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Counting polynomials are important graph invariants whose coefficients and exponents are related to different properties of
chemical graphs. *ree closely related polynomials, i.e., Omega, Sadhana, and PI polynomials, dependent upon the equidistant
edges and nonequidistant edges of graphs, are studied for quasi-hexagonal benzenoid chains. Analytical closed expressions for
these polynomials are derived. Moreover, relation between Padmakar–Ivan (PI) index of quasi-hexagonal chain and that of
corresponding linear chain is also established.

1. Introduction

Counting polynomials are a well-known way of expressing
molecular invariants of a chemical graph in polynomial form.
*ese polynomials depend on chemical graph properties such
as matching sets, independent sets, chromatic numbers, and
equidistant edges. Some well-known polynomials are Hosoya
polynomial, Wiener polynomial, sextet polynomial, matching
polynomial, and chromatic polynomials. Many important
topological indices can be derived from polynomials by directly
taking their value at some point or after taking derivatives or
integrals. Topological index is a numeric quantity related to a
graph which predicts the chemical properties, physical prop-
erties, and biological activity. *ese invariants are used in
chemical modeling, drug designing, and structural activity
relations. Counting polynomial is generally expressed as

P(G, x) � 􏽘
k

m(G, k) × x
k
, (1)

where k is the extent of a property partition and coeffi-
cients m(G, k) denote the multiplicity of the partition. *e

corresponding topological index P(G) is derived as
follows:

P(G) � P′(G, x)|x�1. (2)

*ese polynomials count equidistant and nonequidistant
edges in a graph and are very important in prediction of
physiochemical properties of a molecule.

Let G � (V, E) be a connected graph with the vertex set
V � V(G) and the edge set E � E(G), without loops and
multiple edges. A molecular/chemical graph is a simple
finite graph in which vertices denote the atoms and edges
denote the chemical bonds in the underlying chemical
structure. *e hydrogen atoms are often omitted in any
molecular graph. A chemical graph can be represented by
a matrix, a sequence, a polynomial, and a number (often
called a topological index) which represents the whole
graph, and these representations are aimed to be uniquely
defined for that graph. Two edges e � ab and f � cd of a
graph G are said to be codistant, usually denoted by eCof,
if
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d(a, c) � d(b, d) and d(a, d) � d(b, c) � d(a, c)

+ 1 � d(b, d) + 1,

eCoe,

eCof⟺fCoe.

(3)

“Co” is reflexive and symmetric but may not be tran-
sitive. Consider C(e) � f ∈ E(G): fCoe􏼈 􏼉.

If the relation is transitive on C(e) also, then C(e) is
called an orthogonal cut (OC) of the graph G, and if the
relation is not transitive then it is termed as quasi-orthog-
onal cut (QOC). Let e � ab and f � cd be two edges of a
graph G, which are opposite or topologically parallel, and
this relation is denoted by eopf. A set of opposite edges,
within the same face or ring, eventually forming a strip of
adjacent faces/rings, is called an opposite edge strip (OPS),
which is a quasi-orthogonal cut (QOC).

Omega, Sadhana, and PI polynomials are defined on the
basis of quasi-orthogonal cuts. Let m(G, k) denote the
number of QOCs of length k and e � |E(G)| is number of
edges of G.

*e Omega polynomial was introduced by Diudea [1]
denoted by Ω(G, x) and is defined as

Ω(G, x) � 􏽘
k

m(G, x) × x
k
. (4)

*e Sadhana polynomial was proposed by Ashrafi et al.
[2] and is defined as

Sd(G, x) � 􏽘
k

m(G, k) × x
e− k

. (5)

Khadikar et al. introduced a remarkable topological
index called Padmakar–Ivan (PI) index [3]. Ashrafi et al. [4]
introduced the PI polynomial based on counting opposite
edge strips in any graph. *is polynomial counts non-
equidistant edges inG, denoted by PI(G, x), and is defined as

PI(G, x) � 􏽘
k

m(G, k) × k × x
e− k

. (6)

Counting polynomials have been a subject of interest for
researchers working in chemical graph theory, some recent
work included in [2–8]. Moreover, different topological
aspects of hexagonal chains have been studied in [9–12].

