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Sodium alginate (SA), polyvinyl oxide (PEO), and ceramic nanomaterials were used to prepare alginate composite gel.(e present
study examined the removal rate and adsorption capacity of alginate composite gel for removal of wastewater As(III), Pb(II), and
Zn(II). Batch experiments were conducted to study the influence of experimental parameters such as pH and temperature, as well
as the mechanism of As(III), Pb(II), and Zn(II) adsorption with the new adsorbent. (e results showed the high efficiency of
sodium alginate composite gel for removal of wastewater As(III), Pb(II), and Zn(II). Under the condition of the best liquid-solid
ratio and the contact time, the removal rates of As(III), Pb(II), and Zn(II) were 67.42%, 95.31%, and 93.96%, respectively. (e
pseudo-second-order kinetic equation was superior to fit the adsorption kinetics process. (e isothermal adsorption models of
As(III) and Pb(II) fitted well with the Freundlich model, and Zn(II) fitted well with the Langmuir model.(e results of SEM, EDS,
XPS, and FTIR analyses revealed that the adsorption process occurred mainly via chemisorption. (e results of the present study
suggest that new adsorbents can be effectively utilized for As(III), Pb(II), and Zn(II) removal from water.

1. Introduction

With the rapid development of industry in recent decades,
heavy metals have been discharging into the water bodies in
high quantities threatening water quality. Arsenic is the world’s
number one teratogenic carcinogenic toxin [1]. At drinking
water arsenic concentration of 50mg L−1, people are at risk to
various cancers such as liver cancer, bladder cancer, and skin
cancer [2]. Lead is also one of the most toxic heavy metals
which greatly reduce the activity of several proteins, amino
acids, enzymes, and other vital substances in human body. In
particular, children are vulnerable to lead poisoning as they
may suffer from loss of appetite, stomachache, constipation,
diarrhea, insomnia, and learning disabilities [3]. Although zinc
is a necessary trace element to promote human growth and
maintain health, in excessive amounts it might irritate the
digestive tract and affect nutrient absorption. Simultaneously,
high amount of zinc inhibits the role of copper and iron in
human body, resulting inmetabolic disorders.(erefore, it is of
major importance to remove these toxic elements from

wastewater, reducing their potential health risks to individuals.
At present, coagulation and precipitation, ion exchange, bio-
logical treatment, and adsorption are the most common
methods to remove heavy metals from water resources [4].
Compared with coagulation and precipitation, ion exchange,
and biological methods, adsorption method is a highly capable
and time-efficient technique with simple operation [5]. Dif-
ferent from traditional non-model adsorption materials, nat-
ural polymer adsorption materials not only have better
adsorption effects, but also have less impact on the environ-
ment [6–8]. Sodium alginate gel is a superior adsorbent for
wastewater heavy metals that combines sodium alginate [9, 10]
with other materials. Zeng et al. [11] used alginate and chitosan
to preparing a granular adsorbent for sludge containing iron/
manganese in an arsenic adsorption study. Lee et al. [12]
granulated CMD sludge (CMDS) into polyurethane to remove
arsenic/heavy metals. Lin et al. [13] prepared sodium alginate-
polyvinyl oxide gel spheres with high removal rates of Pb(II),
Cu(II), and Cd(II). Hu et al. [14] used the cross-linkingmethod
to prepare arylated cellulose nanocrystalline sodium alginate
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hydrogel microspheres with an adsorption rate of 76% for
Pb(II). Karthik et al. [15] studied the ability of Ca2+ cross-linked
sodium alginate beads to removeCr(VI) from aqueous solution
with a maximum adsorption capacity of 24.2mg g−1. Pan et al.
[16] and Wen et al. [17] modified sodium alginate to signifi-
cantly improve its adsorption capacity. When sodium alginate,
polyvinyl alcohol, and porous ceramic nanomaterials are used
for wastewater adsorption alone, the effect is unstable and the
removal rate is not high. (us, further investigation to prepare
and apply sodium alginate gel adsorbents with high adsorption
capacity and environmental friendliness is of great significance
for practical environmental remediation. In this paper, sodium
alginate, polyvinyl oxide, and porous ceramic nanomaterials
were combined to prepare a composite material with strong
adsorption effect for removal of wastewater As(III), Pb(II), and
Zn(II). (e efficacy of sodium alginate gel was explored in
relation to the properties of raw materials, solution pH,
temperature, reaction time, adsorbent dosage, solution con-
centration, and the adsorption mechanism.

