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.e chemical method for the determination of the resistant starch (RS) content in grains is time-consuming and labor intensive.
Near-infrared (NIR) and attenuated total reflectance mid-infrared (ATR-MIR) spectroscopy are rapid and nondestructive
analytical techniques for determining grain quality. .is study was the first report to establish and compare these two spec-
troscopic techniques for determining the RS content in wheat grains. Calibration models with four preprocessing techniques
based on the partial least squares (PLS) algorithm were built. In the NIR technique, the mean normalization + Savitzky–Golay
smoothing (MN+SGS) preprocessing technique had a higher coefficient of determination (R2

c � 0.672; R2
p � 0.552) and a relative

lower root mean square error value (RMSEC� 0.385; RMSEP� 0.459). In the ATR-MIR technique, the baseline preprocessing
method exhibited a better performance regarding to the values of coefficient of determination (R2

c � 0.927; R2
p � 0.828) and mean

square error value (RMSEC� 0.153; RMSEP� 0.284). .e validation of the developed best NIR and ATR-MIR calibration models
showed that the ATR-MIR best calibration model has a better RS prediction ability than the NIR best calibration model. Two high
grain RS content wheat mutants were screened out by the ATR-MIR best calibration model from the wheat mutant library. .ere
was no significant difference between the predicted values and chemical measured values in the two high RS content mutants. It
proved that the ATR-MIR model can be a perfect substitute in RS measuring. All the results indicated that the ATR-MIR
spectroscopy with improved screening efficiency can be used as a fast, rapid, and nondestructive method in high grain RS content
wheat breeding.

1. Introduction

Resistant starch (RS) is the starch that cannot be converted
into glucose when passing through the healthy small in-
testine [1]. Owing to its indigestion, RS can increase satiety

and reduce calorie intake, which could reduce postprandial
blood glucose levels [2], regulate the intestinal metabolism
[3], reduce colon cancer risk [4], control bodyweight [5], and
absorb minerals [6]. Due to its benefits to human health, the
RS studies have attracted considerable attentions and
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promoted to be one of the important discoveries about the
relationship between carbohydrates and human health
[1, 2, 7]. It is also becoming a hot topic for function food
breeding [7–9].

Starch in grains is the major source of carbohydrates in
the human diet. .e improvement of the RS content in
grains is an important goal for breeding. A few high RS
content grain varieties, such as RS111 [10], the hulless barley
variety Himalaya 292 [11], and durum wheat [12], have been
released to the public. While, they still cannot satisfy the
growing demand. Induced mutagenesis and selection of
natural mutations are still the major approaches for the
breeding of high RS varieties [7, 13–17]. Currently, enzyme
hydrolysis and the chromogenic method are the commonly
used methods for RS measurement. .ese methods are
destructive, time-consuming, costly, and cumbersome, thus
delaying the process of research in RS [18]. A simple, fast,
and nondestructive method for screening mutants with
millions of mutants becomes vital for breeding.

Infrared spectroscopy, including near-infrared (NIR,
950–1650 nm) and attenuated total reflectance mid-infrared
(ATR-MIR, 525–4000 cm−1) spectroscopy, has been widely
used as a simple, fast, and reliable substitute to conventional
methods in discrimination of chemical composition [19–21].
MIR spectra can identify the fundamental vibrational ab-
sorption of functional groups in the mid-infrared region
(525–4000 cm−1), while the NIR spectra in the range of
950 nm and 1650 nm identify overtone information and
combinations of these vibrations [19–21]. .e NIR tech-
nique was adopted as an official method for the prediction of
crude proteins in wheat grains by the American Association
of Cereal Chemists (AACC) [22]. A model based on NIR
spectroscopy has been expanded to the investigation of the
amylose content [23], lipid content [24], water content [25],
and deoxynivalenol content in durum wheat [26] and for
monitoring the wheat gluten enzyme [27]. Meanwhile, the
MIR spectroscopy models have been used to analyze sugars
in barley [19, 28], ash and moisture content in soybean [24],
and proteins and lipids in different wheat varieties [29], as
well as to perform nitrate determination in paddy soil [30].

