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Asari Radix et Rhizoma (AR) is a widely-used Chinese herbal medicine containing multiple active lignans and rare nephrotoxic
components-aristolochic acids derivatives (AAs). However, the current quality control method carried out by Chinese Phar-
macopoeia has defects in trace AAs detection and insu�cient marker ingredients, which is unable to comprehensively evaluate the
e�cacy and safety of AR. To improve the quality control method of AR, a rapid, sensitive, and reliable chromatographic analytic
method based on ultra-high-performance liquid chromatography-triple quadrupole tandem mass spectrometry (UHPLC-QqQ-
MS) was established for the simultaneous analysis of multiple AAs and lignans in AR samples. Positive electrospray ionization
mode with multiple reaction monitoring (MRM) was applied for the detection of the eight analytes.�e method showed available
linearity (R2≥ 0.991), the limit of quanti�cation (2–5 ng/mL), precision (RSD <8.12%), and accuracy (89.78–112.16%). A total of 6
AAs and 2 lignans were quanti�ed for their content in 15 AR samples.�e content of AA-IVa, AA-VIIa, and aristololactam I (AL-
I) was much higher than the AA-I controlled by pharmacopoeia. Considering the potential toxicity of AAs, AA-IVa, AA-VIIa, and
AL-I should also be controlled in AR. A considerable amount of active sesamin was detected in AR, suggesting that it could be
added as a quality marker for the quality control of AR. �e newly developed analytical method could be applied for the fast
evaluation of toxic AA’s content and quality during quality control of AR or preparations containing AR.

1. Introduction

Asari Radix et Rhizoma (AR) is the roots and rhizomes of
Asarum heterotropoides Fr. Schmidt var. mandshuricum
(Maxim.) Kitag, Asarum sieboldii Miq. var. seoulense Nakai,
or Asarum sieboldii Miq. More than 40 kinds of traditional
Chinese patent medicines and prescriptions have used AR
for the treatment of cold, headache, toothache, runny nose,
rhinorrhea, rheumatism, and cough with phlegm retention.
In the existing quality control standards, asarinin and
aristolochic acid I were approved as indicating ingredients of

AR [1] due to their strong bioactivities [2] and potential
nephrotoxicity [3], separately.

As a plant of the Aristolochiaceae, the possible risk of
aristolochic acid nephropathy caused by herbal medicine
will naturally arouse vigilance. Aristolochic acid derivatives
(AAs) are the culprits of aristolochic acid nephropathy
reported since the late 20th century [4]. Plants containing
AAs such as Aristolochia debilis, Aristolochia manshuriensis,
Aristolochiae fangchi, and Aristolochia contorta were banned
and restricted for their medicinal use by the British Com-
mittee on the Safety of Medication and the U.S. Food and
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Drug Administration successively [5]. (e safety issue of
Chinese medicine containing AAs has become the focus of
attention in domestic and foreign medical circles at the
beginning of the 21st century. A recent study showed that
AAs are mainly distributed in the leaves and fruits of the
whole AR plant [6]. In addition, the content of AAs in some
AR of nonofficial species was significantly higher than that of
official species [7–10]. As a result, a variety of confusion,
residue of aboveground parts, or improper processing of
original plants may increase the risk of AR medication. (e
content of aristolochic acid (AA)-I in AR was limited to
0.001% by the Chinese pharmacopoeia in 2005. However,
recent studies have shown that AAs such as AA-II, AA-III,
AA-IVa, AA-VIIa, and aristololactam I (AL-I) possibly
existing in AR [11, 12] are also cytotoxic to renal tubular
epithelial cells as AA-I more or less [13–16].(e standards of
pharmacopoeia may neglect the toxicity of AAs other than
AA-I.