In this paper, we aim to find counting polynomials, i.e.,
Omega polynomial, Sadhana polynomial, and PI polynomial
of quasi-hexagonal chain. *ese three polynomials depend
upon the distance between the edges of chemical graphs.
Moreover, topological invariants of the quasi-hexagonal
benzenoid chain related to these counting polynomials such
as Sadhana index and Padmakar–Ivan (PI) index are also
analysed. Relation between the PI index of the quasi-hex-
agonal chain and linear hexagonal chain is also established.

2. Results and Discussions

2.1. Quasi-Hexagonal Chain and Counting Polynomials. A
chain is said to be quasi-hexagonal chain if it can be embedded
into the normal hexagonal cross section/lattice in the plane

without overlapping of its vertices. A quasi-hexagonal chain,
symbolized as Hn , with n hexagons can be defined inductively
as follows: a quasi-hexagonal chainH1 is a hexagon. For n>1, a
quasi-hexagonal chain Hn is acquired from a quasi-hexagonal
chain Hn− 1 by appending another hexagon to an end hexagon
at one of its sides on the limit of Hn− 1. Figure 1 shows an
example of a quasi-hexagonal chain. *ese chains correspond
to various benzenoid systems and provide a general way to
express these systems in the form of a chemical graph. Some
aromatic hydrocarbons, for example, dibenz[a,h] anthracene,
with five fused benzene rings, provide an example of quasi-
hexagonal chains. Moreover, naphthalene, anthracene, chrys-
ene, and phenanthrene ring systems are some other instances
of quasi-hexagonal chains.

A quasi-hexagonal chain has segments consisting of
maximal linear chains.*e number of vertices in the inner dual
of each segment is called its length. It can be denoted by
H(l1, l2, . . . , ls), where s denotes the number of segments in the
chain and li denote the length of each segment. (l1, l2, . . . , ls) is
termed as the length vector of the quasi-hexagonal chain.
Moreover, it can be noted that 􏽐

s
1 li � n + s − 1, where n de-

notes the total number of hexagons in the chain and s denotes
the number of segments of the chain.

*e total number of edges in quasi-hexagonal is
|E| � 5􏽐

s
1 li − 5s + 6. If the inner dual of a quasi-hexagonal

chain is linear, then the chain is called a linear chain.
Wewill find distance-based polynomials by using the edge-

cut method introduced by Klavzar [13].*e cut lines of Hn are
divided into two classes: (i) they intersect only one hexagonal,
and they are orthogonal to the same edge direction; (ii) they
intersect at least one hexagonal, and they are orthogonal to the
remaining two edge directions. *e former are denoted by red
cuts and the later are denoted by blue cuts (see Figure 2).

*e number of quasi-orthogonal cuts which intersect
only one hexagon (having only two codistant edges) is equal
to 2􏽐

s
1 li − 3(s − 1). *e second type of QOCs cut each

segment once and has a length equal to li + 1, for each
i � 1, 2, . . . , s. *ese are summarized in Table 1.

Theorem 1. 2e Omega polynomial of the quasi-hexagonal
chain Hn with length vector (l1, l2, . . . , ls) is as follows:

Ω Hn , x( 􏼁 � x x
l1 + x

l2 + . . . + x
ls􏼐 􏼑 + x

2
(2n − s + 1). (7)

Proof. Let G be a graph of the quasi-hexagonal chain Hn .
*e Omega polynomial of graph G is given by equation (4)
as Ω(G, x) � 􏽐km(G, k) × xk.

Figure 1: A quasi-hexagonal chain H7 and its inner duals.
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Now, using Table 1 for number of codistant edges and
substituting the values of quasi-orthogonal cuts and number
of cuts, we get

Ω Hn , x( 􏼁 � 1.x
l1+1

+ 1.x
l2+1

+ · · · + 1.x
ls+1 + 2􏽘

s

1
li − 3(s − 1)⎛⎝ ⎞⎠x

2
� x

l1+1
+ x

l2+1
+ · · · + x

ls+1 + 2x
2

􏽘

s

1
li − 3(s − 1)x

2

� x
l1 .x + x

l2 .x + · · · + x
ls .x + 2x

2
(n + s − 1) − 3(s − 1)x

2
,

(8)

where

􏽘
s

1li � (n + s − 1)

� x x
l1 + x

l2 + · · · + x
ls􏼐 􏼑 + x

2
(2n − 2 + 2s − 3s + 3).

