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Steaming is a vital unit operation in traditional Chinese medicine (TCM), which greatly affects the active ingredients and the
pharmacological efficacy of the products. Near-infrared (NIR) spectroscopy has already been widely used as a strong process
analytical technology (PAT) tool. In this study, the potential usage of NIR spectroscopy to monitor the steaming process of
Gastrodiae rhizoma was explored. About 10 lab scale batches were employed to construct quantitative models to determine four
chemical ingredients and moisture change during the steaming process. Gastrodin, p-hydroxybenzyl alcohol, parishin B, and
parishin A were modeled by different multivariate calibration models (SMLR and PLS), while the content of the moisture was
modeled by principal component regression (PCR). In the optimized models, the root mean square errors of prediction (RMSEP)
for gastrodin, p-hydroxybenzyl alcohol, parishin B, parishin A, and moisture were 0.0181, 0.0143, 0.0132, 0.0244, and 2.15,
respectively, and correlation coefficients (R2

p) were 0.9591, 0.9307, 0.9309, 0.9277, and 0.9201, respectively. -ree other batches’
results revealed that the accuracy of the model was acceptable and that was specific for next drying step. In addition, the results
demonstrated the method was reliable in process performance and robustness. -is method holds a great promise to replace
current subjective color judgment and time-consuming HPLC or UV/Vis methods and is suitable for rapid online monitoring and
quality control in the TCM industrial steaming process.

1. Introduction

Gastrodiae rhizoma (G. rhizoma), also called “Tianma” in
Chinese, which is regarded as one of the ten “magical plants”
in China, has been widely used to treat diverse disease in-
cluding headache, migraine, dizziness, epilepsy, infantile
convulsion, tetany, and so on [1]. Phytochemical studies of
G. rhizoma validated that the major chemical constituents
linked with the pharmacological activity of this plant are
phenolic compounds, such as gastrodin, gastrodigenin, bis
(4-hydroxybenzyl) ether, 4-hydroxybenzaldehyde, and
parishin, and more than about 30 phenolic compounds have

been successfully isolated or transferred from G. rhizoma
[2–5]. According to the Japanese and Chinese Pharmaco-
peia, the steamed roots of G. rhizoma have been defined as
the standard form [6, 7], which is also defined as monarch
drug or the major effective ingredient of many Chinese
patent medicines, such as “Quantianma Capsules,” “Tian-
maduzhong Capsules,” and “Tianmasu Tablets.” -erefore,
the steaming process is a vital unit operation that affects the
quality of the pharmaceutical products.

-e purpose of steaming is to change the property of
medicine and expand the range of medicine usage, to re-
duce side effect, or to be convenient for sliding pieces [8].
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-e endpoint of the traditional steaming process usually
pays attention to only the content of gastrodin in
G. rhizoma but ignore other active ingredients during the
evaluation of quality, which may not be able to reflect the
changes of the content of active ingredients and judge the
endpoint accurately. Various instrumental techniques and
methods have been developed for the qualitative and
quantitative analysis of G. rhizoma constituents, including
high-performance liquid chromatography (HPLC) or LC-
MS, gas chromatography-mass spectrometry (GC-MS),
and capillary electrophoresis (CE) [9–12]. However, these
methods are often time-consuming, laborious, and tedious,
since they require multiple steps of sample preparation.
-erefore, new approaches that can overcome these
drawbacks are highly desirable. Process analytical tech-
nology (PAT) tool which can increase the efficiency of
process environment and guarantee the final product
quality to be homogeneous and controllable should be paid
attention, which is useful to monitor the content of the
main active components changes in the steaming process of
G. rhizoma.

Near-infrared (NIR) spectroscopy fulfills many of the
criteria of an ideal PAT tool for pharmaceutical applications
and has already been validated for different applications
such as blend homogeneity, extracting, or active content and
moisture determination [13–17]. As NIR spectra are featured
by broad and overlapping absorption bands, which have
thousands of wavelength variables, identification to specific
chemical group vibrations seems to be rather difficult.
Consequently, chemometric tools such as mathematical
pretreatments and some regression methods are used to
extract the significant and useful information. To the best of
our knowledge, there have no reports yet on NIR spec-
troscopy as a PAT tool to monitor the steaming process of
G. rhizoma so far.