Asarinin and sesamin, the major ingredients pertaining
to the lignan phytochemical group in AR, have a variety of
pharmacological activities consistent with the efficacy of AR,
including antipyretic, antiinflammatory, and immunosup-
pressive effects [2, 17–23]. (e latest network pharmacology
research also shows that asarinin and sesaminmay be the key
active ingredients for AR to exert antiinflammatory and
analgesic effects. (ey play a critical role in evaluating the
quality of AR [24]. Nevertheless, only asarinin was selected
as the marker ingredient for the quality control of AR [1].
(e content of asarinin may not fully reflect the holistic
quality of AR. More marker ingredient candidates need to be
investigated for the improvement of quality control of AR.
(e chemical structures of lignans and AAs were shown in
Figure 1.

Until now, a variety of qualitative analyses and quan-
titative determination of AR components have been de-
veloped, including high-performance liquid
chromatography (HPLC) coupled to photodiode array de-
tection [25–29], fluorescent detection (FLD) [12, 30, 31], and
electrochemical detection [32]. (ese traditional analytical
methods often suffer from poor sensitivity or dependence on
chemical derivatization for the detection of trace AAs in AR
[33].(e liquid chromatography-tandemmass spectrometry
(LC-MS) method has been widely employed for the analysis
of AAs in AR plants or preparations due to the improved
sensitivity and high specificity [11, 28, 34, 35] that enabled
in-depth progress in qualitative analysis and quantitative
determination of various trace AAs in plants and products.
In the Chinese pharmacopoeia, the contents of AA-I and
asarinin in AR were analyzed by two separate HPLC
methods [1], which resulted in low throughput. Considering
the complexity of the herbal matrix, a highly selective
method is necessary to make a rapid analysis of various types
of ingredients available. (e application of ultra-high-per-
formance liquid chromatography-triple quadrupole tandem
mass spectrometry (UHPLC-QqQ-MS) can effectively avoid
the interference of overlapping peaks and give an extremely
low limit of detection and quantitation, which is suitable for
the simultaneous analysis of multiple compounds. MRM
monitoring mode can eliminate coelution interferences and

background noise, so as to improve the signal-to-noise ratio
(S/N) for some analytes. (e UHPLC column packed with
sub-2-um particles can significantly increase the theoretical
plate number that enables higher analytical efficiency [36].

Although the content of AAs in AR is negligible, con-
sumers can still purchase AR with uncertified sources from a
number of websites. Moreover, AR whole plants are ha-
bitually used in some districts, which contain higher AAs
than roots and rhizomes [6]. (ese uncertified ARs are likely
to be misidentified as or substituted for a certified AR, which
may lead to a potential risk of causing aristolochic acid
nephropathy. (erefore, in order to control the safety and
effectiveness of AR effectively, it is urgently needed to de-
velop a rapid and sensitive analytical method for the si-
multaneous determination of key quality control ingredients
in AR to make up for the shortcomings of the previous
quality control methods. Based on the importance of lignans
and AAs in the quality control of AR, a rapid and sensitive
UHPLC-QqQ-MS method was developed to simultaneously
determine AA-I, AA-II, AA-III, AA-IVa, AA-VIIa, AL-I,
asarinin, and sesamin in this paper.

2. Material and Methods

2.1.Chemicals andReagents. Reference standards AA-I, AA-
III, AA-IVa, and asarinin were purchased from Chengdu
Aifa Biotechnology Co., Ltd., AA-II, AA-VIIa, and AL-I
were purchased from Shanghai Hongyong Biotechnology
Co., Ltd., sesamin was purchased from Shanghai Yuanye
Biotechnology Co., Ltd. HPLC-grade methanol, acetonitrile,
and formic acid were purchased from Fisher Scientific Co.
(Santa Clara, CA, USA). Deionized water was purified using
aMilli-Q Academic Systemmade byMillipore Co. (Billerica,
MA, USA). All other chemicals were of analytical grade.
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Figure 1: Chemical structures of analytes in this study.
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2.2. Plant Materials. Samples of AR were collected from
Liaoning province or purchased from Bozhou Traditional
ChineseMedicineMarket.(eir supplementary information
was listed in Table 1. (ese materials were authenticated as
the dried roots and rhizomes of Asarum heterotropoides Fr.
Schmidt var. mandshuricum (Maxim.) Kitag authenticated
by Prof. Lihong Wu (Shanghai Standardization Research
Center for Traditional Chinese Medicine). (e voucher
specimens were deposited in the specimen room of the
Shanghai Standardization Research Center for Traditional
Chinese Medicine.

