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Sandrine M. Ouattara,2 Souleymane Fofana,1 and Touridomon Issa Somé2

1Higher Institute of Health Sciences (INSSA), Nazi BONI University, Bobo-Dioulasso, 01 P.O. Box 1091, Burkina Faso
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Falsi�ed drugs are of serious concern to public health worldwide, particularly for developing countries where quality control of
drugs is ine�cient. In law enforcement against such fake medicines, there is a need to develop reliable, fast, and inexpensive
screening methods. In this work, the ability of an innovative low-cost handheld near-infrared spectrometer to identify falsi-
�cations among two antimalarial �xed dose combination tablets, dihydroartemisinin/piperaquine and sulfadoxine/pyrimeth-
amine, has been investigated. Analyzed samples were collected in Burkina Faso mainly in rural transborder areas that could be
in�ltrated by illicit drugs. A principal component analysis was applied on the acquired near-infrared spectra to identify trends,
similarities, and di�erences between collected samples. �is allowed to detect some samples of dihydroartemisinin/piperaquine
and sulfadoxine/pyrimethamine which seemed to be falsi�ed. �ese suspicious samples were semiquantitatively analyzed by thin-
layer chromatography using Minalab® kits. Obtained results allowed to con�rm the falsi�cations since the suspected samples did
not contain any of the expected active pharmaceutical ingredients. �e capacity of the low-cost near-infrared device to identify
speci�cally a brand name of dihydroartemisinin/piperaquine or sulfadoxine/pyrimethamine has been also studied using soft
independent modelling of class analogy (SIMCA) in the classical and data driven versions. �e built models allowed a clear brand
identi�cation with 100% of both sensitivity and speci�city in the studied cases. All these results demonstrate the potential of these
low-cost near-infrared spectrometers to be used as �rst line screening tools, particularly in resource limited laboratories, for the
detection of falsi�ed antimalarial drugs.

1. Introduction

According to the World Health Organization (WHO), fal-
si�ed medicines are de�ned as products that deliberately or
fraudulently misrepresent their identity, composition, or
source [1]. Fake medicines are of serious concerns to public
health worldwide, particularly for developing countries
where regulatory systems are weak and quality control of
drugs is ine�cient. �e impacts of fake medicines include
treatment failure, antimicrobial resistance, morbidity, and
mortality increase [2]. It has been estimated that approxi-
mately 10% of medicines administered worldwide are of

poor quality [3–5]. Even if all pharmacological classes are
a�ected, vital drugs like antimalarials remain ones of the
most falsi�ed, particularly in developing countries [6]. In-
deed, it has been estimated that 35% of antimalarial med-
icines in Sub-Saharan Africa failed chemical analysis, and
20% were falsi�ed [7].�e consumption of such poor quality
antimalarial drug may be associated annually to 120000
deaths of under-�ve children [8].

Drug quality control is a key issue in the supply chain
monitoring, law enforcement, and ensuring patient pro-
tection [9]. It is generally performed according to phar-
macopeias which involved analytical techniques such as
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liquid or gas chromatography. )ese techniques are ex-
pensive to perform, particularly for resource limited labo-
ratories. In order to bridge the capacity gap of drug quality
monitoring of resource limited countries, the Global Pharma
Health Fund (GPHF) developed field test kits, called Min-
ilab®, based on semiquantitative thin-layer chromatography
allowing the detection of falsified and grossly substandard
drugs [8, 10, 11]. AlthoughMinilab® kit is less expensive and
easy to implement, it is destructive, requires sample prep-
aration steps, and uses reagents which are sometimes
harmful and of environmental concerns.

Near-infrared spectroscopy is an analytical technique
well known for its potential in the detection of falsified
medicines [12, 13]. It has also the advantages of being
nondestructive, fast, requiring little or no sample prepara-
tion steps, as well as being environmentally friendly. )e
bands in NIR predominantly arise from overtones and
combination of stretching of O–H, C–H, andN–H bonds are
generally much broader and weak than those seen in the
middle infrared region, therefore giving a lower molecular
selectivity [14]. )at is why near-infrared analysis is gen-
erally combined with chemometrics [15, 16]. Near infrared
spectroscopy associated to chemometrics is more and more
employed for product identification and particularly de-
tection of falsified drugs [2, 16, 17]. However, the high cost
of classically commercialized instruments limit their use,
particularly in resource limited laboratories.