(9)

By simplifying, we get the Omega polynomial of Hn as
follows:

Ω Hn ,x( 􏼁 � x x
l1 + x

l2 + · · · + x
ls􏼐 􏼑 + x

2
(2n − s +1). (10)

□

Theorem 2. 2e Sadhana polynomial of the quasi-hexagonal
chain Hn is given by

Sd Hn, x( 􏼁 � x
5n

x
− l1 + x

− l2 + · · · + x
− ls􏼐 􏼑 + x

5n− 1

· (2n − 2s + 1).
(11)

Proof. Consider graph G of the quasi-hexagonal chain Hn .
*e Sadhana polynomial is defined as follows:

Sd(G, x) � 􏽘
k

m(G, k) × x
e− k

, e � |E| � 5􏽘
s

1
li − 5s + 6.

(12)

Substituting the values of codistant edges and number of
quasi-orthogonal cuts from Table 1, we obtain

Figure 2: *e elementary cuts of the quasi-hexagonal chain H10(5, 4, 3).

Table 1: Number of codistant edges of the quasi-hexagonal chain Hn.

Types of edges Types of QOCs No. of QOCs No. of codistant edges
t1 M 1 l1 + 1

1 l2 + 1
— —
— —
— —
1 ls + 1

t2 S 2􏽐
s
1 li − 3(s − 1) 2
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Sd Hn, x( 􏼁 � 1.x
5􏽘

s

1
li − 5s+6− l1− 1

+ 1.x
5􏽘

s

1
li − 5s+6− l2− 1

+ · · · + 1.x
5􏽘

s

1
li− 5s+6− ls− 1

+ 2􏽘

s

1
li − 3(s − 1)⎛⎝ ⎞⎠x

5􏽘
s

1
li− 5s+6− 2

� 1.x
5􏽘

s

1
li − 5s+5− l1 + 1.x

5􏽘
s

1
li− 5s+5− l2 + · · · + 1.x

5􏽘
s

1
li− 5s+5− ls + 2􏽘

s

1
li − 3(s − 1)⎛⎝ ⎞⎠x

5􏽘
s

1
li − 5s+4

� x
5􏽘

s

1
li − 5s+5

x
− l1 + x

− l2 + · · · + x
− ls􏼐 􏼑 + 2􏽘

s

1
li − 3(s − 1)⎛⎝ ⎞⎠x

5􏽘
s

1
li − 5s+4

.

(13)

Here, we substitute 􏽐
s
1 li � (n + s − 1) in the above ex-

pression and obtain

Sd Hn, x( 􏼁 � x
5(n+s− 1)− 5s+5

x
− l1 + x

− l2 + · · · + x
− ls􏼐 􏼑

+ x
5(n+s− 1)− 5s+4

(2(n + 1 − s) + 3(s − 1)).

(14)

By simplifying, we get

Sd Hn , x( 􏼁 � x
5n

x
− l1 + x

− l2 + · · · + x
− ls􏼐 􏼑

+ x
5n− 1

(2n − 2s + 1).
(15)

□

Remark 1. Sadhana index, introduced by Khadikar et al. [14]
while modeling aromatic stabilities of acenes and helicenes,
is defined as the first derivative of the Sadhana polynomial at
x� 1. *e Sadhana index of the quasi-hexagonal chain Hn is
given as

Sd Hn( 􏼁 �
d
dx

Sd Hn , x( 􏼁( 􏼁x�1 � 10n
2

− 40sn

+ 12n − 24s − 10.