2.3. Instrumentation and Chromatographic Conditions.
(eUHPLC-QqQ-MS analysis was performed on an Agilent
1290-UHPLC system (Agilent Technologies, California,
USA) coupled with an Agilent 6410 Triple Quad liquid
chromatography-tandem mass spectrometry system (Agi-
lent Technologies Inc., Santa Clara, CA) at positive ionmode
as the quantitative analysis instrument. (e separation was
run on the ACQUITY UPLC BEH C18 column
(50mm× 2.1mm, id 1.7 μm) at 40°C. (e mobile phase
consisted of water containing 0.1% formic acid (A) and
acetonitrile (B) with gradient elution programmed as fol-
lows: 0–2min, 10%–45% B; 2–6min, 45%–60% B; 6-7min,
95% B; 7-8min, 10% B.(e flow rate was kept at 0.4mL/min,
and 5 µL of standard and sample solution were injected in
each run.

ESI-MS/MS conditions such as gas pressure 350°C, gas
flow 12 L/min, capillary 4000V, nebulizer pressure 45 psi,
and the optimized MS analytical parameters of eight
compounds were shown in Table 2. (e optimized MRM
parameters mainly relied on the absolute response of the
selected ion pair by changing the fragmentor and collision
energies. (e corresponding MRM chromatographic peaks
of sesamin and asarinin were identified by the injection of a
single standard separately.

2.4. Preparation of Standard Solutions. Eight standard stock
solutions (100 μg/mL for AAs, 1000 μg/mL for asarinin and
sesamin) were independently prepared by dissolving in an
appropriate amount of methanol and stored at −20°C. An
appropriate amount of standard stock solutions were mixed
and diluted by methanol to get a mixed standard stock
solution at a final concentration of 10 μg/mL for AAs and
100 μg/mL for asarinin and sesamin. (e working solutions
were prepared by the dilution of standard stock solutions to
obtain the required concentrations for the method valida-
tion (accuracy and precision, limit of detection and quan-
tification). (e calibration standard solutions of eight
concentration levels (5, 10, 20, 100, 200, 500, 750, and
1000 ng/mL for each AAs standard and 50, 100, 200, 1000,
2000, 5000, 7500, and 10000 ng/mL for asarinin and ses-
amin) were prepared by diluting the above stock solutions.
All these solutions were stored at 4°C in a refrigerator.

2.5. Sample Preparation. (e 0.5 g powdered crude drug
samples (65meshes, 0.230mm) were accurately weighed and

extracted by ultrasonic (500W, 40 kHz) with 15mL 70%
methanol for 45min. (e extract was cooled down to room
temperature and compensated by weight with 70% meth-
anol. (e solution was centrifuged at 3000 rpm for 5min,
then the supernatants were filtered with a 0.22 μm filter
membrane, with 1mL initially filtered filtrates discarded,
and an aliquot of each 5 µL was injected into the UHPLC
system for analysis.

2.6. Validation of the Method

2.6.1. Calibration Curves. Calibration curves were prepared
with the working solutions as described in Section 2.4 for
each validation run using external standard calibrations for
eight analytes with a weighted least square power regression
and then constructed by plotting the peak area versus the
concentration of each analyte.

2.6.2. Limit of Detection and of Quantitation. (e stock
solutions of eight reference compounds were diluted to a
range of 2–50 ng/mL. (e injection volume was 5 µL. (e
LOD was defined as the concentration for which the signal-
to-noise (S/N) of 10 was obtained.