For the qualitative and quantitative analyses by NIR
spectroscopy, multivariate calibration models could be
established through the combination of information-rich
spectroscopy and efficient regression tools provided by
modern mathematics. However, the selection of wavelength/
variable is of great significance to acquire robust models with
good performance. Nowadays, there are many mathematical
strategies for variable selection such as stepwise multiple
linear regression (SMLR), partial least squares (PLS), syn-
ergy interval PLS (Si-PLS), and principal component re-
gression (PCR) [18–20], and some studies have shown that
models built with effective wavelengths have a better
performance.

-e aim of this study was to (1) prepare different al-
gorithm and build high-performance NIR calibration
models in the steaming process of G. rhizoma: the PLS
models will be evaluated to determine the contents of
gastrodin, p-hydroxybenzyl alcohol, parishin A, and par-
ishin B; the PCR models will be tested to determine the
contents of the moisture content. (2) Investigate the fea-
sibility and application of NIR spectroscopy to monitor the
changes of chemical and physical properties mentioned
before during the additional steaming process of
G. rhizoma.

2. Materials and Methods

2.1. Materials and Reagents. Totally, 13 batches of raw
G. rhizoma samples were provided by Guizhou Jiulong
Group (Guizhou, China). Reference standards of gastrodin
(batch No. 110807–201608), p-hydroxybenzyl alcohol (batch
No. 111970–201702), parishin A (batch No. 62499-28-9),
and parishin B (batch No. 174972-79-3) were purchased
from China Food and Drug Testing Institute (Beijing,
China). Methanol and acetonitrile were purchased from
Kemmo Chemical Reagent (Tianjin, China). Water was
purified by a Milli-Q water purification device (Millipore,
USA). Other chemical reagents were all analytical grade.

2.2. Steaming Process and Sample Collection. Steaming
process of G. rhizoma was simulated according to the actual
process condition. Upon arrival, each raw G. rhizoma was
washed cleanly immediately and then smashed into fluid
homogenate. About 140 g of G. rhizoma was put into an
electric steamer with a stirring paddle (Supor Group,
Hangzhou, China) and heated for 10 minutes. -e tem-
perature of the herbal medicine during the steaming process
was controlled at 100°C.-e uniform distribution of samples
with high or low concentrations is indispensable with the
purpose to obtain similar prediction accuracy [21]. Samples
were collected at 30 s intervals for reference analysis im-
mediately after spectral measurements during the whole
steaming process. In this study, about 200 samples were
collected from 10 different batches, which were used to build
the calibration and validation models.

All the procedures were strictly controlled to lower the
risk of the uncertain parameters during sample collection,
separation, and process.

2.3.Near-InfraredSpectraAcquisition. -eNIR spectra were
collected using an Antaris II FT-NIR analyzer (-ermo
Nicolet, USA) at room temperature using the standard
method. An integrating sphere diffused reflectionmode with
an InGaAs detector was selected to record the in-line NIR
data throughout the steaming process dynamically.

Spectra were dynamically recorded in-line over the
wavelength range from 4,000 to 12,000 cm−1 with a reso-
lution of 8 cm−1. Each spectrum was an average of 32 scans
and recorded as the logarithm of the reciprocal reflectance,
which is log (1/R). -e background spectrum was scanned
with air as the reference in order to eliminate the effect
caused by background. Considering that room temperature
and relative humidity may be a risk to influence the surface
moisture of G. rhizoma. Room temperature was maintained
at 25°C and humidity at 80% during the spectra collection.

