An Electrochemical Sensor Based on Gold Nanodendrite/Surfactant Modified Electrode for Bisphenol A Detection

Nguyen Thi Lien¹, Le Quoc Hung², Nguyen Tien Hoang³, Vu Thi Thu³, Dau Thi Ngoc Nga³, Pham Thi Hai Yen², Pham Hong Phong² and Vu Thi Thu Ha^{2,3,*}

¹Department of Chemistry, Hanoi University of Science, 19 Le Thanh Tong, Hanoi, Vietnam.

²Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

³University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.

Corresponding author: <u>havt@ich.vast.vn</u>

(Supplementary Information)

Fig. S1: Structure of studied coumpound

Fig. S2: SEM images of AuNDs created on GCE without (a) and with CTAB layer

Randle – Sevick equation: $I_p = (2.69 \times 10^5) n^{3/2} ACD^{1/2} v^{1/2}$

A is the active surface area $(ECSA)(cm^2)$

D is the diffusion coefficient of $[K_3Fe(CN)_6]$ (6.605 × 10⁻⁶ cm²s⁻¹)

n = 1 is the number of transferred electrons for $[Fe(CN)_6]^{3-/4-}$ redox couple

C is the bulk concentration of $[K_3Fe(CN)_6]$ (5 mM)

Fig. S3. CVs of AuNDs/CTAB/GCE in 5 mM $K_3Fe(CN)_6/K_4Fe(CN)_6 + 0.2$ M PBS at different scan rates and used for calculation of electroactive surface area (ECSA)

Fig. S4. Reproducibility of seven AuNDs/CTAB/GCE sensors at 10 µM BPA in PBS pH 7

Fig. S5. Voltammograms of BPA 5 μ M on AuNDs/CTAB/GCE before and after adding interferents at concentrations 20 time higher than that of analyte, BPA with Cd²⁺, Pb²⁺, Cu²⁺ (a) and with 4-nitrophenol (b)

Fig. S6. Voltammograms of solution extracted from plastic drinking water bottle spiked BPA at different concentrations recorded on AuNDs/CTAB/GCE sensor (a) and by fluorescence method (b)