2.6.3. Precision, Accuracy, Repeatability, Stability, and
Recovery. (e precisions were evaluated by the analysis of
six injections of working solutions at four concentrations,
that is, 5, 20, 100, and 750 ng/mL for each AAs standard and
50, 200, 1000, and 7500 ng/mL for asarinin and sesamin.(e
LLOQ of the assay was quantitated using accuracy within
20% bias of the nominal concentration and relative standard
deviation not exceeding 20%. Six different sample solutions
prepared from the same sample were analyzed to confirm the
repeatability of the developed method. (e stability of the
sample was tested by injecting the same amount of sample
preparation at 0, 2, 4, 6, 8, 10, 12, 16, 24, and 48 h stored in a
sample plate at 10°C. (e peak area of the stability samples
was substituted into the calibration curve to calculate the
concentration of the analytes. (e RSD value of the con-
centration of each analyte was then calculated to obtain the
stability and repeatability results. (e recovery was used to
evaluate the accuracy of the method. For the recovery
testing, approximately 0.5 g of the fine powder of sample no.
6 was accurately weighted, then accurate amounts of mixed
standards (about 50%, 100%, 150% of the amount in sample
no. 6, n� 3) were added to the herb. At last, the herb was
extracted and analyzed as described in Section 2.5. (e
recovery value was calculated by the following equation:
recovery (%) � (detected amount - original amount)/spiked
amount × 100%.

2.6.4. Data Analysis. All calibration and quantitation data
were processed with Agilent Technologies Mass Hunter
Workstation Quantitative Analysis software version B.05.00.
(e experimental data were expressed as the mean± SD.

(e significance analysis was processed by using
GraphPad Prism 5 software. Statistical analysis was
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performed by using ANOVA with p � 0.05 as the minimum
level of significance.

3. Results and Discussion

3.1. Optimization of MS/MS Condition. For optimization of
MS conditions, the full-scan MS method was used to ex-
amine the target analytes in positive ionization mode. All the
compounds were then determined, respectively, in direct
infusion mode to optimize a proper transition for the MS/
MS detection. (M+H)+, (M+NH4)+, and (M+H-H2O)+

were the basic protonated ions for eight analytes under
positive ion mode. Base peak with the highest response was
selected as precursor ion for AA-I, AA-II, AA-III, AA-VIIa,
AL-I, asarinin and sesamin, except for AA-Iva selected
(M+H-NO2)+ as precursor ion to distinguish from AA-
VIIa. (en, the conditions of multiple reaction monitoring
(MRM) determination, including fragmentor, collision en-
ergy, and cell accelerating voltage, were optimized according
to the highest sensitivity and specific ion pairs. (e MRM
transitions and parameters of sesquiterpene lactone com-
pounds are shown in Table 2.

3.2. Method Validation of UHPLC-MS/MS

3.2.1. Linearity, LOQ, Repeatability, and Stability. (e eight-
point calibration curves of eight analytes (AA-VIIa, AA-I,
AA-II, AA-III, AA-IVa, AL-I, sesamin, and asarinin)
showed available linearity ranging from 5 to 1000 ng/mL

(sesamin and asarinin ranging from 50 to 10000 ng/mL) by
analyzing standard working solutions at eight concentra-
tions, and the typical equations of the calibration curves are
shown in Table 3. All standard curves offered the correlation
coefficient (R2) ranging from 0.9912 to 0.9989 for eight
analytes within the linear ranges, indicating its feasibility for
quantification.

(e LOQ of each analyte (AA-VIIa, AA-I, AA-II, AA-III,
AA-IVa, AL-I, sesamin, asarinin) was 2, 2, 5, 5, 2, 2, 50, and
50 ng/mL, respectively, demonstrating the good sensitivity
of the established method.

Repeatability and sample stability were evaluated by the
relative standard deviation (RSD) values presented in Ta-
ble 4. (e experimental operation was repeatable for six
analytes (AA-II and AA-III were not detected in samples) in
six independently prepared samples with an RSD of less than
5.45%, and six investigated compounds in a newly prepared
AR sample were stable when kept in the autosampler (10°C)
for 48h with an RSD of less than 6.52%.

3.2.2. Accuracy and Precision. (e precision of eight ana-
lytes (AA-VIIa, AA-I, AA-II, AA-III, AA-IVa, AL-I, ses-
amin, and asarinin) at four levels was within 8.12%, and the
accuracy of the eight analytes ranged from 89.78% to
112.16%, which were within the acceptable limits. All data of
precision and accuracy were summarized in Table 4. (e
results demonstrated that the stability-indicating method
was reliable and accurate.