2.4. Sample Preparation and Reference Assays for HPLC.
HPLC reference analysis was performed immediately after
the sample NIR spectra were collected. -e sample prepa-
ration was similar to the method used before [22]. About
0.5 g G. rhizoma sample was weighed and extracted with
25mL of diluted alcohol, weighed the total solution content
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before ultrasounded for 30 minutes. -en, weighed again
and complemented loss weight and filtered the solution
twice, pipetted 10mL of the subsequent filtrate to the
evaporating dish that concentrated solution to dry, using the
mixed solution of acetonitrile : water (3 : 97) to resolve
residue, and fixed the volume to a 10mL volumetric flask.
-e extraction solution was filtered with a 0.45 μm filter
membrane before HPLC analysis. We developed an HPLC
method for the quantitative determination of gastrodin, p-
hydroxybenzyl alcohol, parishin A, and parishin B in the
samples. -e chromatographic analysis was carried on a
Diamonsil C18 column (250mm× 4.6mm, 5 μm) at 30°C on
a 1260 HPLC system (Agilent, Santa Clara, USA) consisting
of a vacuum degasser, a thermostatic column compartment,
a quaternary pump, an auto sampler, and a diode array
detector (DAD). -e mobile phase in this study consisted of
0.05% phosphoric acid solution (A) and acetonitrile (B) at a
flow rate of 1.0mL/minutes. A gradient program was set as
the following profile: 0–10 minutes, 3%–8% B; 10–18
minutes, 8%–12% B; 18–40 minutes, 12%–25% B; and 40–50
minutes, 25%–40% B. -e detection wavelength was set at
270 nm, and the injection volume was 10 μL. -e moisture
content during the steaming process was determined by the
weight loss method according to the Chinese Pharmaco-
poeia. All of the results acquired above were used as ref-
erence values for the NIR analysis.

-e standard stock solutions used were prepared in
advance by dissolving the four reference standards in 50%
methanol (methanol: water� 1 :1, v/v) to a final concen-
tration of 0.0591mg/mL for gastrodin, 0.0055mg/mL for p-
hydroxybenzyl alcohol, 0.0315mg/mL for parishin A, and
0.0025mg/mL for parishin B.

2.5. Spectra Transformation and Data Analysis. It is neces-
sary to transform the NIR spectra to remove noise and ir-
relevant information and to select the variables to reduce the
phenomena of redundancies and colinear besides to improve
the prediction performance of the models.-erefore, spectra
were transformed with several different methods, such as
multiplicative scatter correction (MSC), standard normal
variate transformation (SNV), first derivation (FD), and
Savitzky–Golay filter (SG) smoothing. For the quantification
of the four phenolic compounds, three different regression
models were adopted, namely, SMLR, full-PLS, and Si-PLS,
and established, and their results performance was sys-
temically compared and explored. For the quantification of
moisture content, the PCR model was constructed.

2.6. Evaluation of Model Performance. -e performance
value of established different models (i.e., SMLR, PLS, Si-
PLS, and PCR) was evaluated by four performance indexes
including the determination coefficients of calibration (Rc2),
root mean square error of calibration (RMSEC), coefficients
of prediction (Rp2), and rootmean square error of prediction
(RMSEP). -e determination coefficient (R2) reflects the
consistency between the actual and the predictions of the
quality parameters, which suggest an performance about the
predictive efficiency of the model. -e models’ efficiency can

be concluded by the parameters of RMSEC, RMSEP, and
RPD (ratio of standard deviation of the validation set to
standard error of prediction). Generally speaking, a high-
performance model should yield higher Rc2 and Rp2 values
but lower RMSEC and RMSEP values.

2.7. Software. -e samples were divided into two groups
consisting calibration and validation sets by the Kennard–
Stone algorithm. All data processing of NIR spectra and
applications of chemometric methods, including spectral
transformation, wavelength/variable selection, and different
model construction (SMLR, full-PLS, si-PLS, and PCR), were
conducted using TQ Analysis software (version 8.0, -ermo
Nicolet, USA). A paired t-test was performed to determine if
there were differences among the five components’ contents
obtained by HPLC and in-line NIR analysis using SPSS 17.0
(SPSS Standard version 17.0, SPSS Inc., Chicago, IL), which is
a simple and efficient tool for data analysis.

3. Results and Discussion

3.1. Results of Reference Values Analysis. All samples col-
lected were analyzed using the HPLC method described in
Section 2.4. A representative steaming process chromato-
gram is shown in Figure 1, which reflects that the four
phenolic compounds (gastrodin, p-hydroxybenzyl alcohol,
parishin A, and parishin B) were all baseline separated. -e
HPLC method was validated before analyzing the samples.
-e main parameters of the HPLC method are listed in
Table 1. -e moisture and the concentration of the four
analytes in the steaming process samples are listed in Table 2.

