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An efficient, sensitive, and low-cost method has been developed for turn-on fluorescence sensing of dopamine (DA). 1e method
relies on the rapid reaction of DA and 3-Hydroxyphenylboronic acid (3-HPBA) via specific recognition between boronic acids
and cis-diol of DA in alkaline solution. 1e reaction product shows an excitation wavelength of 417 nm and the maximum
emission peak at 470 nm. 1e proposed method allows the determination of DA in the range of 50 nM–25 μM, and the whole
detection can be completed within 5minutes. Furthermore, the presented approach has good selectivity and has been successfully
applied to DA sensing in human serum samples, showing great potential in clinical diagnosis.

1. Introduction

Dopamine (DA) is a significant catecholamine neurotrans-
mitter which is used for message transfer between neurons
and plays an important role in the nervous activity [1].
Abnormal DA concentrations in the brain may lead to several
diseases such as parkinsonism, anorexia, and schizophrenia.
Many DA-based drugs are widely used to treat these diseases
[2]. 1e DA concentration ranges widely from 0.1 μM to
1.0mM in biological liquid [3]. Hence, a convenient and
sensitive method for DA measurement is highly desirable for
researching human physiological functions.

Until now, many techniques have been developed to
detect DA, such as colorimetry [4–6], electrochemistry [7, 8],
fluorescence spectroscopy [9–12], mass spectrometry [13],
chemiluminescence [14], and high-performance liquid
chromatography (HPLC) [15]. While significant progresses
in detection of DA have been made using these methods,
there are still some disadvantages and limitations. For ex-
ample, the colorimetric method is limited by the low sen-
sitivity or the low selectivity; the electrochemical method
often suffers from the interferences of ascorbic acid and uric

acid owing to the similar oxidation potential; HPLC and
mass spectrometry are sensitive analytical methods, and they
require expensive instrumentation and expertise for oper-
ation. Attractively, the fluorescence-based DA detection
technique has attracted many attentions for its advantages
including high sensitivity, facile operation, wide detection
range, and high selectivity. 1e fluorescence method for DA
detection is mainly based on fluorescence quenching (turn-
off) or fluorescence enhancement (turn-on) strategy. 1e
fluorescence quenching strategy is based on the oxidation of
DA to produce quinine [16] or the photoinduced electron
transfer (PET) process between the fluorescence materials
and DA molecule [1, 17, 18]. 1e fluorescence enhancement
strategy is more preferable than the quenching strategy,
because it has higher selectivity due to the fluorescence is
only enhanced or restored by interaction with preferred
analyte. In addition, it is easy to observe the signal in a dark
background rather than in a bright background [19].

Boronic acid as a Lewis acid can bind with 1,2-diols or
1,3-diols in aqueous solution reversibly to form five or six-
membered cyclic ester [20–23]. As a result, the generation of
the ester can change fluorescence significantly. Yoon and
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Czarnik firstly used boronic acid as a fluorescent chemo-
sensor to detect sugar in 1992 [24]. Since then, the specific
recognition abilities of boronic acids against 1,2-diols or 1,3-
diols including saccharides, catecholamines, and glycosy-
lated biomolecules have been extensively investigated. Until
now, a large number of fluorescent probe with boronic acid
have been developed to detect DA. For example, Qin’s group
[25] used boronic acid functionalized boron dipyrrome-
thene (BABDP) as a fluorescent probe for the detection
of DA. 1e fluorescence of BABDP can be strongly
quenched by DA due to the PET. Detection of DA was
ranged from 10−8M to 10−2M. Zhou et al. [26] developed
a novel fluorescence sensor for DA determination based
on molecularly imprinted graphene quantum dots and
poly(indolylboronic acid) composite (MIPs@ PIn-BAc/
GQDs). 1e covalent binding between the catechol group
of DA and boronic acid leads to aggregation and fluores-
cence quenching of theMIPs@ PIn-BAc/GQDs. Chibac et al.
[27] synthesized two copolymers containing different bo-
ronic acid derivatives. Both copolymers were tested as
fluorescent sensors for detection of diols at physiological pH
and to investigate the role of the boronic acids in the
fluorescence response mechanism. 1e results showed that
the addition of DA leads to a fluorescence quenching of the
copolymer solutions, and the hydroxyl groups in 1, 2 po-
sitions played a determinant role in the quenching mech-
anism. All the previous studies can be divided into two
approaches, i.e., modification of boronic acid molecules on
the surface of fluorescent particles and design of fluorescent
molecules containing boronic acid. Both approaches are
turn-off strategy, and the preparation is time-consuming,
uneconomical, and sometimes environmentally unfriendly.

