quality of wines and causes economic losses
[7, 8].

H2S is an important part in the processes of physiological
and pathophysiological responses, and abnormal levels of
H2S cause various diseases [9, 10], including cardiac is-
chemia disease [11], hypertension [12], atherosclerosis [13],
diabetes [14], tumor [15], and other diseases. -erefore, the
sensitive and selective methods for detecting H2S in wine are
required.

-e methods to detect H2S include colorimetry [16],
electrochemical precipitation [17], metal-induced sulfide

precipitation [18], gas chromatography [19], high-
performance liquid chromatography-mass spectrometry
[6], and sulfide precipitation [20]. Recently, fluorescent
probes have been considered a practical tool for H2S de-
tection [21–24]. -e H2S fluorescent probes are designed by
some approaches, such as sulfide-induced precipitation of
quantum dots [25, 26], reduction of azide and nitro group to
amines [27–32], substitution reaction [33], nucleophilic
reactions [34, 35], high adsorption of S2− to Cu2+ [36], and
the reaction with the unsaturated double bond [37]. Re-
cently, different kinds of fluorescent probes have been
designed and compounded to detect H2S in living cells, and
development of efficient and practical sensors to detect H2S
in wine is still crucial [38]. In order to discover a more
responsive and visible colorimetric fluorescent probe, a new
fluorescent probe (probe 1) was introduced in this work,
with naphthalene and benzothiazole ring moiety as the
fluorophore and thiophene-2-carboxylate as the reaction
site. Probe 1 shows responsive and visible colorimetric
precipitation for H2S with naked eye. Especially, the solution
of probe 1 poses different colors at different H2S concen-
trations under ambient light. Probe 1 could be used as a
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sensor to obtain H2S levels and to obtain high recovery in
real wine samples.

2. Materials and Methods

2.1. General Methods. -e chemicals and reagents were
purchased from Beijing Huaxue Shiji (Beijing, P.R. China).
-e reagents were all analytically pure. 1H-NMR and 13C-
NMR spectra were recorded at 400MHz and 100MHz,
respectively. Chemical shifts (δ) were expressed in ppm
relative to TMS, and coupling constants (J) are in Hz. -e
high-resolution mass spectrum (HRMS) was performed at a
Bruker Apex IV FTMS. Fluorescence spectra were recorded
on a Hitachi F-4600 fluorescence spectrometer with a
temperature controller.

2.2. Preparation of Probe 1

6-(benzo[d]thiazol-2-yl)naphthalen-2-ol. 6-hydroxy-2-
naphthaldehyde (0.86 g, 5mmol) and 2-aminothiophenol
(0.63 g, 5mmol) were dissolved in ethanol (25mL) and
stirred for 15min. And then, p-toluenesulfonic acid (0.34 g,
2mmol) in ethanol (5mL) was added into the mixture
slowly. -e reaction mixture was heated in an oil bath at
80°C overnight. After the mixture was cooled to room
temperature, the mixture was added 50mL distilled water.
-e precipitate was collected by evaporation and dried to
yield 6-(benzo[d]thiazol-2-yl)naphthalen-2-ol as a yellow
solid (1.29 g, 93.5%, Scheme 1).

1H NMR (300MHz, DMSO), δ (ppm): 10.11 (s, 1H), 8.54
(s, 1H), 8.06 (m, 4H), 7.84 (d, J� 8.67Hz, 1H), 7.53 (td,
J� 7.29, 1.17Hz, 1H), 7.43 (td, J� 7.95, 1.17Hz, 1H), and
7.16 (m, 2H). 13C NMR (75MHz, DMSO): δ (ppm): 168, 158,
154, 137, 135, 131, 128, 127, 126, 125, 123, 120, and 109.

Probe 1: 6-(benzo[d]thiazol-2-yl)naphthalen-2-yl-thio-
phene-2-carboxylate. 6-(benzo[d]thiazol-2-yl)naphthalen-2-
ol (0.50 g, 1.8mmol), CHCl3 (20mL), and thiophene-2-
carbonyl chloride (0.29 g, 1.8mmol) was added. After stir-
ring 20min, a drop of trimethylamine was dissolved in
CHCl3 (5mL) and added slowly. -e reaction mixture was
heated at 80°C for 4 h.-e precipitate used evaporation to be
collected and then used column chromatography to purify
probe 1 as a solid (0.570 g, 81.8%; Scheme 1).