-e measurement results of four phenolic compounds
and moisture in rawG. rhizoma showed obvious variation in
different samples. -e gastrodin, p-hydroxybenzyl alcohol,
parishin A, and parishin B content ranged from 0.18% to
0.54%, 0.10% to 0.34%, 0.20% to 0.54%, and 0.03% to 0.25%,
respectively, with an RSD value of 7.8%, 5.8%, 4.1%, and
3.5%, respectively. Since the raw G. rhizoma materials with
variable quality due to different geographical sources, har-
vest times, cultivation conditions and storage, the quality
control is essential for steaming process preparation.

3.2. Analysis of Near-Infrared Spectra. -e raw NIR spectra
of these collected samples during the steaming process are
shown in Figure 2(a), which well monitored the changes in
physical and chemical attributes. As the spectra show, the
absorbance increased with the process of steaming. While it
is generally known that the NIR spectra features with the
overtones and combinations of species contain H groups
such as -OH, -CH, and -NH, there still exist several char-
acteristic absorption peaks. According to previous studies
[23–25], the region from 4200 to 5000 cm−1 is implied by the
C-H, O-H, and N-H stretch/C-H deformations in the
phenyl, since there are several phenyls in the molecular
structures of gastrodin, p-hydroxybenzyl alcohol, parishin
A, and parishin B. In addition, the intense absorptions of the
NIR spectra at 5155 cm−1 and 6944 cm−1 were accounted for
the first overtone and deformation of O-H in water [26]. To
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some extent, the change of spectra in those ranges can
describe samples characteristics of the steaming process.

-erefore, the multivariate calibration techniques are
useful to reveal the relationship between the NIR spectra and
the parameters. Preprocessing of the raw spectra with en-
hanced signal-to-noise ratios and removal of invalid vari-
ations is a necessary step to build high-performance models.
To eliminate the baseline drift and scattering effects derived
from the inhomogeneous distribution and irregular form of
the particles, the first derivative (FD) can be a better se-
lection. To remove the augmentation of noise that derived
from the derivatization, the Savitzky–Golay filter algorithm
was useful. Finally, in this study, FD with SG smoothing (7th
order polynomial, a 5-point window) (FD/SG) was adopted.
-e spectra processed by FD/SG are shown in Figure 2(b).

3.3. Division of Calibration and Validation Sets. All samples
were divided into two subsets: the calibration and the
prediction subsets. -e former was used to establish models
and the latter to test the models’ accuracy. Initially, spectral
outliers were determined by the principal component
analysis (PCA)method. According to the original PCA score
plots, samples 56, 63, 72, and 141 were abnormal points,
which was necessary to eliminate them before model cali-
bration. -en, the Kennard and Stone (K-S) algorithm was
adopted to ensure that both sets were well proportioned,
which is to cover the multidimensional space in a uniform
manner by maximizing the Euclidean distances between
already selected objects and the remaining objects. Finally, in
about four-fifths of the total samples, 156 were chosen as the
calibration set, while the remaining 40 samples were selected
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Figure 1: -e representative HPLC chromatogram of gastrodin (1), p-hydroxybenzyl alcohol (2), parishin B (3), and parishin A (4) in
Gastrodiae rhizoma steaming samples (A) and standard solution (B).

Table 1: Main methodology parameters and calibration curves of the reference HPLC method.

Analytes Linearity ranges (mg/mL) Calibration curves R2 Repeatability (RSD %, n� 6) Recovery (%, n� 6)
Gastrodin 0.0024–0.1478 Y� 780.37X – 4.1049 0.9999 0.23 99.8
p-Hydroxybenzyl alcohol 0.0055–0.0825 Y� 3112.3X – 5.5707 0.9999 0.15 100.5
Parishin B 0.0015–0.0300 Y� 7095X – 9.9625 0.9997 0.09 101.2
Parishin A 0.0016–0.1260 Y� 1478X+ 6.6621 0.9998 0.12 98.6

Table 2: Results of four analytes and moisture contents of 200 samples.