Table 1: List of batch no., collection date, provenance, and acquisition manner for plant samples investigated.

No. Batch no. Collection date Provenance Acquisition manner
1 20191003 2019.10.3 Xinbin county, Liaoning Gathered
2 20191004–1 2019.10.4 Xinbin county, Liaoning Gathered
3 20191004–2 2019.10.4 Xinbin county, Liaoning Gathered
4 20191004–3 2019.10.4 Xinbin county, Liaoning Gathered
5 20191004–4 2019.10.4 Xinbin county, Liaoning Gathered
6 20200111 2020.1.11 Xinbin county, Liaoning Purchased
7 20200407–2 2020.4.7 Huanren Manchu autonomous county, Liaoning Purchased
8 20200407–1 2020.4.7 Huoshan county, Anhui Purchased
9 20200407–6 2020.4.7 Fengcheng city, Liaoning Purchased
10 20200407–5 2020.4.7 Baishan city, Jilin Purchased
11 20200407–7 2020.4.7 Antu county, Jilin Purchased
12 20200407–3 2020.4.7 Xinbin county, Liaoning Purchased
13 20200407–8 2020.4.7 Anguo county, Hebei Purchased
14 20200409 2020.4.9 Bozhou traditional Chinese medicine market, Anhui Purchased
15 20200407–4 2020.4.7 Dandong city, Liaoning Purchased

Table 2: (e MS detection parameters of analytes.

Analytes Q1⟶Q3 (m/z) Fragmentor Collision energy (V) Cell accelerating voltage (CAV) Retention time (min)
AA-III 345.3⟶284.1 80 8 1 2.31
AA-VIIa 340.3⟶281.1 170 32 1 2.48
AA-IVa 312.3⟶297.2 170 27 1 2.48
AL-I 294.3⟶279.2 160 31 1 3.14
AA-II 329.2⟶268.3 80 8 1 3.16
AA-I 359.3⟶298.2 90 10 1 3.34
Sesamin 337.3⟶135.1 130 30 3 3.87
Asarinin 337.3⟶135.1 130 30 3 4.21
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3.2.3. Recovery. As summarized in Table 5, the extraction
recoveries of the six analytes in samples at three evaluated
concentrations were within the range of 81.58%–109.73%,
indicating good accuracy for eight analytes.

3.3. Determination of Analytes in Crude Drugs. Using the
developed UHPLC-QqQ-MS method, quantitation of AA-I,
AA-IVa, AA-VIIa, AL-I, asarinin, and sesamin in 15 batches
of AR samples was carried out. (e typical MRM chro-
matograms of standard solution and sample solution were
shown in Figure 2, in which the retention time of AA-VIIa,

AA-I, AA-II, AA-III, AA-IVa, AL-I, asarinin, and sesamin
were 2.477min, 3.336min, 3.155min, 2.306min, 2.479min,
3.141min, 4.21min, and 3.87min, respectively. As shown in
Figure 3, the quantitative determination results showed that
the average content of AA-VIIa, AA-I, AA-IVa, AL-I, ses-
amin, and asarinin in 15 batches of AR were 4.86, 0.64, 9.28,
12.06, 659.00, and 1507.04 μg/g, respectively. AA-II and AA-
III were not detected in any sample. (e total content of all
AAs detected was 26.83 μg/g on average. All AR samples
meet the standards of marker ingredient AA-I (≤0.001%,
10 μg/g) and asarinin (≥0.05%, 500 μg/g) in the Chinese
pharmacopoeia [1]. Among 15 herbal samples, the highest

Table 3: (e representative calibration curve, linear range, LOQs, stability, and repeatability of analytes (n� 3).