1H NMR (300MHz, DMSO), δ (ppm): 8.78 (s, 1H), 8.28
(d, J� 4.35Hz, 2H), 8.20 (d, J� 3.96Hz, 1H), 8.12–8.14 (m,
4H), 8.11 (d, J�Hz, 1H), 7.96 (s, 1H), 7.58 (t, J� 4.41Hz,
2H), 7.50 (t, J� 3.78Hz, 1H), and 7.35 (s, 1H). 13C NMR
(75MHz, DMSO): δ (ppm): 168, 161, 154, 150, 136, 135, 132,
131, 130, 129, 128, 127, 126, 125, 123, and 120. HRMS: calcd.
[M]+ 387.0388; 387.0390.

2.3. Preparation of Solutions of Probe 1 and Analytes. -e
HPLC-grade DMSO as reagent was used to dissolved
probe 1. After mixing, probe 1 stock solution was obtained.
Analytes NaF, Na2SO3, NaCl, NaHSO3, NaNO3, NaBr,
Na2SO4, Na2S2O3, Na2S2O5, NaS2O6, CH3COONa,
NaHCO3, and Na2S used distilled water to be dissolved and

obtained 10mM aqueous solutions. Various concentrations
could be obtained by using distilled water to dilute the stock
solutions.

2.4. Preparation of Wine Samples. -ree kinds of beers and
four kinds of red wines were bought from wumart super-
market (Beijing) and different concentrations of Na2S were
added (Na2S is the H2S source), and the 504 nm fluorescence
signals of samples were recorded.

2.5. <e Procedures of H2S Determination and Samples
Analysis. -e ready of the detection system: dimethyl
sulfoxide (0.48mL) and probe solution (0.02mL) were
mixed. And then buffer solution was added and made up to
2mL in the cuvette. After mixing, the spectrumwas tested by
recording the fluorescence signals.

Fluorescence spectrophotometer parameters: excitation
wavelength, 330 nm; emission wavelength, 504 nm; tem-
perature, 37°C; voltage, 700 v; slit width, 5 nm/5 nm.

3. Results and Discussion

3.1.FluorescentProbePreparation. Probe 1 was synthesized
in just a two-step reaction. First, the intermediate
compound 3 was manufactured by nucleophilic addi-
tion reaction and cyclodehydration of compound 1 with
compound 2. Second, probe 1 was obtained so that
compound 3 and thiophene-2-carbonyl chloride (com-
pound 4) performed an esterification reaction. -is
synthetic process and the purification of silica gel column
chromatographic separation were easy. 1H NMR and 13C
NMR (Figures S1 and S2) were used to determine the
structure of 6-(benzo[d]thiazol-2-yl)naphthalene-2-ol,
light yellow powder. -e structure of Probe 1 was char-
acterized by 1H NMR, 13C NMR, and HRMS (Figures S3–S5).

3.2. Sensing Property of Probe 1 towards H2S. -e fluores-
cence response of probe 1 (10 μM) to Na2S (we used Na2S for
H2S production) was firstly verified in 10mM phosphate
buffer saline (PBS; pH 7.4) in DMSO at 37°C. According to
Figure 1(a), the fluorescence intensity was detected at 1, 3, 5,
7, 9, 11, 15, 20, 25, 30, and 35min after 200 μMH2S was
added, and the fluorescence intensity increased almost three
times. -e fluorescence signal at 504 nm increased all the
time until 30min (Figure 1(b)). -e results suggest that
probe 1 shows good response to H2S in neutral environment.

