Journal of Analytical Methods in Chemistry

Composition Characterization of Fatty Acid Zinc Salts by Chromatographic and NMR Spectroscopic Analyses on their Fatty Acid Methyl Esters

Kwang Seo Park, Yun Ju Kim, and Eun Kyung Choe

Regulatory Chemical Analysis Laboratory, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea.

Correspondence should be addressed to Eun Kyung Choe; ekchoe@kitech.re.kr

Supplementary Materials

The supplementary data consist of the following Tables S1-S3 and Picture S1 :

Table S1. Retention times and concentrations of 37 FAMEs in the standard solution.

Table S2. Calculation of total fatty acids from GC-MS analysis on FAMEs using an internal standard method (an example with FAMEs from industrial chemical B)

Table S3. ¹H NMR data of (a) the hydrolysed products and (b) the methyl esterified products from fatty acid zinc salts.

Picture S1: Pictures of white precipitation formed in a clear aqueous solution of aqueous workup solution in 2.3.3.1 upon increase of alkalinity suggesting the formation of Zn(OH)₂. The same phenomenon was observed in the aqueous work-up solution in 2.3.1.

Table S1: Retention times and	concentrations of 37 FAMEs	in the standard solution.
-------------------------------	----------------------------	---------------------------

Peak	RT	Substance	Carbon ·	CAS No	Certified	UCBM
No	(min)	Name	Double	0110 110.	Conc	(%)
110.	(mm)	Ivanie	Bond		(%)	(70)
1	12.21	Mathyl butyrata		673 17 7	(78)	± 0.021
1	12.21	Methyl bevenoete	C4.0 C6:0	106 70 7	4.00	± 0.021 ± 0.021
2	17.01	Methyl actadecaposta	C0.0	111 11 5	4.00	± 0.021 ± 0.021
5	17.91	Methyl decenoate	C10.0	110 42 0	4.00	± 0.021 ± 0.021
4 5	22.04	Methyl undeennoate	C10.0	1721 86 8	4.00	± 0.021 ± 0.011
5	23.31	Methyl laurate	C11.0 C12.0	111 82 0	2.00	± 0.011 ± 0.021
07	20.20	Methyl trideconcete	C12.0	1721 88 0	4.00	± 0.021 ± 0.011
8	33.36	Methyl myristate	C13.0	124 10 7	2.00	± 0.011 ± 0.021
0	35.30	Methyl myristoleate	C14.0 C14.1	56219_06_8	2.00	± 0.021 ± 0.011
10	35.39	Methyl pentadecanoate	C14.1 C15.0	7132-64-1	2.00	± 0.011 ± 0.011
10	37.76	Methyl cis-10-	C15:1	90176-52-6	2.00	± 0.011 ± 0.011
11	57.70	pentadecenoate	C13.1	90170-52-0	2.00	± 0.011
12	38.13	Methyl palmitate	C16:0	112-39-0	6.00	± 0.032
13	39.72	Methyl cis-9-	C16:1	1120-25-8	2.00	± 0.011
		hexadecenoate				
14	40.31	Methyl heptadecanoate	C17:0	1731-92-6	2.00	± 0.011
15	41.89	Methyl cis-10-	C17:1	75190-82-8	2.00	± 0.011
		heptadecenoate				
16	42.46	Methyl stearate	C18:0	112-61-8	4.00	± 0.021
17	43.39	Methyl trans-9-eladate	C18:1n9t	1937-62-8	2.00	± 0.011
18	43.80	Methyl cis-9-oleate	C18:1n9c	112-62-9	4.00	± 0.021
19	44.87	Methyl linolelaidate	C18:2n6t	2566-97-4	2.00	± 0.011
20	45.75	Methyl linoleate	C18:2n6c*	112-63-0	2.00	± 0.011
21	46.44	Methyl arachidate	C20:0	1120-28-1	4.00	± 0.021
22	47.20	Methyl y-linolenate	C18:3n6	16326-32-2	2.00	± 0.011
23	47.66	Methyl cis-11-eicosenoate	C20:1n9	2390-09-02	2.00	± 0.011
24	47.97	Methyl linolenate	C18:3n3	301-00-8	2.00	± 0.011
25	48.28	Methyl heneicosanoate	C21:0	6064-90-0	2.00	± 0.011
26	49.52	Methyl <i>cis</i> -11,14-	C20:2	2463-02-07	2.00	± 0.011
27	50.11	Methyl behenate	C22.0	020 77 1	4.00	+0.021
27	50.87	Methyl cis 8 11 14	C22.0	21061 10 0	4.00	± 0.021 ± 0.011
20	50.87	eicosatrienoate	020.5110	21001-10-9	2.00	± 0.011
29	51.27	Methyl cis-13-docosenoate	C22:1n9	1120-34-9	2.00	± 0.011
30	51.60	Methyl cis-11,14,17-	C20:3n3	55682-88-7	2.00	± 0.011
		eicosatrienoate				
31	51.83	Methyl tricosanate	C23:0	2433-97-8	2.00	± 0.011
32	51.92	Methyl <i>cis</i> -5,8,11,14-	C20:4n6	2566-89-4	2.00	± 0.011
33	53.00	Methyl cis 13 16	$C^{22\cdot 2}$	61012 47 3	2.00	+0.011
55	55.09	docosadienoate	022.2	01012-47-5	2.00	± 0.011
34	53 64	Methyl tetracosanoate	C24.0	2442_49_1	4 00	+0.021
35	54 20	Methyl cis-5 8 11 14 17-	C20.5n3	2734_47_6	2.00	± 0.021 ± 0.011
55	54.20	eicosapentaenoate	020.5115	2/34-4/-0	2.00	± 0.011
36	54.87	Methyl cis-15-	C24:1n9	2733-88-2	2.00	± 0.011
		tetracosenoate				
		Methyl cis-				
37	59.66	4,7,10,13,16,19-	C22:6n3	2566-90-7	2.00	± 0.011
		docosahexaenoate				