Compounds Calibration curve R 2 Linear range (ng/mL) LOQ (ng/mL) Stability (%) Repeatability (%)
AA-III y� 20.0228∗x^0.8467 0.9981 5–1000 5 n.d. n.d.
AA-VIIa y� 17.0538∗x^0.9483 0.9989 5–1000 2 1.18 5.68
AA-IVa y� 73.1555∗x^0.8450 0.9985 5–1000 2 1.76 3.03
AL-I y� 482.1083∗x^0.8731 0.9920 5–1000 2 2.01 2.72
AA-II y� 10.4508∗x^0.8604 0.9986 5–1000 5 n.d. n.d.
AA-I y� 43.3606∗x^0.9850 0.9956 5–1000 2 5.45 6.52
Sesamin y� 7.6321∗x^0.9139 0.9942 50–10000 50 2.27 4.08
Asarinin y� 18.8808∗x^0.8728 0.9912 50–10000 50 2.64 3.81
n.d., means not detected in samples.

Table 4: (e precision and accuracy of the analytes (n� 6).

Compound Expected conc. (ng/mL) Calculated conc. (ng/mL) RSD% Accuracy%

AA-III

5.00 4.99 4.84 99.82
20.00 20.45 8.12 102.27
100.00 102.66 3.78 102.66
750.00 712.39 3.88 94.99

AA-VIIa

5.00 4.81 2.60 96.20
20.00 19.11 5.97 95.53
100.00 100.70 2.17 100.70
750.00 729.75 3.00 97.30

AA-Iva

5.00 4.90 3.43 98.02
20.00 20.33 3.55 101.67
100.00 104.33 2.75 104.33
750.00 703.47 2.77 93.80

AL-I

5.00 5.27 1.65 105.39
20.00 20.20 4.23 101.00
100.00 97.13 2.01 97.13
750.00 721.62 3.63 96.22

AA-II

5.00 5.28 7.88 105.52
20.00 19.46 6.11 97.32
100.00 96.61 3.12 96.61
750.00 760.87 4.96 101.45

AA-I

5.00 5.24 6.47 104.76
20.00 19.42 3.10 97.08
100.00 89.78 2.52 89.78
750.00 782.71 4.73 104.36

Sesamin

50.00 46.80 3.44 93.61
200.00 206.56 2.98 103.28
1000.00 1101.68 1.72 110.17
7500.00 6932.16 2.36 92.43

Asarinin

50.00 45.09 1.92 90.18
200.00 220.18 2.13 110.09
1000.00 1121.56 2.12 112.16
7500.00 6867.46 2.08 91.57
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content of AA-I is 1.96 μg/g, which is far below the upper
limit of 10 μg/g.(e lowest content of asarinin is 995.88 μg/g,
which is about twice the folds of the lower limit. Among
other AAs derivatives, a considerable amount of AA-VIIa,
AA-IVa, and AL-I were detected in all AR samples and
showed a higher content than AA-I (0.64 μg/g), with an
average content of 4.86, 9.28, and 12.06 μg/g, respectively. At
the same time, a considerable amount of sesamin with an
average content of 659.00 μg/g was found. (e obtained
results provided a reference for the profile of the lignans and
AAs presented in AR, which would be beneficial for quality
control of AR in the future.

For the analysis of AAs, researchers focus on developing
FLD [37] or MS [30] detectors with a precolumn derivati-
zation method to improve the detection sensitivity (such as

the limit for detection for AA-I can reach 0.02–0.73 ng/mL).
When considering the universality of analysis methods for
drugs, fewer pretreatment steps and shorter analysis time
should be taken into account. (e current analytical method
keeps the limit of quantification of six AAs at a relatively low
level (2–5 ng/mL), which not only simplifies the pretreat-
ment steps but also has adequate sensitivity to meet the
demands of AR quality control. In addition, the method can
quantitatively determine the active ingredients asarinin and
sesamin simultaneously, which are the key quality control
ingredients in AR. In comparison to an analysis of the
comprehensive characterization of 22 AR components by
using ultra-high-performance liquid chromatography-time
of flight/mass spectrometry (UHPLC-QTOF/MS) [10], the
current method aims at most concerning toxic AAs and

Table 5: (e recovery result of the analytes (n� 3).