-e fluorescent response of probe 1 to H2S in different
pH values (Table S1) from 3.0 to 10.0 was investigated
(Figure 2(a)). -e data suggest that the fluorescent intensity
of probe 1 did not change in various pH values. However, as
H2S was added, the fluorescent intensity of probe 1 increased
quickly from 3.0 to 4.0 and decreased from 4.0 to 9.0. -e
fluorescence intensity showed largest differences between
probe 1 and probe 1-H2S in pH 4.0. -e water solubility of
H2S was reported as an equilibrium between molecular and
ionic forms (H2S⇌HS−⇌ S2−) [39]. -e pKa values for the
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Figure 1: (a) Time-dependent fluorescence spectra of probe 1 (10 μM) in the presence of H2S (200 μM) in phosphate buffer saline (PBS; pH
7.4) with DMSO (v/v, 3 : 1) at 37°C; (b) time-dependent fluorescence intensity changes of probe 1 (10 μM) in the presence of H2S (200 μM) at
504 nm. λex � 307 nm, λem � 504 nm, and slit width� 5 nm/5 nm. -e test was repeated 3 times.
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Scheme 1: Synthesis of probe 1.
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Figure 2: (a) Fluorescent intensity of probe 1 (10 μM) in the absence and presence of H2S (200 μM) in different pH buffer solutions with
DMSO (v/v, 3 :1).-e test was repeated 3 times; (b) fluorescence spectra of probe 1 (10 μM) and probe 1 (10 μM)with H2S (200 μM) in buffer
solution (pH 4.0) with DMSO (v/v, 3 :1) at 37°C; (c) the color change of probe 1 (10 μM) in the absence and presence of H2S (200 μM).
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first and second dissociation steps are 7.0 and 12.0, re-
spectively [39]. -e major form of hydrogen sulfide exists as
HS− with a minor form of free H2S in pH 7.4 [39] and exists
as free H2S in pH 4.0. -e fluorescent intensity of probe 1-
H2S decreased indicating that the reaction activity of probe 1
to H2S decreased. So, the reaction activity of probe 1 to H2S
decreased from 4.0 to 7.0, increased from 4.0 to 7.4, and then
decreased from 7.4 to 9.0. As probe 1 can identify H2S, HS−,
and S2− [40], the reaction activity of probe 1 to H2S with pH
is generally not too obvious regularity. -e above results
reveal that the pH value of 4.0 is better suitable for further
studies.

-e fluorescence response of probe 1 (10 μM) to H2S
was verified in 10 mM buffer solution (pH 4.0) in DMSO
at 37°C, the fluorescence signal at 504 nm increases all the
time until 30 min (Figure S6). -e fluorescence response
of free probe 1 (10 μM) and H2S (200 μM) added to probe
1 in buffer solution (pH 4.0) is shown in Figure 2(b).
Meanwhile, the solution color changed from colorless to
yellow (Figure 2(c)). All results indicate that probe 1 was
a turn-on fluorescent probe and could be applied to
detect H2S in this experimental condition by the naked
eye.

-e solution of probe 1 in buffer solution (pH 4.0) was
added with different concentrations of H2S (0–200 μM), and
the change of fluorescence intensity was recorded. As shown
in Figure 3(a), a highest fluorescence peak was shown at
504 nm, and the fluorescence intensity was increasing with
the addition of H2S. -e highest of fluorescence intensity
was reached in the presence of 200 μM H2S. -e data could
make a good linearity, R2 � 0.9959 (Figure 3(b)). -e de-
tection limit (LOD) of probe 1 for H2S was 0.1 μM, based on
Cim � 3 SD/B according to the definition from IUPAC.-ese
results suggest that pH 4.0 was the best pH value for probe 1
to detect H2S and provide a nice quantitative detection
method for H2S.