Batch Range Gastrodin (mg/g) p-Hydroxybenzyl alcohol (mg/g) Parishin B (mg/g) Parishin A (mg/g) Moisture (%)

1 Max 6.2648 3.4677 1.5923 5.8750 89.12
Min 0.1898 0.4819 0.1299 0.1241 65.43

2 Max 6.0611 3.6677 1.4911 5.9755 85.72
Min 0.1921 0.4112 0.1093 0.1148 66.23

3 Max 6.4611 3.6642 1.5943 5.8720 89.02

6 Max 6.2601 3.0672 1.6001 5.9733 81.02
Min 0.1468 0.4116 0.1093 0.1135 68.03

7 Max 6.6108 3.1637 1.6023 5.8030 83.02
Min 0.1291 0.4122 0.1098 0.1142 66.43

8 Max 6.6611 3.5112 1.5311 5.9112 86.02
Min 0.1456 0.4013 0.1091 0.1432 68.23

9 Max 6.2018 3.4577 1.6113 5.6510 82.42
Min 0.1458 0.4249 0.1019 0.1098 68.03

10 Max 6.4562 3.4112 1.5879 5.8670 81.12
Min 0.1098 0.4342 0.1256 0.1230 66.43
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as the prediction set. -e sample parameters (mean, range,
and standard deviation) of the calibration and validation sets
are listed in Table 3. It indicates that samples in the cali-
bration and validation sets were distributed appropriately.

3.4. Spectral Transformation and Variables Selection. As
mentioned above, there are various signal transformation
methods that can be used to remove radiation scattering and
baseline drift. For example, MSC and SNV are useful for
correcting light scattering effects, while FD and SD can
eliminate baseline drifts and peak overlap and also can avoid
enhancing the noise effect.-e performance of four phenolic
compounds andmoisture calibration with different methods
is shown in Table 4, which was evaluated by RMSEC and Rc2.

-e optimization of the spectral transformationmethods
for NIR models of gastrodin was MSC+ SG9+ FD, in which
the RMSEC and Rc2 of the model were 0.0160 and 0.9610; for
the NIR models of p-hydroxybenzyl alcohol was
MSC+ SG7+ FD, which the RMSEC and Rc2 of the model
were 0.0165 and 0.9331; for the NIRmodels of parishin B was
MSC+ SG7+ FD, in which the RMSEC and Rc2 of the model
were 0.0108 and 0.9245; for the NIR models of parishin A
was MSC+ SG9+ FD, in which the RMSEC and Rc2 of the
model were 0.0181 and 0.9561; and for the NIR models of
moisture was MSC+ SG9+ SD, in which the RMSEC and
Rc2 of the model were 1.7 and 0.9513.

3.5. Development of Calibration Models. In this study, four
different multivariate calibration models including SMLR,
full-PLS, si-PLS, and PCR were used to establish the cal-
culated models, and their performance was compared and
validated. Specifically, the SMLRmodel is an early developed
regression method that is suitable for the simple system,
which performed a better linear relation among different
varieties. However, it is prone to be overfitting and lose
useful spectrum information. -e PCR model was a linear
regression model tool that decomposes X matric spectrum
information, which contains an important step to select best
principle factors. Full-PLS is an improved multivariate re-
gression tool that made use of X and Y matric spectrum

information, which was built on the full spectrum.While the
Si-PLS model is developed on the different optimal subin-
tervals, which is a subinterval-combination procedure test
better than the full-PLS model.

3.5.1. Results of PLS Models. Gastrodin, p-hydroxybenzyl
alcohol, parishin A, and parishin B were modeled by SMLR,
full-PLS, and si-PLS. -ese models were established using 8
batches as the calibration set and verified by two batches as
the validation set. Besides, the latent variables (LVs) were
optimized by the leave-one-out method and were deter-
mined according to the minimum value of RMSECV. -ese
models’ performance was evaluated by the Rc2 and RMSEC
value. -e performance of five parameters is shown in
Table 5.

As can be seen from Table 5, the SMLR models per-
formed worse as compared with other models, considering
that they may lose some important spectrum information to
reduce the models’ prediction ability. Given this, we selected
PLS methods, including full-PLS and Si-PLS models, while
the number of principal components (PCs) is critical to the
full-PLS models’ performance. In this study, the optimum
numbers of PCs of the full-PLS models for gastrodin, p-
hydroxybenzyl alcohol, parishin B, and parishin A were 8, 7,
8, and 6, respectively. -e results indicated that the cali-
bration model can be further improved to show a better
performance.