Recently, some innovative handheld and low-cost NIR
spectrophotometers have been commercialized. )ese low-
cost devices are very compact and can operate autonomously
using batteries [18]. )ey are also provided with wired USB
and bluetooth wireless connections that made them com-
patible with microcomputers, tablets, or cell phones. Besides
their low cost, they can offer promising performance
comparable to bench-top instruments [19, 20]. )eir po-
tential has been assessed in the detection of falsified anti-
malarial artemether and lumefantrine drugs [9, 19].

We report in this study the ability of a low-cost NIR
spectrometer as a screening tool to identify falsifications
among two fixed dose antimalarial combination tablets,
dihydroartemisinin/piperaquine (DP), and sulfadoxine/py-
rimethamine (SP). Samples from different brands were
collected in Burkina Faso mainly in rural transborder areas
that could be infiltrated by medicines trafficking. A principal
component analysis (PCA) was first applied as an explor-
atory tool on the acquired spectra to identify trends, simi-
larities, and differences between collected samples and detect
suspicious falsified samples. )e suspicious samples were
then analyzed using Minalab® kits to confirm falsifications.
)e potential of the NIR spectrometer to identify specifically
a brand name of DP or SP using soft independent modelling
of class analogy (SIMCA) in the classical and data driven
versions has been also investigated.

2. Materials and Methods

2.1. Chemicals and Drug Products.
Dihydroartemisinin-piperaquine (DP) and sulfadoxine-py-
rimethamine (SP) tablets, both in fixed dose combination,

were collected in Burkina Faso in different transborder zones
(Table 1). All samples collected were from licit drugstores,
except for someMaloxine® samples which were bought with
illicit street vendors. Except Duo-Cotecxin® and Maloxine®for which at least 5 batches were sampled, only two batches
were collected for each product. In fact, it was difficult to get
more batches during the sample collection because the same
sample batches were found in the different drugstores at the
time of the study.

After the NIR analysis, samples were further semi-
quantitatively analyzed by thin-layer chromatography (TLC)
using the Global Pharma Health Fund (GPHF) MiniLab®
kits® and protocols [21].)e reference standards (all in tablet
formulation) employed for the TLC analysis were also from
GPHF and were kindly provided by the national public
health laboratory of Burkina Faso.

2.2. Near-Infrared Analysis

2.2.1. Instrumentation. Analyzes were performed using NIR-
S-G1 spectrophotometer from InnoSpectra (Hsinchu, Tai-
wan). It is a low-cost (less than 1000 €) handheld dispersive
near-infrared instrument which can operate autonomously
using batteries [22]. )e NIR-S-G1 spectrophotometer can
be driven by computers, tablets, or cell phones using wired
USB and bluetooth wireless connections. It allows to
monitor the 900–1700 nm near-infrared spectral region with
a nominal resolution of 10 nm.

2.2.2. Data Acquisition. Tablet samples were directly scan-
ned through their transparent blister, except for Maloxine®and Fansidar® samples. For these latter, spectra were directly
recorded on the bare tablets because of the opacity of their
primary packaging. Spectra of ten tablets per batch were
recorded in the 900–1700 nm region for each formulation.
)erefore, a total of 230 spectra was acquired.

2.2.3. Spectral Preprocessing. Prior to chemometric analysis,
appropriate pretreatments of the acquired near-infrared
spectra were necessary to eliminate irrelevant information
which are mainly due to differences in physical character-
istics of the samples. )erefore, data preprocessing was used

Table 1: DP and SP collected tablets.