(16)

Theorem 3. Consider the quasi-hexagonal chain Hn. 2en,
its PI index is given by

PI Hn , x( 􏼁 � (5n − 1)(5n − s + 1) − 􏽘
s

1
l
2
i . (17)

Proof. Consider the graph G of the quasi-hexagonal chain
Hn :

PI(G, x) � 􏽘
k

m(G, k) × k × x
e− k

. (18)

Substituting the values in the above equation from Ta-
ble 1, we obtain

PI Hn , x( 􏼁 � l1 + 1( 􏼁x
5􏽘

s

1
li− 5s+6− l1− 1

+ l2 + 1( 􏼁x
5􏽘

s

1
li− 5s+6− l2− 1

+ · · · + ls + 1( 􏼁x
5􏽘

s

1
li− 5s+6− ls− 1

+ 4􏽘
s

1
li − 6(s − 1)⎛⎝ ⎞⎠x

5􏽘
s

1
li − 5s+6− 2

� l1 + 1( 􏼁x
5􏽘

s

1
li− 5s+5− l1 + l2 + 1( 􏼁x

5􏽘
s

1
li − 5s+5− l2 + · · · + ls + 1( 􏼁x

5􏽘
s

1
li− 5s+5− ls + 4􏽘

s

1
li − 6(s − 1)⎛⎝ ⎞⎠x

5􏽘
s

1
li− 5s+4

.

(19)

Substituting 􏽐
s
1 li � n + s − 1, we obtain

PI Hn, x( 􏼁 � l1 + 1( 􏼁x
5n− l1 + l2 + 1( 􏼁x

5n− l2 + · · ·

+ ls + 1( 􏼁x
5n− ls +(4n − 2s + 2)x

5n− 1
.

(20)

By differentiating the above equation, we obtain

PI’ Hn, x( 􏼁 � l1 + 1( 􏼁 5n − l1( 􏼁x
5n− l1− 1

+ l2 + 1( 􏼁

· 5n − l2( 􏼁x
5n− l2− 1

+ · · · + ls + 1( 􏼁

· 5n − ls( 􏼁x
5n− ls− 1

+(4n − 2s + 2)(5n − 1)x
5n− 2

.

(21)

To compute the PI index of the quasi-hexagonal chain,
we evaluate its value at x � 1:

PI’ Hn, x( 􏼁
􏼌􏼌􏼌􏼌x�1 � l1 + 1( 􏼁 5n − l1( 􏼁 + l2 + 1( 􏼁 5n − l2( 􏼁 + · · ·

+ ls + 1( 􏼁 5n − ls( 􏼁 +(4n − 2s + 2)(5n − 1),

PI’ Hn, x( 􏼁
􏼌􏼌􏼌􏼌x�1 � (5n − 1) 􏽘

s

i�1
li − 􏽘

s

1
l
2
i +(5n − 1)(4n − 2s + 2),

PI Hn( 􏼁 � (5n − 1)(n + s − 1) − 􏽘
s

1
l
2
i +(5n − 1)

· (4n − 2s + 2),

(22)

where we have 􏽐
s
1 li � n + 1 − s. *en,

PI Hn( 􏼁 � (5n − 1)(n + s − 1 + 4n − 2s + 2) − 􏽘
s

1
l
2
i . (23)

By simplifying, we get the PI index of Hn which is
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PI Hn( 􏼁 � (5n − 1)(5n − s + 1) − 􏽘

s

1
l
2
i . (24)

□

2.2. Relation between the PI Index of the Linear Hexagonal
Chain Ln andQuasi-Hexagonal ChainHn. Let Ln denote the
linear hexagonal chain as depicted in Figure 3. Quasi-or-
thogonal cuts and number of edges in these cuts are de-
scribed in Table 2.

*e following theorem gives the Padmakar–Ivan (PI)
index of the linear hexagonal chain.

Theorem 4. Consider the graph of linear hexagonal chain
Ln . 2en, its PI Index is given by

PI Ln( 􏼁
􏼌􏼌􏼌􏼌x�1 � 24n

2
. (25)

Proof. Let G be a graph of the linear hexagonal chain Ln. We
employ Table 2 to prove the theorem. We apply formula and
do some computations to gain the solution. As we know by
definition, the PI Index is given by equation (6) as

PI Ln, x( 􏼁
􏼌􏼌􏼌􏼌x�1 � 􏽘

k

m Ln, k( 􏼁 × k × x
e− k

, (26)

Using Table 2,

PI Ln, x( 􏼁 � (n + 1)x
5n+1− (n+1)

+ 2n(2)x
5n+1− 2

� (n + 1)x
4n

+ 4nx
5n− 1

.
(27)

Differentiating with respect to x, we obtain

PI’ Ln, x( 􏼁 � (n + 1)4nx
4n− 1

+ 4n(5n − 1)x
5n− 2

. (28)

Substituting x � 1, we obtain the Padmakar–Ivan (PI)
index of the linear hexagonal chain:

PI Ln( 􏼁 � 24n
2
. (29)

□

Theorem 5. Consider a quasi-hexagonal chain (with n
hexagons) Hn, with L(G) � (l1, l2, . . . , ls), where Ln be the
corresponding linear hexagonal chain. 2en, PI(Hn) �

PI(Ln) + n2 − 􏽐
s
i�1 l2i + 100n − 100s2 − 100ns + 185s + 89.