2. Materials and Methods

2.1. Experimental Materials and Instruments. Sodium algi-
nate (SA) and polyvinyl oxide (PEO) were purchased from
Hefei Bomei Biological Technology Co., Ltd. Multi-void
ceramic nanomaterials were purchased from Wuhu Gefeng
Co., Ltd. As(III) stock solution was prepared from sodium
arsenite (NaAsO2, guaranteeing 99.9% reagent grade, Hubei
Hengjingrui Chemical Co., Ltd., Wuhan, China). Lead ni-
trate (Pb(NO3)2, Guaranteed Reagent Grade 99%, Aladdin
Co., Shanghai, China) was used to prepare Pb(II) stock
solution; Zn(II) stock solution was prepared from zinc ni-
trate hexahydrate (N2O6Zn·6H2O, Reagent Grade 99%,
Aladdin Corporation, Shanghai, China). All other reagents
(HCl, Ca(NO3)2·4H2O, HNO3, NH4OH, acetone, etc.) were
used without further purification.

Instruments were as follows: acidity meter (Starter 3100);
coolable thermostatic vibrating screen (IS-RDD3) for
temperature regulation and control; low-speed centrifuge
(SC-3610); inductively coupled plasma emission spec-
trometer (ICAP 7000 Series, (ermo Fisher, USA) used to
determine the concentrations of As(III), Pb(II), and Zn(II)
after adsorption; S-4800 scanning electron microscope
(SEM, Hitachi, Japan); in situ x-ray photoelectron spec-
troscopy (NEXSA,(ermo Fisher, USA); Fourier Transform
Infrared Spectrometer ((ermo Fisher, USA).

2.2. Experimental Methods

2.2.1. Synthesis of Composite Materials. 5 g sodium alginate,
2.5 g polyvinyl oxide, and 10 g porous ceramic nanomaterials
were mixed evenly, dissolved in 200ml ultrapure water, and
stirred uniformly. At room temperature (25°C), the mixed
solution was dropped into 1L Ca(NO3)2·3H2O solution
(0.3mol L−1) to prepare sodium alginate composite hydrogel
blocks, which were placed overnight to stabilize and con-
tinuously entered into 200ml acetone aqueous solution (8%,
v/v) for 24 h to complete solvent exchange.

2.2.2. Stock Solutions. Standard solution: sodium arsenite,
lead nitrate, and zinc nitrate hexahydrate were mixed with
pure water to prepare stock solutions of As(III), Pb(II), and
Zn(II) with a concentration of 200mg L−1. pH was adjusted
to 1∼10 using HCl and NH4OH.

2.2.3. Characterization of Materials. (e microstructure of
the materials before and after adsorption was observed by
SEM scanning electron microscopy; the changes of elements
before and after adsorption were detected by EDS electron
microscopy; the molecular structure and valence state of the
materials before and after adsorption were analyzed and
compared by XPS; and the surface functional groups were
measured by FTIR.

2.2.4. Batch Experiment. In this experiment, sodium algi-
nate gel was added at dosages of 1∼20 g; oscillation time of
the kinetics experiment was set at 30∼300min; initial
concentration isotherm adsorption experiments ranged
from 50 to 1000mg L−1; pH was adjusted to 1∼11; and the
temperature was adjusted to 15∼40°C. (e rotating speed
was 150 r/min and the vibration was 180min. (e obtained
solutions were centrifuged at 3000 R for 10min. After fil-
tration, the concentrations of residual As(III), Pb(II), and
Zn(II) in wastewater were determined by inductively cou-
pled plasma spectrometer. According to the concentration of
As(III), Pb(II), and Zn(II) in the residual wastewater after
equilibrium adsorption, the equilibrium adsorption amount
was calculated and the effects of various factors on the
adsorption of As(III), Pb(II), and Zn(II) by sodium alginate
composite gel were analyzed.