Wheat (Triticum aestivum L.) feeds about 40% of the
world’s population [31]. Wheat grains with the high RS
content could provide additional health benefits [8, 9, 31].
While, there is no spectroscopy model for determining the
content of RS in wheat grains yet. Furthermore, mutation
breeding is the major approach for the breeding of high RS
varieties [13–17]. However, there is still no simple, fast, and
nondestructive method for screening high RS mutants in
breeding.

.e aims of this study are to develop a simple, fast,
nondestructive method for the determination of the RS
content in wheat grains by using NIR and ATR-MIR
spectroscopy and to apply the developed spectral methods to
screen the high grain RS content wheat mutants.

2. Materials and Methods

2.1. Samples. Based on the rule of the range of the RS content
in the calibration set should cover those in the validation set,

a total of sixty-four (n� 64) wheat accessions were randomly
divided into a calibration set (fifty-one wheat samples, Ta-
ble 1) and a validation set (thirteen wheat samples, Table 2)
in a ratio of 4 :1. .e calibration set and the validation set
were used to develop and validate the best calibration model
for the prediction of the RS content in wheat grains by NIR
and ATR-MIR approaches.

.eM5 generation wheat mutant library, including 1010
mutant lines, was used to screen the high RS content mutant
lines with the best calibration model from the above results.
.e mutants originated from wheat accession YUW-1-207
and were irradiated by a 50Gy 7Li ion beam.

All wheat materials were grown at Yangtze University
field stations in 2017-2018. .e field trial experiments were
arranged randomized with three replications for each ac-
cession. Each replicate was designed 1.2m long and 0.85m
wide. .e seeding density was kept 30 per row. Fertilization,
pest, and disease control were performed on a regular basis.
.e analysis was only based on the plants in the middle row.

2.2. Chemical Measured RS Content. Whole grain flour was
prepared from each sample by grinding in a pulveriser
(Perten Laboratory Mill 3100), which was fitted with a
0.8mm screen. .e RS content (the amount of RS as a
percentage of whole grain) was measured for 100mg whole
grain flour using a resistant starch assay kit (K-RSTAR,
Megazyme Co., Wicklow, Ireland) following the manufac-
turer’s instructions. .e sample was treated with 10mg/mL
pancreatic a-amylase and 3U/mL amyloglucosidase (AMG)
enzymes for hydrolysis and solubilization of nonresistant
starch. After the enzymatic reaction was terminated by
adding a 50% ethanol solution, resistant starch was recov-
ered as a pellet by centrifugation (approx. 4000 r/min,
10min). Resistant starch in the pellet was dissolved in 2M
KOH before the reacted solution was repeatedly washed and
decanted. .en, starch in the solution was quantitatively
hydrolyzed to glucose with AMG. D-glucose was measured
with glucose oxidase/peroxidase (GOPOD) reagent at
510 nm wavelength against the reagent blank [29]. All
samples were measured with three replicates. .e standard
RS sample from the reagent kit was used as a control in each
round of reactions.

2.3. NIR and ATR-MIR Spectroscopy. NIR spectra were
collected in the range between 950 nm and 1650 nm using a
DA7200 spectrometer (Perten Instruments Inc., Sweden). In
the NIR method, approximately 4 g of wheat grains per
sample was scanned in triplicate in a small ring cup. Each
spectrum represented the average of 32 scans and was
recorded as log (1/R) at 2 nm increments.

MIR spectra were scanned based on a Nicolet iS5 Fourier
transform infrared spectrometer (.ermoFisher Scientific,
USA) with the iD7 attenuated total reflectance (ATR) ac-
cessory..e ATR-MIR spectra of each sample were obtained
by taking the means of 16 scans at a resolution of 4 cm−1, in
the range between 525 and 4000 cm−1, with a background of
16 scans. .e air was recorded as a reference background
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spectrum. .e ATR crystal was carefully cleaned with eth-
anol after each sample measurement.