 docosahexaenoate

 * C18:2n6c : C18 fatty acid with 2 adjacent cis double bonds starting at C6 counting from the methyl group.

	Sumana menoa (un example with Privilis nom maastral enemear B)							
Peak No	RT (min)	Carbon : Double Bond	$R_{\rm fi}^a$	\mathbf{P}_{ti}	$W_{\text{FAMEi}}{}^{b}$	<i>f</i> _{FAi} ^c	FA (%)	Normalized (%)
5	25.5	C11:0	-	8,982,706	-	0.9300	-	Internal Standard
6	28.2	C12:0	1.0821	4,125,829	0.4294	0.9346	2.56	2.62
8	33.4	C14:0	1.1433	374,575	0.0369	0.9421	0.22	0.23
12	38.1	C16:0	1.1524	7,761,990	0.7586	0.9481	4.58	4.69
16	42.5	C18:0	1.1921	4,000,594	0.3780	0.9530	2.29	2.35
17	43.4	C18:1n9t	1.1650	1,260,657	0.1219	0.9527	0.74	0.76
18	43.8	C18:1n9c	1.1982	133,218,285	12.5225	0.9527	75.99	77.84
20	45.8	C18:2n6c	1.1005	18,095,281	1.8519	0.9524	11.23	11.51
total								100

Table S2: Calculation of total fatty acids from GC-MS analysis on FAMEs using an internal standard method (an example with FAMEs from industrial chemical B)

^{a,b} R_{fi} and W_{FAMEi} were calculated according to the eqn (1) and (2), respectively. ^b $f_{FA i}$: Conversion factor (fatty acid methyl ester to the corresponding fatty acid)

W	Pti * WtC11:0 x 1.0067	eqn (S1)				
vv FAME1 –	PtC11:0 x Rfi					
WFAMEi : Content of each fatty aci	d methyl ester in test solution					
P _{ti} : Peak area of each fatty acid methyl ester in test solution						
WtC11:0: Weight of internal standa	rd (triundecanoin) added to te	st portion				
1.0067 : Conversion of internal sta	andard (triundecanoin) from t	riglyceride to FAME				
$P_{tC11:0}$: Peak area of internal standard (methyl undecanoate) in test solution						
R _{fi} : Response factor of each fatty	acid methyl ester					