In this paper, we developed a sensitive and efficient
method for DA detection by in situ method. 1e method
relies on the reaction between 3-Hydroxyphenylboronic acid
(3-HPBA) and DA in alkali condition to generate fluores-
cence (Figure 1). For detection, the reaction product is
excited at the wavelength of 417 nm, leading to the maxi-
mum emission peak at 470 nm. A good linear relationship
was obtained between the fluorescence intensity and the DA
concentration. Furthermore, 3-HPBA has high selectivity for
DA detection, and the whole detection can be completed
within only 5minutes without any pretreatments. 1e
proposed method has been successfully applied for the re-
liable detection of DA in human serum samples.

2. Materials and Methods

2.1. Reagents and Chemicals. DA hydrochloride and 3-
HPBA were purchased from Sigma-Aldrich (U. S). Tyrosine,
ascorbic acid, alanine, serine, glycine, tryptophan, lysine,
cysteine, glucose, glutathione, norepinephrine, saccharide,
and sodium hydroxide were obtained fromAladdin Co., Ltd.
(Shanghai, China). All reagents were of analytical grade and
used without further purification.

2.2. Measurement. 1e UV absorption spectra were recor-
ded on a UV-2450 spectrophotometer (Shimadzu). 1e

fluorescence emission spectra were performed on an F-7000
spectrophotometer (Hitachi, Japan), and the slit widths of
excitation and emission were set at 10.0 nm with a 700V
PMT voltage.

2.3. Detection of DA. Different concentration (0 to 400 μM)
of DA aqueous solution (0.5mL) was mixed to 0.1mL 8mM
3-HPBA solution. 1en, Na2CO3 buffer (0.4mL 25mM,
pH� 10.5) was introduced into a 2mL Eppendorf tube. After
incubated for 5min at 25°C, the fluorescence spectra of the
reaction solution were recorded.

2.4. Interferences Study. Some coexistence substances will
affect the detection of DA. To evaluate the feasibility and
selectivity of the proposed method, DA and the interference
of possible chemicals were mixed to obtain a set of solutions,
each one with 20 μM DA and 1mM interference.

2.5. Real Sample Analysis. To evaluate the capability of the
proposed method in real sample analysis, we analyzed the
DA concentrations in human serum samples. 1e healthy
adult human serum samples were collected in a heparin
anticoagulated tube and treated by centrifugal ultrafiltration
at 3000 rpm for 15min at room temperature to remove
haemocytes. 1en, 0.20mL of different concentrations of
DA was added into the serum samples (0.20mL) to prepare
the spiked samples. 1ese samples were detected by the
aforementioned method.

3. Results and Discussion

3.1. Fluorescent Properties. To investigate the properties of
the fluorescent product, we first studied the UV-Vis ab-
sorption spectra of DA, 3-HPBA, and product. From
Figure 2(a), we can see that both 3-HPBA and DA have an
apparent absorption peak around 280 nm. After a period of
reaction, the characteristic absorption peak of DA and 3-
HPBA is remained, and a new strong peak appears at 417 nm,
demonstrating that a new five-membered cyclic ester has been
generated. As shown in Figure 2(b), the product exhibited the
maximal emission at 470 nm when excited at 417 nm. 1e
insert photographs are the fluorescence of product solution
under natural light (left) and UV (right) lamp, respectively. In
Figure 2(c), we show fluorescence signal as a function of
excitation wavelength. 1ere is no shift of the fluorescence
peak while changing the excitation from 340nm to 430 nm,
indicating that the new product has a unique fluorescence
property and monochromaticity. From Figure 2(d), we can
see that both 3-HPBA and DA generate no fluorescence,
indicating that neither the excess of 3-HPBA nor DA has
effect on the fluorescence detection.