2.4. Data Analysis. .e NIR and ATR-MIR spectra were
uploaded to Unscrambler 9.7 software (CAMOCorporation,
USA) for chemometric analysis. .e models for the cali-
bration between the measured values and the infrared

spectra were established using partial least squares (PLS)
regression with full cross-validation. .e quality of the
models was assessed by the determination coefficient of
calibration (R2

c), the determination coefficient of prediction
(R2

p), the root mean square error of calibration (RMSEC),
and the root mean square error of prediction (RMSEP) [32].
Moreover, the residual predictive deviation (RPD), a sta-
tistical parameter defined as the ratio of the standard de-
viation (SD) to the RMSEP [30, 32], was used to assess the
predictive ability of the calibration models.

.e preprocessing methods were used to eliminate the
interferences of background signal, random noise, and light
scattering from the spectra, which can be divided into the
scatter correction group and spectral derivatization group
[33, 34]. Four preprocessing methods including Gaussian
filter smoothing (GFS), multiplicative scatter correction
(MSC), baseline mean normalization (MN), and Savitz-
ky–Golay smoothing (SGS) were used to transform the NIR
and ATR-MIR spectra before calibration to eliminate in-
terference noise such as baseline drift, tilt and reverse, and
light scattering [35, 36]. .e MN, baseline, and MSC pre-
processing methods belonged to the scatter correction
group, and the SGS and GFS belong to the spectral deriv-
atization group..e developedmodel, with the highest value
of determination coefficient, the lowest value of root mean
square error (RMSE), and the highest value of RPD, was
chosen as the best calibration model.

3. Results

3.1. Chemical Measured Wheat Grain RS Content. .e RS
content in whole wheat grain flour samples was measured by
the AOACmethod in the calibration set ranged from 0.220%
to 3.348% with the mean content 1.011% (Table 1); while the
RS content in the validation set ranged from 0.267% to
2.842% with the mean content 1.285% (Table 2). .e
standard deviation (SD) in the calibration set and validation
set is 0.679 and 0.697, respectively. .e coefficient of vari-
ation (CV) in the calibration set and validation set is
67.086% and 53.846%, respectively. A wide distribution of
the wheat grain RS content was observed in the calibration
set and validation set.

3.2. Development of NIR and ART-MIR Prediction Models.
.e ATR-MIR spectrum (525–4000 cm−1) (Figure 1(a))
region has strong absorption peaks and belongs to the
fundamental molecular vibration modes. .e peaks between
3600 and 3000 cm−1 were assigned to hydrogen bonded
water (O-H stretching vibration). .e weak band detected at
1652 cm−1 was responsible for C�O vibration of the
decarboxylated groups. .e region between 1200 and
950 cm−1 was attributed to the O-C stretch vibrations of the
glucose ring [37, 38]. 1146 cm−1 and 1047 cm−1 are the
stretching vibrations linked to the primary and secondary
alcohol hydroxyl groups in glucose, and 1002 cm−1 is the
C-O stretching vibration of the pyranose ring. C-O-H, C-C-
H, and O-C-H bending of the anomeric configuration of
carbohydrates occurred between 750 and 950 cm−1 [39, 40].

Table 1: Wheat samples in the calibration set and the grain RS
content measured by the chemical method.