To verify the selectivity of probe 1 for H2S, GSH, F−, Cl−,
Br−, SO3

2−, HSO3
−, S2O3

2−, S2O5
2−, S2O6

−, CH3COO−,
SO4

2−, HCO3
−, and CO3

2− in buffer solution (pH 4.0) was
chosen as the complex condition to research the fluorescent
response of probe 1. As shown in Figure 3(c), under this
condition, the competitor did not cause the fluorescence
change obviously. At the same time, competition experi-
ments were conducted by adding H2S to the probe 1 so-
lutions containing the above analytes. Fluorescent response
of probe 1 shows that fluorescence had no changes toward
H2S and H2S + competitor. It clearly indicated that the
presence of competitor did not interfere with H2S detection.
In addition, only H2S caused the probe 1 solution to change
color from colorless to yellow (Figure 3(d)). Based on the
above result, it indicated that probe 1 has good recognition
toward H2S in complex environment. Using probe 1 solu-
tion develops a test strip system (10 μM; buffer solution:
DMSO� 3 :1, pH 4.0).-e test strip system showed different
color changes to different concentrations of H2S ranging
from 0 μM to 600 μM (Figure 3(e)). So, these data show that
probe 1 can be used to develop an easy-to-detect test strip
system for an effective method to monitor H2S by the naked
eye.

3.3. Reaction Mechanism. A possible response mechanism
may attribute to H2S-induced hydrolysis of thenoic acid
ether moiety in probe 1 and thereby generate 6-(benzo[d]
thiazol-2-yl)naphthalen-2-ol (compound 3) and 2-thio-
phenecarboxylic acid (compound 5), as shown in
Scheme 2. To verify the response mechanism mentioned
above, reaction of probe 1 with H2S was analyzed by GC-
MS (Figure S6). A peak at 5.40min, m/z � 142.0 was the
reaction product generated by the esterification reaction
of compound 6 with methanol. Peak at 22.18min, m/
z � 277.1, which correlated to the formation of compound
3. -e results suggest that probe 1 can react with H2S
efficiently and verify the proposed mechanism.

3.4. Detection of H2S in Wine. As H2S negatively affects
wine quality, it is an important reason to cause faulty wine.
-e data of probe 1 to detect H2S in real samples were
recorded to prove the actual practicability of probe 1. -ree
kinds of beers and four kinds of red wines were bought from
Wumart supermarket (Beijing) and were added to the so-
lution of probe 1 (10 μM; pH 4.0). -en, H2S of different
concentration levels (50 μM and 100 μM) were added. -e
fluorescence intensity of all these samples was investigated
at 504 nm.

As shown in Table 1, 0.53, 0.69, 0.74, and 0.49 μM were
obtained in four red wine samples. 0.41, 0.28, and 0.32 μM
were founded in three beer samples. Probe 1 can detect H2S
concentration in red wine and beer, and the recovery ranged
from 90.65% to 110.00% showing that probe 1 has good
practicability to detect H2S levels in real samples. -e results
show that the probe 1 as a testing method is feasible and
practical to determinate H2S in wine.

Probe 1 is compared with some previously reported H2S
fluorescent probe in terms of detection range, detection
limit, and practical applications as listed in Table S2. Ma-
jority of H2S fluorescent probes have been designed and used
for biological imaging, but H2S fluorescent probes for wine
are rare. In this work, probe 1 has different color changes for
different concentrations of H2S ranging from 0 μM to
600 μM. Probe 1 has a wider detection range (0–200 μM)
than our previous fluorescent probes and reported H2S
fluorescent probes (Table S2). Furthermore, probe 1 has
successfully been used to detect H2S concentrations in red
wine and beer. In addition, the visual change indicates that
probe 1 can be used to develop a naked eye detection agent to
detect H2S levels.

4. Conclusions

In summary, we developed a sensitive and visible colori-
metric fluorescent probe to detect H2S. -e function of
probe 1 relies on H2S-induced make thenoic acid ether
group cleave, and the produced fluorophores (6-(benzo[d]
thiazol-2-yl)naphthalen-2-ol and compound 3 were verified
by GC-MS studies. When probe 1 reacted with H2S, the
solution color changed from colorless to yellow, and ad-
dition of different concentrations of H2S posed different
color changes, indicating that probe 1 could be employed as
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Figure 3: (a) Fluorescence spectra of probe 1 (10 μM) with H2S (0–200 μM); (b) the plot of fluorescence intensity difference with H2S from 0
to 200 μM in buffer solution (10mM, pH 4.0) with DMSO (v/v, 3 :1); (c) fluorescence intensity change of probe 1 (10 μM) upon addition of
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a testing tool for H2S. Furthermore, our work shows that
probe 1 has been successfully applied to test H2S levels in red
wine and beer samples.
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