Brand name API Dosage
(mg) Sales channel Tested

batches
Duo-
Cotecxin® DP 40–340 Licit drugstore 6

Ridmal® DP 40–340 Licit drugstore 2
Malacur® DP 40–340 Licit drugstore 2
Maloxine® SP 500–25 Licit drugstore 5

Maloxine® SP 500–25 Illicit street
vendors 2

Combimal® SP 500–25 Licit drugstore 2
Laridox® SP 500–25 Licit drugstore 2
Fansidar® SP 500–25 Licit drugstore 2
API: active pharmaceutical ingredient.
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to improve signal-to-noise ratio. )e preprocessing con-
sisted of a Savitzky-Golay smoothing and differentiation
filter (second-degree polynomial and second derivative)
followed by a multiplicative scatter correction (MSC). )e
chemometric analysis was performed on the spectral range
between 1085 nm and 1601 nm because the other spectral
areas were found noisy and less repeatable.

2.2.4. Principal Component Analysis. Principal component
analysis (PCA) is a common unsupervised technique which
forms the basis for multivariate data analysis [16]. It allows
the exploration of data through the reduction of its di-
mensionality [23]. In fact, PCA allows to reduce the di-
mensions of the original data space by using a smaller and
more efficient abstract space of latent variables called
principal components (PCs) [24]. In this new space, data
(spectra in our case) can be displayed while keeping the same
information as the original space. Each spectrum is visu-
alized as a point in a two or three dimensional plot defined
by the selected principal components (PCs). Usually, the first
three principal components are the most informative and
explain the variance in the data. PCA allows to enhance
similarities and differences between the spectra, allowing the
detection of underlying clusters.

2.2.5. Soft Independent Modelling of Class Analogy (SIMCA).
A classificationmethod was built to evaluate the ability of the
low-cost instrument to authenticate specifically a drug brand
name. Chemometric models based on a class modelling or
one-class classifier like soft independent modelling of class
analogy (SIMCA) are more recommended for authentica-
tion purpose [25, 26]. )e original version of SIMCA has
several modifications mostly related to the way of building
the acceptance boundaries. A recent known modification is
data driven (DD)-SIMCA [27]. Both original and data
driven versions of SIMCA were used in this study.

(1) Classical SIMCAAnalysis.)e classical SIMCA algorithm
uses samples with known origin (training samples) to
perform a classification rule which allows classifying new
samples (test samples) in one of the classes [24]. )e dif-
ferent classes are modelled individually by a separate PCA.
)e number of PCs was chosen for each class using a
venetian blinds cross-validation. PCA results are then used
to estimate the residual Q and the Hotelling T2 statistics
from the calibration data. )e classification of a sample is
based on the Q and T2 for the sample and the estimation of
the T2 and Q distributions from the training data. )is
allowed to compute confidence limits set at 95%. With the
PLS Toolbox software, these confidence limits are used to
calculate the probability of a sample to be in a given class. A
sample is attributed to a class if the probability is greater than
a specified threshold probability value fixed at 0, 8 in this
work. SIMCA models were built for each product. For Duo-
Cotecxin® and Maloxine® products for which at least five
batches have been collected, spectra of three batches were
used as a training set for the model building and the two
remaining batches were used as a test set. For the products

for which only two batches were collected, Kennard-Stone
algorithm was used to split the collected spectra into training
(60 percent of spectra) and test (remaining 40 percent of
spectra) sets for each product. Falsified samples were inte-
grated only to the test set.

(2) DD-SIMCA Analysis. SIMCA in its data driven version
was also used to build a classification model for 2 target
classes: Duo-Cotecxin® and Maloxine® products for which
falsified samples have been identified and enough batches
were collected. Like any SIMCA model, DD-SIMCA de-
composes the training spectra of the target class by PCA
[19, 26, 27].)en, the results of PCA decomposition are used
to compute a score distance (hi) and an orthogonal distance
(vi) for each training sample [25, 28]. Each type of distance is
modelled using a scaled chi-squared distribution instead of
the residual Q or Hotelling T2 statistics used in the original
SIMCA models [24]. )e calculated score and orthogonal
distances are used to define the acceptance area or thresholds
for the target class at a given significance level α. )e DD-
SIMCA models are usually shown using a two-dimensional
plot with a limit curve allowing to determine whether or not
the samples belong to the target class [29]. For each Duo-
Cotecxin® and Maloxine® product, spectra of three batcheswere used as a training set to build the model and the two
remaining batches were used as a test set to evaluate the
model sensitivity. )e other DP and SP products were
employed to mimic high quality fake drugs and test model
specificity.