As we know, the Si-PLS models were established based
on the combination of different subintervals. Herein, the full
spectrum was divided into 10 to 30 intervals. As can be seen
from Figure 3, the optimal Si-PLS model of gastrodin by
combining 3 subintervals (4,000–4,300 cm−1,
4,600–4,900 cm−1, and 4,900–5,200 cm−1) from 20 intervals
was achieved with the highest Rp2 (0.9591) and lowest
RMSEP (0.0181); p-hydroxybenzyl alcohol by combining 2
subintervals (4,000–4,600 cm−1and 6,400–7,000 cm−1) from
10 intervals was achieved with the highest Rp2 (0.9307) and
lowest RMSEP (0.0143); parishin B by combining 3 sub-
intervals (4,400–4,800 cm−1, 6,400–6,800 cm−1, and
7,600–8,000 cm−1) from 15 intervals was achieved with the

1.5

2

2.5

3

3.5

4
Ab

so
rb

an
ce

9,000 8,000 7,000 6,000 5,00010,000
Wavenumbers (cm–1)

(a)

–0.045
–0.04

–0.035
–0.03

–0.025
–0.02

–0.015
–0.01

–0.005
0

0.005

Ab
so

rb
an

ce

9,000 8,000 7,000 6,000 5,00010,000
Wavenumbers (cm–1)

(b)

Figure 2: (a) Raw NIR spectra and (b) spectra preprocessed by MSC+FD/SG of all samples collected from the steaming process.
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Table 4: Results of different spectral transformation for gastrodin, p-hydroxybenzyl alcohol, parishin A, and parishin B models.

Parameters Pretreatment RMSEC Rc2 LVs

Gastrodin

Raw 0.0168 0.9561 8
MSC 0.0158 0.9598 7

MSC+ SG9 0.0157 0.9601 9
MSC+ SG9 + FD 0.0160 0.9610 10
MSC+ SG9+ SD 0.0185 0.9469 7

p-Hydroxybenzyl alcohol

Raw 0.0198 0.9120 7
MSC 0.0161 0.9234 6

MSC+ SG7 0.0151 0.9301 6
MSC+ SG7 + FD 0.0165 0.9331 5
MSC+ SG7+ SD 0.0168 0.9312 5

Parishin B

Raw 0.0198 0.9110 7
MSC 0.0165 0.9126 6

MSC+ SG7 0.0143 0.9178 6
MSC+ SG7 + FD 0.0108 0.9245 6
MSC+ SG7+ SD 0.0113 0.9211 5

Parishin A

Raw 0.0198 0.9433 8
MSC 0.0189 0.9511 9

MSC+ SG9 0.0186 0.9532 9
MSC+ SG9 + FD 0.0181 0.9561 9
MSC+ SG9+ SD 0.0191 0.9598 8

Raw 2.72 0.8713 5
MSC 2.99 0.8421 5

Moisture
MSC+ SG9 2.72 0.8467 5

MSC+ SG9 + FD 1.87 0.9132 6
MSC+ SG9+ SD 1.71 0.9513 6

Table 3: Reference results of samples in calibration and validation sets.

Parameters Units Subsets S.N Range Mean S.D

Gastrodin % Calibration set 156 0.20–0.53 0.32 8.1
Validation set 40 0.18–0.54 0.35 7.9

p-Hydroxybenzyl alcohol % Calibration set 156 0.10–0.34 0.25 2.5
Validation set 40 0.12–0.32 0.23 2.9

Parishin B % Calibration set 156 0.03–0.25 0.12 1.9
Validation set 40 0.05–0.21 0.14 1.8

Parishin A % Calibration set 156 0.20–0.54 0.39 2.0
Validation set 40 0.21–0.53 0.38 2.5

Moisture % Calibration set 156 65.03–89.12 78.15 5.6
Validation set 40 66.43–88.15 76.43 6.2

S.N, the number of samples; S.D, standard deviation.

Table 5: Results of different models for predicting gastrodin, p-hydroxybenzyl alcohol, parishin B, and parishin A.