$R_{\rm fi}$ =	$P_{Si} \ge W_{C11:0}$	eqn (S2)
	P _{SC11:0} x W _i	_

 P_{Si} : Peak area of each fatty acid methyl ester in standard solution $P_{SC11:0}$: Peak area of internal standard (methyl undecanoate) in standard solution $W_{C11:0}$: Weight of internal standard (methyl undecanoate) in standard solution (mg) W_i : Weight of each fatty acid methyl ester in standard solution (mg) Table S3 : ¹H NMR data of (a) the hydrolysed products and (b) the methyl esterified products from fatty acids zinc salts.

<u>(u) 11 ju</u>	renjsed produces no	in fully delas zhie su	10			
	1.Industrial	2.Industrial				
	Chemical A	Chemical B				
Peak	Hydrolyzed	Hydrolysed	Multiplicity	Assignments		
No.	(in DMSO-d6)	(in DMSO-d6)				
	Chemical shift, p	opm (Integration)				
1	0.85 (3.0)	0.85 (3.0)	Triplet (J=8.0Hz)	Protons of terminal methyl		
2	1.16-1.36 (22.6)	1.18-1.36 (19.8)	Multiplet	CH ₂ of long chain alkyl		
3	1.48 (2.0)	1.48 (2.1)	Quintet	CH ₂ of C3		
			(J=6.8Hz)			
4	1.91-2.04 (2.1)	1.92-2.04 (3.6)	Multiplet	CH ₂ -Allylic protons		
5	2.17 (2.0)	2.17 (2.0)	Triplet (J=7.6Hz)	CH_2 of $C2$ (α to COOH)		
6	2.65-2.76 (0.19)	2.66-2.77 (0.24)	Multiplet	CH ₂ -bis-allylic protons		
7	-	-	-	-		
8	5.27-5.38 (1.2)	5.27-5.38 (2.0)	Multiplet	Olefinic protons		
9	11.94 (1.0)	11.94 (0.9)	Singlet	Proton of carboxyl acid		

	< ` `	TT 1	1 1	1 .	C	C	• 1	•	1.
1	0) Hudro	VCOD	nroducte	trom	totty	acide	71100	colte
۰.	a	<i>i</i> i i vui o	IVSCU	DIQUUCIS	пош	Iauv	acius		Sans
	,	,							

(b) Methyl esterified products from fatty acids zinc salts

Peak No.	1.Industrial Chemical A Methyl Esterified (in CDCl ₃)	2.Industrial Chemical B Methyl Esterified (in DMSO-d6 +	Multiplicity	Assignments	
-	Chemical shift, p	opm (Integration)			
1	0.86 (3.0)	0.85 (3.0)	Triplet (J=8.0Hz)	Protons of terminal methyl	
2	1.15-1.36 (22.2)	1.16-1.35 (19.8)	Multiplet	CH ₂ of long chain alkyl	
3	1.59 (2.0)	1.51 (2.1)	Quintet (J=6.8Hz)	CH ₂ of C3	
4	1.96-2.05 (2.0)	1.92-2.03 (3.6)	Multiplet	CH ₂ -Allylic protons	
5	2.28 (2.0)	2.26 (2.0)	Triplet (J=7.6Hz)	CH_2 of $C2$ (α to $COOCH_3$)	
6	2.56-2.87 (0.17)	2.66-2.76 (0.23)	Multiplet	CH ₂ -bis-allylic protons	
7	3.64 (2.8)	3.57 (3.0)	Singlet	Methoxy(OCH ₃) protons	
8	5.27-5.39 (1.1)	5.25-5.36 (2.0)	Multiplet	Olefinic protons	
9	-	-	-	-	

Picture S1: Pictures of white precipitation formed in a clear aqueous solution of aqueous work-up solution in 2.3.3.1 upon increase of alkalinity suggesting the formation of Zn(OH)₂. The same phenomenon was observed in the aqueous work-up solutions in 2.3.1.