)e performance of the classical and data driven versions
of SIMCA modelling was assessed based on sensitivity and
specificity. Sensitivity is related to the percentage of samples
from the target class that are correctly attributed as a
member of the target class. Specificity is related to the
percentage of samples from nonmembers of the target class,
which are properly attributed as nonmembers of the target
class [29].

2.3. Software. )e spectral preprocessing, the PCA, and the
classical SIMCA modelling were carried out using the
PLS_Toolbox version 8.9.2, and while the DD-SIMCA
analysis was done using DDSGUI, a graphical user interface
freely available online [30]. All chemometric procedures
were performed in a MATLAB environment (R2019a).

3. Results and Discussion

3.1. Spectral Data Pretreatment. Figure 1 illustrates the
pretreated selected spectral range prior the modelling pro-
cess. )e second derivative was chosen to remove noise and
baseline signals. )e multiplicative scatter correction (MSC)
was then applied to the smoothed and differentiated signals.

3.2. Principal Component Analysis (PCA). A PCA was car-
ried out on the acquired and pretreated spectra to enhance
differences and similarities between the spectra and to
identify underlying clusters [17]. )e PCA was first carried
out simultaneously on DP and SP samples. Figure 2 presents
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the score plot for the spectra of both DP and SP samples in
the space spanned by the �rst (PC1) and second (PC2)
principal component. �ese two PC explained nearly 85% of
the variability. In a second time, PCA was applied separately
on SP and DP samples (Figure 3).

3.2.1. SP Product Analysis. �e PC1-PC2 score plot, pre-
sented in Figure 2, allowed to notice that the spectra of all SP
products from the licit sale channel were grouped together
and could be distinguished from DP spectra. Also, one can
see that the samples of the illicit channel Maloxine® were farfrom the samples of the licit channel Maloxine® and other
SP products, being outside the 95% con�dence level. �e
PCA applied only on SP products allowed to con�rm that SP
samples from licit sale channel were similar but very dif-
ferent from the illicit channel samples of Maloxine®(Figure 3(a)). �erefore, these samples bought from illicit
street vendors seemed to be falsi�ed.

3.2.2. DP Product Analysis. �ePCA applied on both SP and
DP products allowed to see that DP spectra were also
grouped, except some spectra of Duo-Cotecxin® which werefar from other spectra of Duo-Cotecxin® and other DP
medicines (Figure 2). �ese isolated Duo-Cotecxin® spectrawere all from the same batch. �erefore, this batch appeared
to be very di�erent from the 5 other batches of Duo-
Cotecxin®. For a better visualization, a PCA was also applied
only on DP products (Figure 3(b)). �is allowed to con�rm
the atypic behavior of one sample of Duo-Cotecxin® since itsscores were very di�erent from other Duo-Cotecxin®samples and DP formulations. �erefore, this sample
appeared to be also falsi�ed as the samples of the illicit
channel Maloxine®.�e PCA applied separately on SP and DP products
(Figure 3) allowed to di�erentiate each DP formulations on
the one hand and each SP product on the second hand even
if all these formulations seemed to contain the correct ex-
pected active pharmaceutical ingredients. �is can be
explained by the fact that the analyzed medicines may not
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Figure 1: Preprocessed mean spectra in the 1085–1601 nm range. (a) SP samples. (b) DP samples.
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Figure 2: PC1-PC2 score plot of the preprocessed data of both SP
and DP data.
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have the same nature and composition of excipients and that
NIR spectra are sensitive not only to chemical properties but
also to physical properties.