We then studied the pH effect on the fluorescence in-
tensity of the new product. 1e fluorescence intensities of
the new product were monitored in buffer solutions with
different pH values (3–12). As one can see from Figure 3(a),
the fluorescence intensity of complex is stable in the pH
range of 7–12 and dramatically decreases as the pH is
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decreased to lower than 6. �e possible reason is that the
formed �ve-membered cyclic ester between the boronic acid
and cis-diols of DA is a reversible covalent complex in an

alkaline/acidic aqueous solution. In order to investigate the
reversibility of the reaction, we changed the pH value pe-
riodically from 11 to 6 and measured the �uorescence
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Figure 2: (a) UV-Vis absorption spectrums of DA, 3-HPBA, and product. (b) �e excitation and emission spectrums of the product. (c)
Fluorescence emission spectrumwas excited at di�erent wavelengths from 340 nm to 430 nm. (d) Fluorescence emission spectrum of DA, 3-
HPBA, and product.
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Figure 1: DA reacting with 3-HPBA to synthesize �ve-membered cyclic ester.
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intensity at each pH value. Figure 3(b) shows the cycles can
be repeated ten times without fatigue. Our results prove that
the binding of boronic acid and cis-diols is reversible, and
the �uorescence intensity for DA detection should be per-
formed in a basic pH condition.

3.2. Detection of DA. Before performing the assay, we op-
timized several experimental conditions that may a�ect
�uorescence intensity, including pH, the amount of 3-
HPBA, reaction time, and temperature. As shown in
Figure 4(a), in a neutral or weak alkaline solution, the re-
action solution did not generate any �uorescence. �e
�uorescence intensity of the complex increases with the pH
value increasing from 9.0 to 11. When pH is equal to or
higher than 10.5, the �uorescence intensity reached its
maximum value. So, a pH of 10.5 was chosen as the optimal
value for subsequent experiments. In order to evaluate the
e�ect of the amount of 3-HPBA on the resulting �uorescence
intensity, the ratio of 3-HPBA to DA (n/n) was varied from
1 : 8 to 8 :1, and other parameters were �xed. �e results are
shown in Figure 4(b). As the ratio of 3-HPBA to DA (n/n)
increased, the �uorescence intensities increased in the range
from 1 : 8 to 1 :1, subsequently, maintained almost constant
when increased the amount of 3-HPBA. �us, the �nal
concentration of 3-HPBA was higher than DA in the sub-
sequent experiments. Figure 4(c) shows that the reaction is
fast, which only needs 5min to reach the equilibrium. In
Figure 4(d), we show the e�ect of reaction temperature on
the �uorescence intensity. As the temperature is increased,
the �uorescence intensity decreases. So, we performed the
reaction at room temperature.

In optimal conditions, we used the in situ reaction be-
tween 3-HPBA and DA to produce strong �uorescence
intensity to detect the DA. �e �uorescence intensity at
470 nm as a function of DA concentration is shown in
Figure 5. �ere is a good linear relationship between the
�uorescence intensity and DA concentration from 50 nM to
25 μM (Figure 5(b)). �e limit of detection (LOD) is cal-
culated to be 20 nM using the calibrate line.

3.3. Studyof Interferences. To investigate the selectivity of the
proposed method, we studied the e�ect of various possible
interfering chemicals including amino acids (Cys, Lys, Trp,
Ala, and Ser), glucose (Glu), ascorbic acid (Vc), glutathione
(GSH), saccharides (Sar), and norepinephrine (NE). Various
agents with a far higher than the physiological concentration
were added to DA for interference testing.