2.3. Calculation and Model. (e formulae used to calculate
adsorption capacity (1) and removal rate (2) are as follows:

q �
ρ − ρi( V

W
, (1)

U �
ρ − ρi( 100%

ρ
, (2)

where q is the adsorption capacity of sodium alginate mixed
gel for wastewater As(III), Pb(II), and Zn(II) (mg g−1); U is
the removal rate (%); ρ and ρi are the initial concentrations of
As(III), Pb(II), and Zn(II) in wastewater and the concen-
tration at equilibrium of adsorption, respectively (mg L−1);V
is the volume of solution (L); andW is that the weight of the
adsorbent (g).

(e pseudo-first-order kinetics model and pseudo-sec-
ond-order kinetics model were used for fitting calculation of
the adsorption kinetics model [18].

(e pseudo-first-order kinetics model is as follows:

Langmuirmodel � qt � qe 1 − exp −klt(  . (3)

(e pseudo-second-order kinetics model is as follows:
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qt �
q
2
ek2t

1 + qek2t
, (4)

where qt and qe, k are adsorption capacity at time t and
equilibrium time, kinetic constant, respectively. In the fitting
process, the model is judged by determination coefficient
(R2) and Chi-square value (ε2).

Langmuir and Freundlich models were adopted for
isothermal adsorption model [19].

Langmuirmodel �
ρi

q
�
ρi

qn

+
1

qnkl

, (5)

Freundlichmodel � lgq � lgke +
1
n
lgρi. (6)

Langmuir model dimensionless separation factor is as
follows:

RL �
1

1 + klρ
, (7)

where q denotes adsorption capacity (mg g−1); qn denotes the
maximum adsorption capacity (mg g−1); kl, ke, and n are the
adsorption constant; and RL indicates the properties of an
adsorption process [20].

3. Results and Discussion

3.1. SEM Analysis. Figure 1 shows SEM images before and
after the adsorption of As(III), Pb(II), and Zn(II) in waste
water by sodium alginate gel. As can be seen, the mor-
phology of sodium alginate gel before adsorption was mainly
acicular and rod-like with large gaps between materials.
After adsorption, the needle-like and rod-like structures
were significantly reduced with smaller gaps between the
materials. Herein, numerous spherical particles were filled
after the adsorption of metal ions. (ese observations and
analyses revealed that sodium alginate gel removes metal
ions through pore filling and adsorption on its inner surface.
Figure 1 also illustrates that the physical and chemical ad-
sorption reactions took place on the materials.

Figure 2 shows EDS photos before and after the ad-
sorption of As(III), Pb(II), and Zn(II) by sodium alginate gel.
Before adsorption, the alginate gel mainly composed of C, O,
and Si elements. While, the adsorption peaks of Pb and Zn
occurred after adsorption. Apparently, As adsorption was
not as significant as those of Pb and Zn.

3.2. XPS Analysis. Figure 3 shows As(3d) XPS high reso-
lution spectra of sodium alginate gel before and after ad-
sorption. After adsorption, there was no new peak of As(3d),
and the area of energy loss peak increased. As(3d) exists as
As(2S3) (at 44.18 eV, photoelectronic strength of 3960.68
Counts·s−1) and As(loss) (at 50.38 eV, Optoelectronic
strength 3669.54 Counts·s−1). As can be seen from the
existing peak area of As(3d), the content ratio of As(2S3)/
As(loss) was about 1 :1. It can be concluded that the ad-
sorption reaction of As is dominated by physical adsorption;
As is adsorbed on the surface of the gel; the redox site and the

adsorption acid site of the gel were reduced that, in turn,
inhibited the subsequent adsorption process of As and re-
duced the adsorption activity of the gel.