Wheat samples Grain RS content (%)
Shannong7859 0.220± 0.013
Karagan 0.242± 0.011
Baiqimai 0.288± 0.013
Fan6 0.308± 0.018
Mace 0.373± 0.020
Fretes-3 0.395± 0.021
Mazhamai 0.417± 0.025
Dabaimai 0.474± 0.022
Ganmai8hao 0.491± 0.025
Huaimai16 0.504± 0.032
Zhongyou16 0.536± 0.031
Youzimai 0.541± 0.032
Lumai1hao 0.549± 0.033
Honglidangnianlao 0.562± 0.034
Sumai3hao 0.597± 0.041
Xinmai19 0.606± 0.043
Jinmai2148 0.642± 0.042
Mingxian169 0.648± 0.045
Yanzhan4110 0.718± 0.056
Jinan2hao 0.721± 0.053
Jinan17hao 0.741± 0.052
Jinan13 0.750± 0.054
Geerhongmai 1.677± 0.084
Zijiehong 2.177± 0.103
Shuilizhan 2.238± 0.152
Muzongzhuoga 2.399± 0.112
Shite14 0.758± 0.052
Kord CL Plus 0.758± 0.055
Xuzhou21 0.761± 0.061
Sankecun 0.780± 0.063
Zheng6fu 0.793± 0.062
Diyouzao 0.847± 0.065
N553 0.892± 0.061
Kopara 73 0.910± 0.062
Honghuamai 0.919± 0.076
Yunmai34 0.938± 0.075
Miannong4hao 1.008± 0.075
Meiqianwu 1.046± 0.073
Jinmai8hao (Jinzhong849) 1.082± 0.076
Ningmai9hao 1.091± 0.071
Wenmai6hao (Yumai49) 1.119± 0.078
Jiahongmai 1.139± 0.071
AUS 19399 1.200± 0.072
Liuyuehong 1.232± 0.083
Jiangmai 1.379± 0.083
Huzhuhong 1.487± 0.083
Zang2726 1.533± 0.086
Honghuazao 1.615± 0.083
Heshangmai 2.548± 0.107
Wujiangzhuo 2.601± 0.155
Baihuamai 3.348± 0.167
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For the NIR spectra (950–1650 nm) (Figure 1(b)), two peaks
were observed; the weak intensity was found round 1200 nm,
and the intense peak was found around 1500 nm. .e ab-
sorption around 1215 nm and 1483 nm was, respectively,
reported to be related to the stretching of C-H and N-H [41].

.e collected ATR-MIR and NIR spectra from the
calibration set were used to develop calibration models
through PLS regression with full cross-validation. For the
NIR spectra, the model with MN+SGS preprocessing had
the highest R2

c and RPD, which were 0.672 and 1.464, re-
spectively. At the same time, RMSE in this model reached as
low as 0.459 (Table 3). .e MN+ SGS preprocessing was
chosen as the best calibration model for the NIR spec-
troscopy. For the ATR-MIR spectra, the baseline pre-
processing method was chosen as the best calibration model
with R2

c , RPD, and RMSE 0.937, 2.391, and 0.284, respec-
tively (Table 3).

Meanwhile, a much better correlation of the chemical
determined values and the predicted values was observed in
the ATR-MIR spectroscopy model (Figure 2(a)) than in the
NIR spectroscopy model (Figure 2(b)). .e correlation
between predicted values and real values in the ATR-MIR
model was 0.937, while the value in the NIR model was
0.672..e results showed the ATR-MIR spectroscopy model
may have a better performance in the prediction of the RS
content in wheat grains than the NIR spectroscopy model.

3.3. Validation ofNIRandATR-MIRBest CalibrationModels.
To verify the accuracy and repeatability of models with the
best preprocessing techniques in two spectroscopies, vali-
dation was performed in the validation set. .e experi-
mentally determined RS values, the predicted RS values, and
the calculated relative error (measurement/prediction value)
are given in Table 2. For the NIR calibration model with the
MN+SGS preprocessing, the relative error ranged from
17.143% to 121.348%, with a mean relative error of 34.028%.
For the ATR-MIR calibration model with the baseline
preprocessing method, the relative error ranged from
2.931% to 31.220%, with a mean relative error of 15.832%. A

linear regression analysis was performed between the
measured value and the value predicted by the ATR-MIR
model (R2 � 0.919) (Figure 3(a)) and the NIR model
(R2 � 0.773) (Figure 3(b)). .e results confirmed that the
ATR-MIR spectroscopy provided a better performance than
NIR spectroscopy for the prediction of the RS content in
wheat grains.

3.4. Screen ofHighRSWheatMutants by theATR-MIRModel.
To check the application of the developed ATR-MITmodel,
the best ATR-MIR calibration model with baseline pre-
processing was promoted to predict the grain RS content of
1010 wheat mutants (Figure 4). .e predicted RS content of
1010 wheat mutants ranged from 0.101± 0.018% to
2.553± 0.311%. Two lines with YUW-RSH1
(2.553± 0.311%) and YUW-RSH2 (2.116± 0.230%) highest
RS content were identified (Table 4). At the same time, the
RS content was also validated by the chemical method. .e
chemical determined RS content in YUW-RSH1 and YUW-
RSH2 was 2.572± 0.090% and 2.126± 0.071%, respectively
(Table 4). .ere was no significant difference between the
predicted values and chemical determined values. .e re-
sults showed that ATR-MIR spectroscopy can be an effective
way to screen and identify high grain RS content materials
for wheat breeding.