Proof. From *eorem 3, we can easily see that

PI Hn( 􏼁 � (5n − 1)(5n − s + 1) − 􏽘
s

1
l
2
i ,

PI Hn( 􏼁 � 25n
2

− 5n + s − 1 − 􏽘
s

1
l
2
i .

(30)

□

Moreover, from *eorem 4, we have

PI Ln( 􏼁 � 24n
2
. (31)

Figure 3: Linear hexagonal chain L11.

Table 2: Number of codistant edges of the linear hexagonal chain Ln.

Types of edges Types of QOCs No. of QOCs No. of codistant edges
t1 m1 1 n + 1
t2 m2 2n 2

Table 3: Omega, Sadhana, and PI polynomials of the quasi-hexagonal chain for different values of n.

n (l1, l2, . . . , ls) Ω(Hn, x) S(Hn, x) PI(Hn, x)

1 1 (1) 3x2 2x4 6x4

2 1 (2) x3 + 3x2 3x9 + x8 8x9 + 3x8

3 1 (3) x4 + 6x2 5x14 + x12 12x14 + 4x12

2 (2, 1) 2x3 + 5x2 3x14 + 2x13 10x14 + 6x13

4 1 (4) x5 + 8x2 7x19 + x16 16x19 + 5x16

2 (3, 2) x4 + x3 + 7x2 3x19 + x18 + x17 14x19 + 3x18 + 4x17

3 (2, 2, 2) 6x3 + 6x2 3x19 + 3x18 12x19 + 9x18

5 1 (5) 11x2 10x24 + x20 20x24 + 6x20

2 (4, 2) x4 + x3 + 9x2 7x24 + x23 + x21 18x24 + 3x23 + 5x21

3 (3, 2, 2) x4 + 2x3 + 8x2 5x24 + 2x23 + x22 16x24 + 6x23 + x22

4 (2, 2, 2, 2) 4x3 + 7x2 3x24 + 4x23 14x24 + 12x23

6 1 (6) x7 + 12x2 11x29 + x24 20x29 + 6x20

2 (5, 2) x6 + x3 + 11x2 9x29 + x28 + x25 22x29 + 3x28 + 6x25

3 (4, 2, 2) x5 + 2x3 + 10x2 7x29 + 2x28 + x26 20x29 + 6x28 + x26

4 (3, 2, 2, 2) x4 + 3x3 + 9x2 5x29 + 3x28 + x27 18x29 + 9x28 + 4x27
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Comparing (30) and (31), we get the desired relation
between the PI index of the two chains:

PI Hn( 􏼁 � PI Ln( 􏼁 + 24n
2

− 5n + s − 1 − 􏽘
s

1
l
2
i . (32)

Counting polynomials of the quasi-hexagonal chain Hn

are analysed for different values of n, and the results are
summarized in Table 3.

3. Concluding Remarks

Counting polynomials provide an elegant way to encode the
topological indices of chemical graphs, which are quantifiers
of different physiochemical properties of the compounds
and are widely used in structure activity relationships.
Distance-based counting polynomials, namely, Omega,
Sadhana, and PI polynomials of the quasi-hexagonal ben-
zenoid chain are computed via the edge-cut method of
Klavzar. Quasi-hexagonal benzenoid chains are an abstract
idea to present a wide class of aromatic hydrocarbons. *ese
polynomials are well-known tools for correlating the
chemical graph with the physiochemical properties of dif-
ferent benzenoid chains. Moreover, the numerical invariant
of the linear hexagonal chain (of benzenoid systems) is
derived and its relation with that of the quasi-hexagonal
chain is established.
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