Figure 4 shows the Pb(4f) XPS high-resolution spectra of
sodium alginate gel before and after the adsorption of so-
dium alginate gel with lead nitrate solution. As can be seen, a
new peak of Pb(4f) appeared after adsorption. Pb(4f) exists
as Pb(4f5) (at 143.58 eV, photoelectron intensity 21617.6
Counts·s−1) and Pb(Ntv Ox) (at 138.68 eV, optoelectronic
strength 25628.4 Counts·s−1). It also revealed the formation
of intrinsic oxide of lead on the surface of the gel, suggesting
that the adsorption is dominated by chemisorption and
more stable.

Figure 5 shows the Zn(2p) XPS high-resolution spectra
of sodium alginate gel before and after adsorption with zinc
nitrate hexahydrate solution. A new peak of Zn(2p) occurred
after adsorption. Zn(2p) exists as Zn(2p1) (at 1044.78 eV,
optoelectronic strength 63308.3 Counts·s−1) and Zn(2p3) (at
1021.78 eV, optoelectronic Strength 78658.9 Counts·s−1).
(e peak area of Zn(2p) indicates that the content ratio of
Zn(2p1)/Zn(2p3) was about 4 ∶ 3. (is indicates the for-
mation of hydroxyl complexes of Zn on the surface of the gel
by chemisorption, which is more favorable for adsorption.

3.3. FTIRAnalysis. FTIR spectra before and after adsorption
are shown in Figure 6 and Table 1. (e stretching vibration
peak of −OH hydrogen bond between molecules is
3440.29 cm−1; the stretching vibration peak of −CH was
2924.10 cm−1; the stretching vibration peak of C�O on ar-
omatic group was 1617.18 cm−1; C−H bending vibration
(1465–1340 cm−1) was located at 1420.82 cm−1; the bending
vibration peak of C−O of alcohols and phenols was
1031.15 cm−1; C−H bending vibration absorption occurred
at 876 cm−1. Figure 6 shows that sodium alginate gel can
adsorb effectively As(III), Pb(II), and Zn(II), and that causes
the peak to change. Altogether, these results indicate that the
adsorption reaction is not a single physical or chemical
reaction.

3.4.KineticAdsorptionofAs(III), Pb(II), andZn(II) bySodium
Alginate Composite Gel. (e effects of time on the ad-
sorption of sodium alginate composite gel for As(III), Pb(II),
and Zn(II) are shown in Figure 7. (e adsorption time
reflects both the cost and the efficiency adsorption process
[21]. (e adsorption capacity of As(III), Pb(II), and Zn(II)
by sodium alginate composite gel increased with time. As
shown in Figure 7, the adsorption of As(III) by sodium
alginate composite gel increased rapidly between 0 and
50min, and slight increase happened in the amount of
adsorption after 150min; the adsorption capacity of sodium
alginate composite gel for Pb(II) increased rapidly between 0
and 120min, but it increased slightly after 120min; the
adsorption capacity of Zn(II) increased rapidly from 0 to
200min and followed by a fluctuation. Rapid adsorption
capacity of the metals at early stage of adsorption process is
due to the existence of vacant adsorption sites on the upper
surface of the adsorbent along with the greater interaction
between adsorbents. At the later stage of adsorption, the
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(a) (b)

(c) (d)

Figure 2: EDS photos of sodium alginate colloid before adsorption (a), after adsorption of As(III) (b), after adsorption of Pb(II) (c), and
after adsorption of Zn(II) (d).