4. Discussion

4.1.ATR-MIRSpectroscopy Had a Better Performance for the
Prediction of the RS Content in Wheat Grains than NIR
Spectroscopy. .e MIR and NIR spectroscopies have be-
come the fastest growing and most compelling modern
quantitative analysis technologies for assessment of the
quality of both macronutrients and minor compounds in
agricultural products and food [21, 27, 42, 43]. In agri-
culture, protein, tannins, lipids, phytic acid, and most of
the amino acids were the commonly detected components
in crops [23, 27–29, 34]. In this study, a total of 64 wheat
samples were used to develop the ATR-MIR and NIR

Table 2:Wheat samples in the validation set and grain RS content determined by both the chemical method and the best ATR-MIR and NIR
calibration models.

Wheat samples
Grain RS content (%) Relative error (RE)∗

Chemical measured ATR-MIR predicted NIR predicted ATR-MIR RE NIR RE
Xiaokouhong 0.267± 0.011 0.332± 0.041 0.591± 0.085 24.345 121.348
Yu30691-1-3 0.615± 0.032 0.423± 0.032 0.834± 0.088 31.212 35.610
Hongpidongmai 0.784± 0.041 0.864± 0.065 1.019± 0.091 10.204 29.974
Tanori 0.887± 0.063 0.861± 0.073 0.661± 0.093 2.931 25.479
Hongpixiaomai 0.991± 0.068 1.160± 0.082 0.684± 0.082 17.053 30.979
PI94365 1.028± 0.065 0.998± 0.081 0.814± 0.091 2.918 20.817
Huadong6hao 1.172± 0.072 0.892± 0.093 0.937± 0.105 23.891 20.051
Tumangmai 1.230± 0.083 1.093± 0.101 1.506± 0.132 11.138 22.439
Mahon Demias 1.365± 0.085 1.216± 0.097 1.131± 0.139 10.916 17.143
Chixiaomai 1.508± 0.095 1.637± 0.105 1.054± 0.108 8.554 30.106
Baitiaoyu 1.725± 0.105 1.487± 0.127 1.398± 0.153 13.797 18.957
Mangxiaomai 2.288± 0.112 1.798± 0.153 1.587± 0.186 21.416 30.638
Lanhuamai 2.842± 0.117 2.200± 0.194 1.851± 0.225 22.590 34.870
∗RE, the ratio between the measured value minus the predicted value divided by the measured value.
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Table 3: Develop and screening for the best calibration model for resistant starch in wheat grain samples using ATR-MIR and NIR spectra.

Spectroscopy Preprocessing methods
Calibration Internal cross-validation

R2
c RMSEC R2

p RMSEP RPD

NIR

Original 0.641 0.403 0.482 0.493 1.363
MN 0.673 0.384 0.526 0.472 1.424

MN+MSC 0.671 0.385 0.523 0.474 1.418
MN+SGS 0.672 0.385 0.552 0.459 1.464

ATR-MIR

Original 0.922 0.188 0.804 0.303 2.218
Baseline 0.937 0.169 0.828 0.284 2.366

Baseline +GFS 0.935 0.171 0.826 0.286 2.35
Baseline + SGS 0.935 0.171 0.825 0.287 2.341

R2
c , determination coefficient of calibration; R2

p , determination coefficient of prediction; RMSEC, root mean square error of calibration; RMSEP, root mean
square error of prediction; RPD, residual predictive deviation; MN, mean normalization; MSC, multiplicative scatter correction; SGS, Savitzky–Golay
smoothing; GFS, Gaussian filter smoothing.
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Figure 1: ATR-MIR andNIR spectra of wheat grain samples obtained in this study. (a) ATR-MIR spectra obtained in the range between 525
and 4000 cm−1 without pretreatment. (b) NIR spectra obtained in the range between 950 and 1650 nm without pretreatment.
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calibration models for the prediction of the RS content in
wheat grains. Compared with previous studies, the
samples and the distribution of the wheat grain RS content
in this study have reached the requirements of infrared
basic modeling [20, 24, 42].