Compounds
Recovery-50% Recovery-100% Recovery-150%

Average (%) RSD (%) Average (%) RSD (%) Average (%) RSD (%)
AA-VIIa 85.41 4.78 82.46 5.21 81.58 8.62
AA-IVa 97.74 3.59 97.13 3.89 96.82 5.47
AL-I 109.73 8.40 103.64 9.50 101.10 9.98
AA-I 93.06 5.83 93.87 6.86 96.08 6.76
Sesamin 102.58 5.77 99.53 1.71 96.63 1.71
Asarinin 96.52 8.93 89.43 0.19 85.56 2.31
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Figure 2: Liquid chromatogram of analytes in MRM mode. (a) MRM of mixed standards and (b) MRM of AR extract sample.
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representative active lignans in quality control. (e analysis
time for a single sample was shortened from 25 minutes to 8
minutes, which greatly improved the analysis efficiency.

With regards to the toxicity of AAs derivatives, early
reports have believed that AA-I and AA-II are the major
toxic components among AAs [38–40]. According to pre-
vious studies, AA-I has shown the most toxicity among AAs
derivatives to renal epithelial cell lines in vitro [40]. AA-IVa
is less toxic to P388 cell lines and Salmonella strains and
nontoxic to LLC-PK1 cells [40]. AL-I is toxic to P388 and
human epidermoid cancer cells [41], yet proved to be
nontoxic in LLC-PK1 cells [40]. In vivo, AA-I showed the
strongest nephrotoxicity in mice; AA-II has mild nephro-
toxicity; AA-IVa and AL-I do not cause blood chemistry or
tissue abnormalities of the kidneys, as indicated by the
academic changes [42]. However, a few more studies found
that numerous AAs have similar toxic effects to AA-I. For
example, AL-I is the nitro reduction product of AA-I.
Mutual transformation may happen during the extraction
process. Aristololactam derivatives have also been reported
to have in vitro cytotoxicity [43–45]. Although the cell
damage mechanism of AL-I is different from AA-I, it can
still cause the increase of extracellular matrix components in
vitro the same as AA-I [14, 15]. Moreover, other AAs de-
rivatives such as 7-methoxy-aristololactam IV and aristo-
lolactam IVa exhibited similar or even higher cytotoxicity
than AA-I in MTTand lactate dehydrogenase leakage assays
[13]. Related structure-activity relationship studies have
shown that in addition to the nitro group as a structural
requirement for AAs-mediated cytotoxicity, the presence of
methoxy and hydroxyl also plays an important role [40],
emphasizing the potential nephrotoxins of AAs derivatives
other than AA-I that may exist in AR. In summary, there is
still controversy over the relative toxicity of AAs, so it is
necessary to be wary of the toxicity caused by these
compounds.

From the perspective of quality control, safety and ef-
fectiveness are the key factors in controlling the quality of
medicinal materials. In this study, the potential toxic AAs

were detected in all 15 AR samples, among which marker
ingredient AA-I accounted for only 2.38% of the total AAs
on average. In order to ensure the safety of AR more ac-
curately, the limitation of the total number of AAs is a
proposal worth considering. More nephrotoxicity-related
evaluation studies are still required to clarify the specific
upper limit of AAs. In addition, a considerable amount of
sesamin was also found in each sample. In view of the similar
pharmacological activities of sesamin and the existing
quality marker asarinin, it is recommended to add sesamin
as the quality marker in the following quality standard of AR.

4. Conclusions

In conclusion, a rapid and sensitive UHPLC-QqQ-MS
method was established for the simultaneous quantification
of six aristolochic acids and two lignans in AR, which was
validated with good accuracy and precision. AA-I, AA-IVa,
AA-VIIa, AL-I, asarinin, and sesamin were detected in all 15
AR samples by the developed method, and their content was
clarified. (e content of AA-IVa, AA-VIIa, and AL-I was
much higher than AA-I in all AR samples, indicating that
AA-IVa, AA-VIIa, and AL-I should be limited together to a
certain extent for the safety use of AR. Active ingredient
sesamin is also recommended to be added as a quality
marker for the improvement of quality control of AR. (e
newly developed analytical method could be applied for the
fast evaluation of toxic AAs content and quality during
quality control of AR commercial medicinal materials or the
preparations of AR contained.
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