(a) (b)

(c) (d)

Figure 1: Sodium alginate colloid is 50,000 times before adsorption (a), 50,000 times after adsorption of As(III) (b), 50,000 times after
adsorption of Pb(II) (c), and 50,000 times after adsorption of Zn(II) (d).
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Figure 3: As(3d) XPS analysis results of sodium alginate before (a) and after (b) As adsorption.
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Figure 4: Pb(4f ) XPS analysis results of sodium alginate before (a) and after (b) Pb adsorption.
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Figure 5: Zn(2p) XPS analysis results of sodium alginate before (a) and after (b) Zn adsorption.
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number of available adsorption sites on the adsorbent
surface decreased, and the metal ions gradually spread in-
ward until the saturation of active sites. (us, equilibrium
was reached and the adsorption rate decreased [22–25].

Adsorption kinetics model was used to fit the adsorption
data of composite gels at different times, and the fitting data
are summarized in Table 2. In accordance, the data of ad-
sorption of As(III), Pb(II), and Zn(II) by sodium alginate
composite gel were better fitted with the pseudo-second-
order kinetic model (R2> 0.9545) compared with the
pseudo-first-order kinetic model (R2< 0.9598). Our results
suggested that the adsorption process of As(III), Pb(II), and
Zn(II) by sodium alginate composite gel occurred mainly via
chemisorption.

3.5. Isothermal Adsorption of As(III), Pb(II), and Zn(II) by
Sodium Alginate Composite Gel. As shown in Figure 8, the
removal rate of As(III) increased and decreased at its so-
lution concentrations less than 100mg L−1 and 100–500mg
L−1, respectively. (e removal rate of As(III) decreased
slowly at its solution concentrations above 500mg L−1. (e
removal rate of Pb(II) decreased slowly and rapidly at its
solution concentration less than 400mg L−1 and
500–1000mg L−1, respectively. (e removal rate of Zn(II)

increased slowly and decreased rapidly at its solution con-
centrations of less than 200mg L−1 and between 200 and
1000mg L−1, respectively. (e adsorption capacity of
As(III), Pb(II), and Zn(II) by sodium alginate composite gel
to increased continuously with increasing their solution
concentrations. With the increase of the initial concentra-
tion of metal ions, the equilibrium adsorption capacity
increases at the same time. (e reason is that the gradually
increasing concentration of metal ions increases the chance
of collision between ions and gel and enhances the ad-
sorption effect [26].(e quality and number of active sites of
sodium alginate composite gel were fixed with the increase
of metal ion concentration; excessive metal ions tended to
block the available active sites, thus preventing the subse-
quent ions to enter the adsorptive active sites. (erefore, the
rate of adsorption capacity slowed down and the removal
rate decreased [27–30]. (is is consistent with the results of
Masoumi et al. [31].

Langmuir and Freundlich models were used to fit the
data of As(III), Pb(II), and Zn(II) (Table 3). In accordance
with it, the Langmuir model could better describe the ad-
sorption of Zn(II) by sodium alginate composite gel, and the
Freundlich model could better describe the adsorption of
As(III) and Pb(II). (e maximum adsorption capacities of
As(III), Pb(II), and Zn(II) by Langmuir isothermal
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Figure 6: FTIR spectra of sodium alginate gel before adsorption, after adsorption of As(III), Pb(II), and Zn(II).

Table 1: Position of the main peaks in FTIR spectra of sodium alginate gel before adsorption, after adsorption of As(III), Pb(II), and Zn(II).

Wavenumber before sodium alginate gel adsorption (cm−1)
Wavenumber after sodium

alginate gel adsorption (cm−1) Assignment
As(III) Pb(II) Zn(II)

3440 3440 3443 3439 −OH stretching vibration
2924 2922 2922 2922 −CH stretching vibration
1617 1637 1638 1628 C�O stretching vibration
1420 1420 1420 1420 C−H bending vibration
1031 1027 1027 1027 C−O stretching vibration
876 876 877 877 C−H bending vibration
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adsorption model were 3.26, 11.723, and 1.607mg g−1, re-
spectively. Our results also indicated that sodium alginate
composite gel removed Zn(II) via monolayer adsorption,
As(III) and Pb(II) via multilayer adsorption. In Langmuir
isothermal adsorption model, the RL values of As(III),
Pb(II), and Zn(II) by sodium alginate composite gel were
less than 1, indicating that sodium alginate composite gel is
favorable for the adsorption of As(III), Pb(II), and Zn(II).