Figure 6 shows that all the interferences tested almost
produce no �uorescent signal even at such a high concen-
tration, indicating that this method for detecting DA has
high selectivity. It is noteworthy that NE exhibits higher
interference on the measurement of DA than other sub-
stances, which could be attributed to its similar structure as
DA that can react with 3-HPBA. On the other hand, the
maximal absorption of the NE product is at 488 nm instead
of 417 nm (Figure S1). �us, the interference of NE is small
for the proposed method. As shown in Figure 6, the �uo-
rescence intensity of NE is less than 2% as that of DA,
indicating the acceptable selectivity of our method for DA
determination.

3.4. Real Sample Analysis. To demonstrate the potential
utility of the proposed method, we used two human serum
samples to investigate the performance for DA detection.
After these samples were treated with the procedures as in
the experimental section, a known concentration of DA was
added to study the recovery.�e results are shown in Table 1.
Satisfactory recoveries from 85.4% to 108.0% were obtained
in the spiked samples, and the relative standard deviation
(RSD) is less than 3.81% (n � 3). �is indicates that this
method has acceptable accuracy and reproducibility in
detecting DA in real samples.

4. Conclusions

In summary, we have developed a sensitive and e£cient
turn-on �uorescence method for DA detection.�is method
is based on the in situ reaction between 3-HPBA and DA.
Linear dependence of the �uorescence intensity on the DA
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Figure 3: (a) Fluorescence intensity as a function of pH from 3–12 and (b) the reversibility of the reaction between the boronic acid and DA
in pH 6 and 11. �e pH of bu�er solution was adjusted by HCl or Na2CO3.

4 Journal of Analytical Methods in Chemistry



600

0

120000

240000

360000

pH = 7.0
pH = 8.0
pH = 9.0
pH = 9.5

pH = 10
pH = 10.5
pH = 11

FL
 in

te
ns

ity

Wavelength (nm)
450 500 550

(a)

0

120000

240000

360000

FL
 in

te
ns

ity
 

Wavelength (nm)
600450 500 550

n3-HPBA:nDA = 1 :8
n3-HPBA:nDA = 1 :4
n3-HPBA:nDA = 1 :2
n3-HPBA:nDA = 1 :1

n3-HPBA:nDA = 2 :1
n3-HPBA:nDA = 4 :1
n3-HPBA:nDA = 8 :1

(b)

0

120000

240000

360000

FL
 in

te
ns

ity
 

Wavelength (nm)

5 min
15 min
30 min

60 min
90 min

600450 500 550

(c)

0

120000

240000

360000

FL
 in

te
ns

ity
 

Wavelength (nm)
600450 500 550

25°C
40°C
50°C

60°C
70°C

(d)

Figure 4: �e e�ect of experimental conditions on the �uorescence intensity: (a) pH, (b) the ratio of 3-HPBA to DA, (c) reaction time, and
(d) temperature. Other parameters were �xed, and 0.8mM 3-HPBA and 100 μM DA reacted in 10mM Na2CO3.

0 μM DA

200 μM 
DA

500 550450

Wavelength (nm)

0

120000

240000

360000

FL
 in

te
ns

ity
 

(a)

Y = 2.461 + 6.309X
R2 = 0.995

100 200500 150

DA (μM)

0

70

140

F/
F 0

10 20 300
DA (μM)0

100

200

300

F/
F 0

(b)

Figure 5: (a) Fluorescence spectrum at di�erent DA concentrations (0–200 μM) and (b) dependence of the FL intensity at 470 nm on DA
concentration.

Journal of Analytical Methods in Chemistry 5



concentration is obtained from 50 nM to 25 μM. �e whole
detection can be completed within only 5minutes without
any pretreatments. In addition, the method exhibits high
speci�city among other analogues and is successfully applied
in real sample detection with good accuracy. Our study
indicates that the approach is very promising in clinical
applications.
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