Parameters Methods PCs
Calibration Validation

Rc2 RMSEC Rp2 RMSEP

Gastrodin
SMLR 2 0.5163 0.0475 0.6505 0.0513
si-PLS 9 0.9625 0.0151 0.9591 0.0181
Full-PLS 8 0.9112 0.1019 0.9088 0.1026

p-Hydroxybenzyl alcohol
SMLR 6 0.7959 0.0277 0.8472 0.0210
si-PLS 9 0.9587 0.0130 0.9307 0.0143
Full-PLS 7 0.8775 0.0148 0.8622 0.0154

Parishin B
SMLR 5 0.8903 0.0128 0.8219 0.0112
si-PLS 9 0.9431 0.0101 0.9309 0.0132
Full-PLS 8 0.9154 0.0198 0.9025 0.0215

Parishin A
SMLR 5 0.5720 0.0482 0.5234 0.0558
si-PLS 9 0.9542 0.0176 0.9277 0.0244
Full-PLS 6 0.9235 0.0365 0.9354 0.0422
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highest R2
p (0.9309) and lowest RMSEP (0.0132); parishin A

by combining 2 subintervals (4,300–4,600 cm−1 and
4,900–5,200 cm−1) from 20 intervals was achieved with the
highest R2

p (0.9277) and lowest RMSEP (0.0244). In total, the
Si-PLS models performed better in the prediction of four
phenolic compounds as compared with the SMLR and full-
PLS models.

3.5.2. Results of PCR Models. -e moisture content was
modeled by PCR. PCR is a kind of multivariate regression
tool, which can map the complex and nonlinear data into a
higher dimensional feather space. Some studies have vali-
dated that the intense absorptions of the NIR spectra at
5155 cm−1 and 6944 cm−1 were accounted for the first
overtone and deformation of O-H in water [21], and the
absorption of former spectra band was stronger than latter.
Considering these information for moisture feather spec-
trum absorption, in this study, these models were first
established by 8 batches as the calibration set and verified by
two batches as the validation set. -e Mahalanobis distance
was selected to delete the spectrum outlier in the PCRmodel
in Figure 4. -e result suggested that 4 samples should be
ignored, and remaining 156 samples were used to establish
the calibration model. -en, MSC was chosen as the signal
transformation method, taking into account that this signal
transformation can reduce the effect of scattered light on
diffuse reflection NIR spectra, and SD with SG smoothing
(9th order polynomial, a 5-point window) (SD/SG) was

adopted in Figure 5. As can be seen from Figure 5, the
selected spectral area is related to the moisture content of the
sample. It was further confirmed by the fist loading factor of
the PCR model from Figure 6, which reflects the main
loading information of spectrum. In the end, the perfor-
mance of the PCR model was evaluated in terms of Rc2 and
RMSEC value. -e result of the moisture PCR model is
shown in Figure 7.

3.6. Validation of Best-Fitted Calibration Models. To predict
the content of gastrodin, p-hydroxybenzyl alcohol, parishin
A, and parishin B and moisture in the steaming process, two
batches of 40 samples were selected as the validation set.
RMSEP was used as the most critical performance index to
evaluate the predictive ability of calibration models. -e
RMSEP values for above five parameters were sufficiently
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Figure 3: -e efficient spectral intervals selected by si-PLS for the prediction of four phenolic compounds: (a) gastrodin, (b) p-
hydroxybenzyl alcohol, (c) parishin B, and (d) parishin A.
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Figure 4: -e PCR model of moisture content’s spectrum outlier
selected according to Mahalanobis distance.
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low, and R2
p value was high enough, which means that the

models had superior predictive ability. -e performance
indexes (R2

p, RMSEP, and RSEP) to evaluate the predictive
ability of PLS (full-PLS and Si-PLS) and PCR models are
shown in Table 6. Prediction results of the models are shown
in Figures 7 and 8. -e results show that the established
models had a satisfactory predictive ability, and the models
could be used tomonitor the content of the four analytes and
the changes of moisture in the steaming process of
G. rhizoma.

3.7. In-Line and Real-Time Monitoring. In traditional Chi-
nese processing of G. rhizoma, steaming is the first step in
the manufacturing procedure; however, the variation caused
by the batch to batch raw Chinese medicine materials
(origin, variety, and so on) and operation environment
(equipment, operator, procedure, and so on) could have an
effect on the next drying process. In order to improve
production efficiency and ensure uniform and controllable
quality and in-line and real-time parameter measurements
based on PAT technique as NIR would be necessary.