3.6. Impact of Temperature on the Adsorption of As(III),
Pb(II), and Zn(II) by Sodium Alginate Composite Gel. (e
adsorption effects of sodium alginate composite gel on
As(III), Pb(II), and Zn(II) in relation to the different tem-
peratures are shown in Figure 9. Apparently, temperature is
an important parameter to adsorbmetal ions, affecting solid-
liquid interface, swelling property of adsorbent, and fluidity
of metal ions [21]. (e present study set the temperature to
20, 25, 30, 35, 40, and 45°C. We found that with the in-
creasing the temperature the adsorption capacity of sodium
alginate composite gel on metal ions increased gradually,
indicating an endothermic reaction between the adsorbent
and the metal ions. At temperatures above 25°C, the ad-
sorption capacity of Pb(II) and Zn(II) increased slightly,
while that of As(III) experienced slight changed at tem-
perature above 35°C. A possible explanation is that an in-
crease in temperature promotes the migration and diffusion
of metal ions in the solution [32]. Correspondingly, this
increases the kinetic energy and promotes the diffusion of
metal ions to the adsorbent. Similar results were observed for
the adsorption of metal ions by other adsorbent materials
[33–35].

3.7. Impact of Adsorbent Dosage on the Adsorption of As(III),
Pb(II), and Zn(II) by Sodium Alginate Composite Gel. (e
adsorption effects of different doses of sodium alginate
composite gel on As(III), Pb(II), and Zn(II) are shown in
Figure 10. Sodium alginate gel material was added to 50mL
of wastewater at a concentration of 200mg L−1. Accordingly,
the removal rate of As(III), Pb(II), and Zn(II) increased with
increasing the amount of sodium alginate gel, the amount of
adsorption decreased accordingly. (e removal rate of
wastewater As(III) tended to be flat at sodium alginate
composite gel dosage of 20 g. At adsorbent mass of 4 g,
negligible changes occurred in the removal rate of Pb(II). At
the adsorbent mass between 2 g and 12 g, rapid increases
occurred in the removal rate of wastewater Zn(II) followed
by a slight increase. (e slow removal efficiency observed at
low sorbent dosage might be attributed to the presence of a
limited number of active adsorbent sites [36]. However, the
amount of adsorption reduced with increasing the mass of
adsorbents. (is might be justified by the fact all adsorbent
sites were not occupied. Similar results were observed for the
removal of metal ions via chitosan-tripolyphosphate beads
[37].

3.8. Impact of Solution pH on the Adsorption of As(III), Pb(II),
and Zn(II) by Sodium Alginate Composite Gel. Figure 11
shows the adsorption efficacy of solution sodium alginate
composite gel for As(III), Pb(II), and Zn(II) at different pH
values. (e solution pH for As(III), Pb(II), and Zn(II)
ranged from 1–6, 1–7, and 1–7, respectively. At solution
pH> 7, flocculent material precipitate was generated in
As(III), Pb(II), and Zn(II) solutions. Hence, this experiment
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Figure 7: Influence of sodium alginate composite gel on the adsorption time of As(III), Pb(II), and Zn(II).

Table 2: Fitting parameters of three kinetic models for As(III), Pb(II), and Zn(II) adsorption by sodium alginate composite gel.

Parameters As(III) Pb(II) Zn(II)

Pseudo-first-order kinetic model

qe (mg g−1) 0.3440 1.6225 0.4936
k1 (min−1) 0.1025 0.0690 0.0008

ε2 0.0001 0.0013 0.0031
R2 0.9567 0.7707 0.9598

Pseudo-second-order kinetic model

qe (mg g−1) 0.3514 1.6569 0.5252
k2 (min−1) 0.0097 0.0156 0.0957

ε2 0.0001 0.0003 0.0001
R2 0.9874 0.9545 0.9841
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set the maximum pH value at 7. At solution pH< 4, As(III)
adsorption increased and reached its peak at solution pH of
5. At solution pH of 5–6, gradual decreases occurred in the
adsorption rate. At solution pH> 6, rapid decreases were

found in the adsorption rate, because in the form of H3AsO3,
As(III) is electrically neutral. Hence, it was less affected by
solution pH between 1 and 6 [38]. At solution pH 1–5, Pb(II)
adsorption capacity increased slowly and reached its peak
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Figure 8: Isothermal adsorption of As(III), Pb(II), and Zn(II) by sodium alginate composite gel.