It is commonly accepted that regression models with
R2 above 0.91 are regarded as excellent, R2 � 0.82–0.9
indicated good predictive ability; R2 � 0.50–0.65 reveals
approximate quantitative performance [44]; and when
RPD was greater than 2, the models were considered
excellent, whereas values lower than 1.5 indicate not
enough for applications [45]. In our results, the best NIR
models showed an approximate quantitative performance
(R2

c � 0.672; R2
p � 0.552; RPD � 1.464), and the best MIR

model gave a good prediction performance (R2
c � 0.927;

R2
p � 0.828; RPD � 2.366). Overall, the ATR-MIR displayed a

better performance for the evaluation of the wheat grain RS
content.

Previous reports comparing the ATR-MIR and NIR
techniques for the measurement of chemical differences and
quantitative analysis of substances showed that the NIR and
MIR techniques have different prediction effects
[21, 24, 42, 46]. In soybean samples, the NIR technique was
suggested for the prediction of protein and lipid determi-
nation, while the MIR technique was suggested for ash and
moisture determination [24]. In rice samples, the NIR
technique and the MIR technique were the best predictors of
starch and protein, respectively [46]. In this study, we found
that the ATR-MIR spectroscopy had a better performance
for the prediction of the RS content in wheat grains than NIR
spectroscopy based on the PLS regression. Nowadays, the
recent developed deep learning and artificial intelligence
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Figure 3:.e external validation of the best ATR-MIR and NIRmodels. (a).e ATR-MIRmodel using the baseline preprocessing method.
(b) .e NIR model using the MN+SGS pretreatment method.
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Figure 2: Relation between the measured values and the predicted values for the grain resistance starch content by the calibration models
obtained by ATR-MIR and NIR. (a) .e calibration model obtained by ATR-MIR. (b) .e calibration model obtained by NIR.
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algorithm could be used to improve the stability and ro-
bustness of the spectral model, whichmay also become trend
of the future research [47].

4.2. Rapid RS Content Assessment Method for Wheat
Breeding. To date, mutation breeding is the major ap-
proach for the breeding of high RS varieties [7, 13–17].
Rapid quality assessment methods are taking an in-
creasing important role in breeding programs; this is
especially the case in mutation breeding. In this study, the
developed best calibration ATR-MIR model was used to
screen out 2 high resistance starch wheat mutants from
the mutant library. Comparing with the chemical methods
with 24 hours’ time cost for each sample, the total time for
the spectroscopic method just needs less than five minutes
per sample, which provided the possibility to screening
tens of thousands of breeding materials. .e spectroscopic
method could greatly improve the measurement efficiency
and provide a new approach for crop resistant starch
breeding and research.

5. Conclusion

MIR and NIR techniques were demonstrated to be useful for
the prediction of the RS content in wheat grains. .e ATR-
MIR technique provided a better predictive ability than the
NIR technique. .e total time required for the measurement

of each sample was less than 5 minutes, compared to ap-
proximately 20 hours required for the determination of the
RS content by chemical methods. In addition, we confirmed
that the use of ATR-MIR spectroscopy to assist in the
screening and identification of the wheat RS content was an
effective approach.
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Table 4: Verification of the best ATR-MIR calibration model screened high grain RS wheat mutants by the chemical measured method.

YUW-RSH1 YUW-RSH2
ATR-MIR predicted (%) Chemical measured (%) ATR-MIR predicted (%) Chemical measured (%)

Replication 1 2.623 2.487 2.378 2.121
Replication 2 2.245 2.66 1.945 2.199
Replication 3 2.791 2.569 2.025 2.058
Variance analysis 2.553± 0.311a 2.572± 0.090a 2.116± 0.230a 2.126± 0.071a

0 200

0.0

0.5

1.0

1.5

2.0

Mutant 1

mutants
CK (predicted)
CK (measured)

Mutant 2
2.5

400 600 800
Samples

RS
 co

nt
en

t (
%

)

1000 1200

Figure 4: Application of the best ATR-MIR model to screen the high grain RS content mutant lines from wheat mutant library.
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