In this study, the best-fitted models have been calculated,
validated, and uploaded to the above NIR instrument. -en,
this NIR method was put into use to monitor the in-line
steaming process of three additional batches (provided by
the Guizhou Jiulong Group), which were not used before
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Figure 6: -e first loading factor spectra of the PCR model for the moisture content prediction.
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Figure 5: Spectra preprocessed by MSC+ SD/SG of all samples and the efficient spectral intervals selected by PCR for the prediction of
moisture content.
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Figure 7: Prediction results of the moisture content models.
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either as a calibration or validation set. Good agreement
between gastrodin, p-hydroxybenzyl alcohol, parishin A,
and parishin B and moisture values predicted by NIR and
HPLC was concluded for these additional testing as shown
in Figure 9, indicating that these models could be suc-
cessfully applied in real-time to monitor the steaming
process of G. rhizoma.

In addition, to evaluate the robustness of the established
NIR method, the components’ contents obtained by HPLC
and in-line NIR analysis were compared using a paired t-test
in Table 7. Before the paired t-test, the variance of both
methods was compared using an F-test to assess whether
they differed significantly, and the results showed that the
experimental statistic was lower than the critical (for a
significance level of 0.05); thus, it can be concluded that

there were no significant differences between the standard
deviation of the methods for the sample sets.

Equally, the t-experimental statistics were also lower
than t-critical (for a significance level of 0.05) for five quality
control indicators.-us, the robustness of bothmethods was
comparable, and the established NIR models were consid-
ered acceptable for a manufacturing perspective.

Finally, if NIR has been applied to control the endpoint
of steaming, the batches would have been released for the
next drying step in real-time. While in the traditional
Chinese operational mode, the batch operator is waited until
time up or depended on the analysis. -is “conventional
procedure” implied not only a considerable increment in
manufacturing, which is time-consuming, laborious, and
tedious, but also a potential risk of oversteaming. However,

Table 6: Statistics of the optimal calibration models for five indicators.

Quality control indicators
Calibration set Validation set

LVs
Rc2 RMSEC RMSECV Rp2 RMSEP RPD

Gastrodin 0.9625 0.0151 0.0232 0.9591 0.0181 4.85 10
p-Hydroxybenzyl alcohol 0.9587 0.0130 0.0125 0.9307 0.0143 3.80 7
Parishin B 0.9431 0.0101 0.0112 0.9309 0.0132 3.80 7
Parishin A 0.9542 0.0176 0.0182 0.9277 0.0244 3.72 9
Moisture 0.9542 1.67 1.8760 0.9201 2.15 3.54 10

Gastrodin
RMSEC: 0.0151 Corr. coeff.: 0.9625
RMSEP: 0.0181 Corr. coeff.: 0.9591 
10 factors used 
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Figure 8: Prediction results of the four PLS models: (a) gastrodin, (b) p-hydroxybenzyl alcohol, (c) parishin B, and (d) parishin A.
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Figure 9: Comparison of the online NIR prediction values with the reference values of the steaming process of the test batch.
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the validated NIR application here is now applied to realize
these benefits.

4. Conclusions

-e steaming process of G. rhizoma was stimulated under lab
scale in this study, which evaluated the feasibility of the PAT
tool NIR spectroscopy approach to improve the quality control
efficiency of the process of G. rhizoma. First, the reliable and
robust NIR quantitative models of gastrodin, p-hydroxybenzyl
alcohol, parishin A, and parishin B and moisture in the
steaming process were established and validated, and the
proposed algorithm Si-PLS was superior to other models.
-en, the established best-fitted models were in real-time
applied to the release test of G. rhizoma, which can guarantee
stable and reliable quality of the steaming process. Addition-
ally, compared to the traditional method such as HPLC, this
nondestructive and rapid technique could offer significant
advantages, especially in aspect of improving the stability and
uniformity of the product, which is beneficial to industrial
factory. Overall, the results of this study showed that NIR
technique coupled with the multivariate regression tool could
be applied successfully for real-time and in-line measurements
of the steaming process of G. rhizoma on an actual industrial
scale. In addition, since these results preliminarily demon-
strated that NIR technique coupled with the multivariate re-
gression tool could be applied successfully for real-time and in-
linemeasurements of the steaming process ofG. rhizoma, more
samples will be needed to confirm these results and develop
more robust models for prediction in the further study.
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