Table 3: Fit parameters of three isothermal models for the adsorption of As(III), Pb(II), and Zn(II) by sodium alginate composite gel.

Langmuir model Freundlich model
qnmg·g−1 kl mg·l−1 R2 SE ke 1/n R2 SE

As(III) 3.260 0.001 0.580 15.963 100.786 0.742 0.861 0.460
Pb(II) 11.723 0.019 0.817 1.548 1.076 0.356 0.870 0.902
Zn(II) 1.607 0.026 0.884 10.865 6.079 0.379 0.735 1.025
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Figure 9: Adsorption effects of sodium alginate composite gel on As(III), Pb(II), and Zn(II) at different temperatures.
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Figure 10: Adsorption effects of sodium alginate composite gel on As(III), Pb(II), and Zn(II) with different addition amounts.
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value at pH 5 and then decreased rapidly. (is is due to the
precipitation of lead ions at solution pH about 7. Rapid
increase took place in Zn(II) adsorption capacity at solution
pH 1–3, while a slight increase was observed in its adoption
at pH of 3–6. (e Zn(II) adsorption reached its peak at
solution pH of 6, and it decreased together with the gen-
eration of flocculants. At low solution pH, the amount of
metal adsorption amount was relatively small due to the high
concentration of H+ that competes with metal ions for
adsorption sites. In addition, H+ protonizes the surface of
the gel, causing the repulsion of heavy metal ions [39]. At
high solution pH, OH− form hydrative hydroxyl complexes
with metal ions, thus reducing the adsorption capacity [40].

3.9. Reusability of Sodium Alginate Composite Gel. To ex-
amine the reusability of sodium alginate gels, we conducted a
desorption experiment using 0.05mol·L−1 HNO3. As shown
in Figure 12, the sodium alginate gel still had 55%, 88%, and
85% adsorption rate of As(III), Pb(II), and Zn(II) after four
desorption experiments. (is validates the strong reusability

of sodium alginate colloids. (e decrease in the removal rate
may be due to the weight loss of the sodium alginate gel after
four desorption experiments [41].

4. Conclusions

(1) (e surface functional groups were determined by
SEM, EDS, XPS, and FTIR. (e experimental results
indicated that the adsorption of As(III), Pb(II), and
Zn(II) by sodium alginate composite gel took place
via both physical and chemical reactions.

(2) (e pseudo-second-order kinetic equation could
better explain the adsorption effect of sodium algi-
nate composite gel on As(III), Pb(II), and Zn(II).(e
Freundlich isothermal adsorption model could fit
well the adsorption mechanism of Pb(II) and Zn(II),
and the Langmuir model could better explain the
adsorption mechanism of As(III), suggesting that the
gel adsorption of As(III) was monolayer, and the
adsorptions of Pb(II) and Zn(II) were multilayer.
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Figure 11: Adsorption effects of sodium alginate composite gel on As(III), Pb(II), and Zn(II) at different pH values.
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Figure 12: (e removal efficiency of sodium alginate composite gel for wastewater As(III), Pb(II), and Zn(II) after four adsorption-
desorption cycles.
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(3) (e adsorption effect of sodium alginate composite
gel on As(III), Pb(II), and Zn(II) gradually increased
with increasing the temperature, oscillation time,
and adsorbent dosage and finally tended to be stable.
At solution pH of 6, sodium alginate composite gel
had a good adsorption effect on As(III), Pb(II), and
Zn(II).
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