3.3. SP and DP Sample Analysis Using MiniLab® Kit. To
con�rm NIR results, all SP and DP tablets were analyzed
using MiniLab® kits which allow a rapid drug quality ver-
i�cation through a semiquantitative thin-layer chromatog-
raphy [21]. MiniLab® kits are reliable to detect grossly
substandard (less than 80% of the expected amount) or
wrong drug samples [8, 11]. As expected from the NIR
analysis, none of the expected active pharmaceutical in-
gredient was found in samples of Maloxine® from the illicit
sale channel (neither sulfadoxine, nor pyrimethamine and in
the suspected Duo-Cotecxin® sample (neither dihy-
droartemisinin, nor piperaquine). On the contrary, all other
Duo-Cotecxin® samples and DP and SP products passed
with success in Minilab® tests and appeared to contain at
least 80% of the expected amount of the respective active
pharmaceutical ingredients.

�e falsi�cation of Maloxine® samples was expected
since they were purchased with illicit street vendor and their
packaging was di�erent of the packaging of licit Maloxine®samples. On the contrary, the falsi�ed Duo-Cotecxin®sample was purchased in a licit drugstore and the visual
inspection did not allow to notice a signi�cant di�erence in
comparison with the other Duo-Cotecxin® samples. �ese
results allowed to demonstrate the great potential of the low-
cost NIR spectrometer as a screening tool for the detection of
falsi�ed drugs without API.

3.4. SIMCA Analysis. Considering PCA results, a classi�-
cation method was investigated to evaluate the potential of
the low-cost instrument to authenticate speci�cally a given
brand name of SP and DP formulation. A class modelling
method like SIMCA which is recommended for the veri�-
cation of the identity of products [19, 26] has been used both
in its classical version and data driven one.

3.4.1. Classical SIMCA Analysis. Original SIMCA models
were constructed for each DP and SP product. Six SIMCA
models were built and a correct classi�cation rate of 100% of
both sensitivity and speci�city was obtained (Table 2).
Falsi�ed samples were assigned to no built class. �e created
SIMCA models allowed to di�erentiate each SP and DP
product from other formulations even if all these formu-
lations contain the correct expected active pharmaceutical
ingredients. �is can be explained by the fact that the an-
alyzed drugs may not have the same nature and composition
of excipients and that NIR spectra are sensitive to both
chemical and physical properties.
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Figure 3: PCA applied separately on SP and DP preprocessed data. (a) SP PC1-PC2 score plot. (b) DP PC1-PC2 score plot.

Table 2: classical SIMCA model parameters.

Class Number of PC Sensibility (%) Speci�city (%)
Duo-Cotecxin® 6 100 100
Ridmal® 3 100 100
Malacur® 3 100 100
Maloxine® 3 100 100
Combimal® 2 100 100
Laridox® 2 100 100
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3.4.2. DD-SIMCA Analysis. DD-SIMCA models were
constructed only for Duo-Cotecxin® and Maloxine® for-
mulations for which falsi�ed samples have been identi�ed
and enough batches have been collected. Results of built DD-
SIMCA models for the two target classes are shown in
Figure 4. �e DD-SIMCA models allowed, like classical
SIMCA, a clear product authentication and thus a speci�c
brand identi�cation with 100% of both sensitivity and
speci�city for the studied cases.

�ese results showed that despite the limited spectral
range and low resolution of this low-cost spectrophotom-
eter, it o�ers promising performance as a screening tool for
proper falsi�cation detection and speci�c brand identi�ca-
tion of the antimalarial dihydroartemisinin/piperaquine and
sulfadoxine/pyrimethamine drugs.

4. Conclusion

�e obtained results allow a�rming that these innovative
low-cost portable near-infrared spectrometers, associated to
chemometric tools, o�er promising performance to be used
as an analytical method for routine testing against phar-
maceutical falsi�cation of antimalarial dihydroartemisinin/
piperaquine and sulfadoxine/pyrimethamine drugs in their
intact form. Despite their limited spectral range and low
resolution, these devices allowed detecting falsi�ed drugs
with no active pharmaceutical ingredient and identifying
speci�cally a brand name. �is innovative handheld NIR
spectrophotometer could be used as a �rst line screening tool
in the detection and �ght against antimalarial falsi�ed drugs,
particularly in developing countries. �e implementation of
such screening devices combined to a better monitoring of

the medicine supply chain would reduce the in�ltration of
falsi�ed drugs in licit drugstores.
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